×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

In-Memory Analytics with Apache Arrow. Accelerate data analytics for efficient processing of flat and hierarchical data structures - Second Edition Matthew Topol, Wes McKinney

(ebook) (audiobook) (audiobook) Książka w języku 1
In-Memory Analytics with Apache Arrow. Accelerate data analytics for efficient processing of flat and hierarchical data structures - Second Edition Matthew Topol, Wes McKinney - okladka książki

In-Memory Analytics with Apache Arrow. Accelerate data analytics for efficient processing of flat and hierarchical data structures - Second Edition Matthew Topol, Wes McKinney - okladka książki

In-Memory Analytics with Apache Arrow. Accelerate data analytics for efficient processing of flat and hierarchical data structures - Second Edition Matthew Topol, Wes McKinney - audiobook MP3

In-Memory Analytics with Apache Arrow. Accelerate data analytics for efficient processing of flat and hierarchical data structures - Second Edition Matthew Topol, Wes McKinney - audiobook CD

Autorzy:
Matthew Topol, Wes McKinney
Serie wydawnicze:
Hands-on
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
406
Dostępne formaty:
     PDF
     ePub
Apache Arrow is an open source, columnar in-memory data format designed for efficient data processing and analytics. This book harnesses the author’s 15 years of experience to show you a standardized way to work with tabular data across various programming languages and environments, enabling high-performance data processing and exchange.
This updated second edition gives you an overview of the Arrow format, highlighting its versatility and benefits through real-world use cases. It guides you through enhancing data science workflows, optimizing performance with Apache Parquet and Spark, and ensuring seamless data translation. You’ll explore data interchange and storage formats, and Arrow's relationships with Parquet, Protocol Buffers, FlatBuffers, JSON, and CSV. You’ll also discover Apache Arrow subprojects, including Flight, SQL, Database Connectivity, and nanoarrow. You’ll learn to streamline machine learning workflows, use Arrow Dataset APIs, and integrate with popular analytical data systems such as Snowflake, Dremio, and DuckDB. The latter chapters provide real-world examples and case studies of products powered by Apache Arrow, providing practical insights into its applications.
By the end of this book, you’ll have all the building blocks to create efficient and powerful analytical services and utilities with Apache Arrow.

Wybrane bestsellery

O autorach książki

Matthew Topol is an Apache Arrow contributor and a principal software architect at FactSet Research Systems, Inc. Since joining FactSet in 2009, Matt has worked in both infrastructure and application development, led development teams, and architected large-scale distributed systems for processing analytics on financial data. In his spare time, Matt likes to bash his head against a keyboard, develop and run delightfully demented games of fantasy for his victims—er—friends, and share his knowledge with anyone interested enough to listen.

Wes McKinney ― twórca oprogramowania open source, autor projektu pandas i współtwórca Apache Arrow. Członek The Apache Software Foundation, a także PMC Apache Parquet. Obecnie pełni funkcję dyrektora technicznego Voltron Data, gdzie zajmuje się przyspieszonymi technologiami obliczeniowymi opartymi na Apache Arrow.

Matthew Topol, Wes McKinney - pozostałe książki

Zobacz pozostałe książki z serii Hands-on

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
125,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.