×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Hands-On Explainable AI (XAI) with Python. Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Autor:
Denis Rothman
Hands-On Explainable AI (XAI) with Python. Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps Denis Rothman - okladka książki

Hands-On Explainable AI (XAI) with Python. Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps Denis Rothman - okladka książki

Hands-On Explainable AI (XAI) with Python. Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps Denis Rothman - audiobook MP3

Hands-On Explainable AI (XAI) with Python. Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps Denis Rothman - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
454
Dostępne formaty:
     PDF
     ePub
     Mobi
Zostało Ci na świąteczne zamówienie opcje wysyłki »
Effectively translating AI insights to business stakeholders requires careful planning, design, and visualization choices. Describing the problem, the model, and the relationships among variables and their findings are often subtle, surprising, and technically complex.

Hands-On Explainable AI (XAI) with Python will see you work with specific hands-on machine learning Python projects that are strategically arranged to enhance your grasp on AI results analysis. You will be building models, interpreting results with visualizations, and integrating XAI reporting tools and different applications.

You will build XAI solutions in Python, TensorFlow 2, Google Cloud’s XAI platform, Google Colaboratory, and other frameworks to open up the black box of machine learning models. The book will introduce you to several open-source XAI tools for Python that can be used throughout the machine learning project life cycle.

You will learn how to explore machine learning model results, review key influencing variables and variable relationships, detect and handle bias and ethics issues, and integrate predictions using Python along with supporting the visualization of machine learning models into user explainable interfaces.

By the end of this AI book, you will possess an in-depth understanding of the core concepts of XAI.

Wybrane bestsellery

O autorze książki

Denis Rothman graduated from Sorbonne University and Paris-Diderot University, designing one of the very first word2matrix patented embedding and patented AI conversational agents. He began his career authoring one of the first AI cognitive natural language processing (NLP) chatbots applied as an automated language teacher for Moët et Chandon and other companies. He authored an AI resource optimizer for IBM and apparel producers. He then authored an advanced planning and scheduling (APS) solution used worldwide.

Denis Rothman - pozostałe książki

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
134,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint