×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Cracking the Data Engineering Interview. Land your dream job with the help of resume-building tips, over 100 mock questions, and a unique portfolio Kedeisha Bryan, Taamir Ransome

(ebook) (audiobook) (audiobook) Książka w języku 1
Cracking the Data Engineering Interview. Land your dream job with the help of resume-building tips, over 100 mock questions, and a unique portfolio Kedeisha Bryan, Taamir Ransome - okladka książki

Cracking the Data Engineering Interview. Land your dream job with the help of resume-building tips, over 100 mock questions, and a unique portfolio Kedeisha Bryan, Taamir Ransome - okladka książki

Cracking the Data Engineering Interview. Land your dream job with the help of resume-building tips, over 100 mock questions, and a unique portfolio Kedeisha Bryan, Taamir Ransome - audiobook MP3

Cracking the Data Engineering Interview. Land your dream job with the help of resume-building tips, over 100 mock questions, and a unique portfolio Kedeisha Bryan, Taamir Ransome - audiobook CD

Autorzy:
Kedeisha Bryan, Taamir Ransome
Serie wydawnicze:
Hands-on
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
196
Dostępne formaty:
     PDF
     ePub
Preparing for a data engineering interview can often get overwhelming due to the abundance of tools and technologies, leaving you struggling to prioritize which ones to focus on. This hands-on guide provides you with the essential foundational and advanced knowledge needed to simplify your learning journey.
The book begins by helping you gain a clear understanding of the nature of data engineering and how it differs from organization to organization. As you progress through the chapters, you’ll receive expert advice, practical tips, and real-world insights on everything from creating a resume and cover letter to networking and negotiating your salary. The chapters also offer refresher training on data engineering essentials, including data modeling, database architecture, ETL processes, data warehousing, cloud computing, big data, and machine learning. As you advance, you’ll gain a holistic view by exploring continuous integration/continuous development (CI/CD), data security, and privacy. Finally, the book will help you practice case studies, mock interviews, as well as behavioral questions.
By the end of this book, you will have a clear understanding of what is required to succeed in an interview for a data engineering role.

Wybrane bestsellery

O autorach książki

Kedeisha Bryan is a data professional with experience in data analytics, science, and engineering. She has prior experience combining both Six Sigma and analytics to provide data solutions that have impacted policy changes and leadership decisions. She is fluent in tools such as SQL, Python, and Tableau.
She is the founder and leader at the Data in Motion Academy, providing personalized skill development, resources, and training at scale to aspiring data professionals across the globe. Her other works include another Packt book in the works and an SQL course for LinkedIn Learning.
Taamir Ransome is a Data Scientist and Software Engineer. He has experience in building machine learning and artificial intelligence solutions for the US Army. He is also the founder of the Vet Dev Institute, where he currently provides cloud-based data solutions for clients. He holds a master's degree in Analytics from Western Governors University.

Zobacz pozostałe książki z serii Hands-on

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
76,49 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.