×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Simplify Big Data Analytics with Amazon EMR. A beginner’s guide to learning and implementing Amazon EMR for building data analytics solutions Sakti Mishra

(ebook) (audiobook) (audiobook) Książka w języku 1
Simplify Big Data Analytics with Amazon EMR. A beginner’s guide to learning and implementing Amazon EMR for building data analytics solutions Sakti Mishra - okladka książki

Simplify Big Data Analytics with Amazon EMR. A beginner’s guide to learning and implementing Amazon EMR for building data analytics solutions Sakti Mishra - okladka książki

Simplify Big Data Analytics with Amazon EMR. A beginner’s guide to learning and implementing Amazon EMR for building data analytics solutions Sakti Mishra - audiobook MP3

Simplify Big Data Analytics with Amazon EMR. A beginner’s guide to learning and implementing Amazon EMR for building data analytics solutions Sakti Mishra - audiobook CD

Autor:
Sakti Mishra
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
430
Dostępne formaty:
     PDF
     ePub

Ebook (125,10 zł najniższa cena z 30 dni)

139,00 zł (-10%)
125,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(125,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Amazon EMR, formerly Amazon Elastic MapReduce, provides a managed Hadoop cluster in Amazon Web Services (AWS) that you can use to implement batch or streaming data pipelines. By gaining expertise in Amazon EMR, you can design and implement data analytics pipelines with persistent or transient EMR clusters in AWS.
This book is a practical guide to Amazon EMR for building data pipelines. You'll start by understanding the Amazon EMR architecture, cluster nodes, features, and deployment options, along with their pricing. Next, the book covers the various big data applications that EMR supports. You'll then focus on the advanced configuration of EMR applications, hardware, networking, security, troubleshooting, logging, and the different SDKs and APIs it provides. Later chapters will show you how to implement common Amazon EMR use cases, including batch ETL with Spark, real-time streaming with Spark Streaming, and handling UPSERT in S3 Data Lake with Apache Hudi. Finally, you'll orchestrate your EMR jobs and strategize on-premises Hadoop cluster migration to EMR. In addition to this, you'll explore best practices and cost optimization techniques while implementing your data analytics pipeline in EMR.
By the end of this book, you'll be able to build and deploy Hadoop- or Spark-based apps on Amazon EMR and also migrate your existing on-premises Hadoop workloads to AWS.

Wybrane bestsellery

O autorze książki

Sakti Mishra is an engineer, architect, author, and technology leader with over 16 years of experience in the IT industry. He is currently working as a senior data lab architect at Amazon Web Services (AWS).

He is passionate about technologies and has expertise in big data, analytics, machine learning, artificial intelligence, graph networks, web/mobile applications, and cloud technologies such as AWS and Google Cloud Platform.

Sakti has a bachelor’s degree in engineering and a master’s degree in business administration. He holds several certifications in Hadoop, Spark, AWS, and Google Cloud. He is also an author of multiple technology blogs, workshops, white papers and is a public speaker who represents AWS in various domains and events.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
125,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.