×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Practical Guide to Applied Conformal Prediction in Python. Learn and apply the best uncertainty frameworks to your industry applications Valery Manokhin, Agus Sudjianto

(ebook) (audiobook) (audiobook) Książka w języku 1
Practical Guide to Applied Conformal Prediction in Python. Learn and apply the best uncertainty frameworks to your industry applications Valery Manokhin, Agus Sudjianto - okladka książki

Practical Guide to Applied Conformal Prediction in Python. Learn and apply the best uncertainty frameworks to your industry applications Valery Manokhin, Agus Sudjianto - okladka książki

Practical Guide to Applied Conformal Prediction in Python. Learn and apply the best uncertainty frameworks to your industry applications Valery Manokhin, Agus Sudjianto - audiobook MP3

Practical Guide to Applied Conformal Prediction in Python. Learn and apply the best uncertainty frameworks to your industry applications Valery Manokhin, Agus Sudjianto - audiobook CD

Autorzy:
Valery Manokhin, Agus Sudjianto
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
240
Dostępne formaty:
     PDF
     ePub

Ebook (125,10 zł najniższa cena z 30 dni)

139,00 zł (-10%)
125,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(125,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

In the rapidly evolving landscape of machine learning, the ability to accurately quantify uncertainty is pivotal. Practical Guide to Applied Conformal Prediction in Python addresses this need by offering an in-depth exploration of Conformal Prediction, a cutting-edge framework set to revolutionize uncertainty management in various ML applications.
Embark on a comprehensive journey through Conformal Prediction, exploring its fundamentals and practical applications in binary classification, regression, time series forecasting, imbalanced data, computer vision, and NLP. Each chapter delves into specific aspects, offering hands-on insights and best practices for enhancing prediction reliability. The book concludes with a focus on multi-class classification nuances, providing expert-level proficiency to seamlessly integrate Conformal Prediction into diverse industries. Practical examples in Python using real-world datasets reinforce intuitive explanations, ensuring you acquire a robust understanding of this modern framework for uncertainty quantification.
This guide is a beacon for mastering Conformal Prediction in Python, providing a blend of theory and practical application. It serves as a comprehensive toolkit to enhance machine learning skills, catering to professionals from data scientists to ML engineers.

Wybrane bestsellery

O autorze książki

Valeriy Manokhin is the leading expert in the field of machine learning and Conformal Prediction. He holds a Ph.D.in Machine Learning from Royal Holloway, University of London. His doctoral work was supervised by the creator of Conformal Prediction, Vladimir Vovk, and focused on developing new methods for quantifying uncertainty in machine learning models.
Valeriy has published extensively in leading machine learning journals, and his Ph.D. dissertation 'Machine Learning for Probabilistic Prediction' is read by thousands of people across the world. He is also the creator of "Awesome Conformal Prediction," the most popular resource and GitHub repository for all things Conformal Prediction.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
125,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.