×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

TinyML. Wykorzystanie TensorFlow Lite do uczenia maszynowego na Arduino i innych mikrokontrolerach Pete Warden, Daniel Situnayake

(ebook) (audiobook) (audiobook)
Autorzy:
Pete Warden, Daniel Situnayake
Wydawnictwo:
Helion
Wydawnictwo:
Helion
Ocena:
6.0/6  Opinie: 1
Stron:
432
Druk:
oprawa miękka
Dostępne formaty:
     PDF
     ePub
     Mobi
Czytaj fragment

Książka (59,40 zł najniższa cena z 30 dni)

99,00 zł (-35%)
64,35 zł

Dodaj do koszyka Wysyłamy w 24h

(59,40 zł najniższa cena z 30 dni)

Ebook (39,90 zł najniższa cena z 30 dni)

99,00 zł (-50%)
49,50 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(39,90 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Do przechowalni

Powiadom o dostępności audiobooka »

Może się wydawać, że profesjonalne systemy uczenia maszynowego wymagają sporych zasobów mocy obliczeniowej i energii. Okazuje się, że niekoniecznie: można tworzyć zaawansowane, oparte na sieciach neuronowych aplikacje, które doskonale poradzą sobie bez potężnych procesorów. Owszem, praca na mikrokontrolerach podobnych do Arduino lub systemach wbudowanych wymaga pewnego przygotowania i odpowiedniego podejścia, jest to jednak fascynujący sposób na wykorzystanie niewielkich urządzeń o niskim zapotrzebowaniu na energię do tworzenia zdumiewających projektów.

Ta książka jest przystępnym wprowadzeniem do skomplikowanego świata, w którym za pomocą techniki TinyML wdraża się głębokie uczenie maszynowe w systemach wbudowanych. Nie musisz mieć żadnego doświadczenia z zakresu uczenia maszynowego czy pracy z mikrokontrolerami. W książce wyjaśniono, jak można trenować modele na tyle małe, by mogły działać w każdym środowisku - również Arduino. Dokładnie opisano sposoby użycia techniki TinyML w tworzeniu systemów wbudowanych opartych na zastosowaniu ucze nia maszynowego. Zaprezentowano też kilka ciekawych projektów, na przykład dotyczący budowy urządzenia rozpoznającego mowę, magicznej różdżki reagującej na gesty, a także rozszerzenia możliwości kamery o wykrywanie ludzi.

W książce między innymi:

  • praca z Arduino i innymi mikrokontrolerami o niskim poborze mocy
  • podstawy uczenia maszynowego, budowy i treningu modeli
  • TensorFlow Lite i zestaw narzędzi Google dla TinyML
  • bezpieczeństwo i ochrona prywatności w aplikacji
  • optymalizacja modelu
  • tworzenie modeli do interpretacji różnego rodzaju danych

Ograniczone zasoby? Poznaj TinyML!

Wybrane bestsellery

O autorach książki

Pete Warden jest współzałożycielem zespołu do spraw TensorFlow. Obecnie zajmuje się platformą TensorFlow dla mobilnych systemów operacyjnych i systemów wbudowanych. Wcześniej był założycielem firmy Jetpac, przejętej przez Google w 2014 roku.

Daniel Situnayake wspiera programistów TensorFlow w Google. Jest współzałożycielem firmy Tiny Farms, która jako pierwsza w Stanach Zjednoczonych zautomatyzowała proces uzyskiwania białka z owadów na skalę przemysłową.

Pete Warden, Daniel Situnayake - pozostałe książki

Zobacz pozostałe książki z serii

Helion - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Książka
64,35 zł
Dodaj do koszyka
Ebook
49,50 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.