×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Deep Learning. Praktyczne wprowadzenie

(ebook) (audiobook) (audiobook)
  • Czasowo niedostępna
  • Promocja Przejdź
Wydawnictwo:
Helion
Wydawnictwo:
Helion
Ocena:
2.0/6  Opinie: 3
Stron:
456
Druk:
oprawa miękka
Dostępne formaty:
     PDF
     ePub
     Mobi
Czytaj fragment

Technologie wykorzystujące różne formy uczenia maszynowego zaczynają pojawiać się w różnych branżach. Możliwości w tym zakresie stale rosną, podobnie jak zainteresowanie i oczekiwania. Przed podjęciem decyzji o wdrożeniu w firmie tego rodzaju rozwiązań trzeba jednak zadać sobie pytanie, co można i co chciałoby się osiągnąć za pomocą sieci neuronowej. Generalnie uczenie maszynowe opiera się na algorytmach wyodrębniania informacji z surowych danych i reprezentowania ich jako modelu. Model ten następnie służy do przetwarzania kolejnych surowych danych. Co to jednak oznacza w praktyce i jak się implementuje takie algorytmy?

Niniejsza książka jest przydatnym przewodnikiem po uczeniu maszynowym i sieciach neuronowych. Zawiera praktyczne informacje, które doceni każdy programista stawiający pierwsze kroki w tej dziedzinie. Przedstawiono tu podstawy deep learningu i wyjaśniono takie pojęcia, jak strojenie sieci, wielowątkowość, wektoryzowanie danych. Opisano, w jaki sposób można wykorzystać otwartą bibliotekę Deeplearning4j (DL4J) do kodowania profesjonalnych procesów uczenia głębokiego. Zaprezentowano metody i strategie trenowania sieci głębokich i uruchamiania procesów uczenia głębokiego w środowiskach Spark i Hadoop. Zagadnienia te zostały zilustrowane gotowymi do zastosowania, praktycznymi przykładami.

W tej książce między innymi:

  • ogólne koncepcje uczenia maszynowego, uczenia głębokiego i sieci neuronowych
  • ewolucja sieci neuronowych do sieci głębokich i ich rodzaje
  • dobieranie rodzaju sieci do analizowanego zagadnienia
  • strojenie sieci neuronowych i sieci głębokich
  • korzystanie z narzędzia DataVec do wektoryzowania danych różnych typów
  • stosowanie biblioteki DL4J w środowiskach Spark i Hadoop

Uczenie głębokie i sieci neuronowe: przyszłość, która dzieje się dziś!

Wybrane bestsellery

O autorach książki

Josh Patterson jest uznanym autorytetem w dziedzinie przetwarzania wielkich ilości danych, uczenia maszynowego i uczenia głębokiego. Aktywnie działa na rzecz tworzenia otwartego oprogramowania, uczestniczy w takich projektach jak DL4J, Apache Mahout, Metronome, IterativeReduce, openPDC i JMotif

Adam Gibson specjalizuje się w uczeniu głębokim. Ma duże doświadczenie w budowaniu systemów do przetwarzania dużych ilości danych w czasie rzeczywistym. Z jego rozwiązań korzystają m.in. firmy z listy Fortune 500, towarzystwa ubezpieczeniowe, firmy public relations i startupy.

Zobacz pozostałe książki z serii

Helion - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Książka
77,00 zł
Czasowo niedostępna
Ebook
38,50 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint