×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Automotive Cybersecurity Engineering Handbook. The automotive engineer's roadmap to cyber-resilient vehicles Dr. Ahmad MK Nasser

(ebook) (audiobook) (audiobook) Książka w języku 1
Automotive Cybersecurity Engineering Handbook. The automotive engineer's roadmap to cyber-resilient vehicles Dr. Ahmad MK Nasser - okladka książki

Automotive Cybersecurity Engineering Handbook. The automotive engineer's roadmap to cyber-resilient vehicles Dr. Ahmad MK Nasser - okladka książki

Automotive Cybersecurity Engineering Handbook. The automotive engineer's roadmap to cyber-resilient vehicles Dr. Ahmad MK Nasser - audiobook MP3

Automotive Cybersecurity Engineering Handbook. The automotive engineer's roadmap to cyber-resilient vehicles Dr. Ahmad MK Nasser - audiobook CD

Autor:
Dr. Ahmad MK Nasser
Serie wydawnicze:
Learning
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
392
Dostępne formaty:
     PDF
     ePub

Ebook (161,10 zł najniższa cena z 30 dni)

169,00 zł (-5%)
161,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(161,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Replete with exciting challenges, automotive cybersecurity is an emerging domain, and cybersecurity is a foundational enabler for current and future connected vehicle features. This book addresses the severe talent shortage faced by the industry in meeting the demand for building cyber-resilient systems by consolidating practical topics on securing automotive systems to help automotive engineers gain a competitive edge.
The book begins by exploring present and future automotive vehicle architectures, along with relevant threats and the skills essential to addressing them. You’ll then explore cybersecurity engineering methods, focusing on compliance with existing automotive standards while making the process advantageous. The chapters are designed in a way to help you with both the theory and practice of building secure systems while considering the cost, time, and resource limitations of automotive engineering. The concluding chapters take a practical approach to threat modeling automotive systems and teach you how to implement security controls across different vehicle architecture layers.
By the end of this book, you'll have learned effective methods of handling cybersecurity risks in any automotive product, from single libraries to entire vehicle architectures.

Wybrane bestsellery

O autorze książki

Dr. Ahmad MK Nasser is an automotive cybersecurity architect with a long experience in securing safety-critical systems. He started his career as a software engineer, building automotive network drivers, diagnostics protocols, and flash programming solutions. This naturally led him into the field of automotive cybersecurity, where he designed secure firmware solutions for various microcontrollers and SoCs, defined secure hardware and software architectures of embedded systems, and performed threat analysis of numerous vehicle architectures, ECUs, and smart sensors. Ahmad holds a B.S. and an M.S. in electrical and computer engineering from Wayne State University, as well as a Ph.D. in computer science from the University of Michigan in Dearborn. He is currently a principal security architect for NVIDIA’s autonomous driving software platform.

Zobacz pozostałe książki z serii Learning

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
161,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.