×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Unlocking Data with Generative AI and RAG. Enhance generative AI systems by integrating internal data with large language models using RAG Keith Bourne, Shahul Es

(ebook) (audiobook) (audiobook) Książka w języku 1
Unlocking Data with Generative AI and RAG. Enhance generative AI systems by integrating internal data with large language models using RAG Keith Bourne, Shahul Es - okladka książki

Unlocking Data with Generative AI and RAG. Enhance generative AI systems by integrating internal data with large language models using RAG Keith Bourne, Shahul Es - okladka książki

Unlocking Data with Generative AI and RAG. Enhance generative AI systems by integrating internal data with large language models using RAG Keith Bourne, Shahul Es - audiobook MP3

Unlocking Data with Generative AI and RAG. Enhance generative AI systems by integrating internal data with large language models using RAG Keith Bourne, Shahul Es - audiobook CD

Autorzy:
Keith Bourne, Shahul Es
Serie wydawnicze:
Hands-on
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
346
Dostępne formaty:
     PDF
     ePub
Generative AI is helping organizations tap into their data in new ways, with retrieval-augmented generation (RAG) combining the strengths of large language models (LLMs) with internal data for more intelligent and relevant AI applications. The author harnesses his decade of ML experience in this book to equip you with the strategic insights and technical expertise needed when using RAG to drive transformative outcomes.
The book explores RAG’s role in enhancing organizational operations by blending theoretical foundations with practical techniques. You’ll work with detailed coding examples using tools such as LangChain and Chroma’s vector database to gain hands-on experience in integrating RAG into AI systems. The chapters contain real-world case studies and sample applications that highlight RAG’s diverse use cases, from search engines to chatbots. You’ll learn proven methods for managing vector databases, optimizing data retrieval, effective prompt engineering, and quantitatively evaluating performance. The book also takes you through advanced integrations of RAG with cutting-edge AI agents and emerging non-LLM technologies.
By the end of this book, you’ll be able to successfully deploy RAG in business settings, address common challenges, and push the boundaries of what’s possible with this revolutionary AI technique.

Wybrane bestsellery

O autorze książki

Keith is a Senior Generative AI Data Scientist at Johnson & Johnson, leveraging his decade of experience in machine learning. With an MBA from Babson College and a Master of Applied Data Science from the University of Michigan, Keith has made significant contributions to healthcare innovation through his expertise in generative AI, particularly in developing a sophisticated generative AI platform incorporating Retrieval-Augmented Generation (RAG) and other advanced techniques. Keith has worked with a diverse set of clients including University of Michigan Healthcare, NFL, NOAA, Weather Channel, Becton Dickinson, Toyota, and Little Caesars.
Originally from Chagrin Falls, OH, Keith resides in Ann Arbor, MI with his wife and three daughters.

Zobacz pozostałe książki z serii Hands-on

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
98,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.