×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Quantum Machine Learning and Optimisation in Finance. On the Road to Quantum Advantage Antoine Jacquier, Oleksiy Kondratyev, Alexander Lipton, Marcos López de Prado

(ebook) (audiobook) (audiobook) Książka w języku 1
Quantum Machine Learning and Optimisation in Finance. On the Road to Quantum Advantage Antoine Jacquier, Oleksiy Kondratyev, Alexander Lipton, Marcos López de Prado - okladka książki

Quantum Machine Learning and Optimisation in Finance. On the Road to Quantum Advantage Antoine Jacquier, Oleksiy Kondratyev, Alexander Lipton, Marcos López de Prado - okladka książki

Quantum Machine Learning and Optimisation in Finance. On the Road to Quantum Advantage Antoine Jacquier, Oleksiy Kondratyev, Alexander Lipton, Marcos López de Prado - audiobook MP3

Quantum Machine Learning and Optimisation in Finance. On the Road to Quantum Advantage Antoine Jacquier, Oleksiy Kondratyev, Alexander Lipton, Marcos López de Prado - audiobook CD

Autorzy:
Antoine Jacquier, Oleksiy Kondratyev, Alexander Lipton, Marcos López de Prado
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
442
Dostępne formaty:
     PDF
     ePub
With recent advances in quantum computing technology, we finally reached the era of Noisy Intermediate-Scale Quantum (NISQ) computing. NISQ-era quantum computers are powerful enough to test quantum computing algorithms and solve hard real-world problems faster than classical hardware.

Speedup is so important in financial applications, ranging from analysing huge amounts of customer data to high frequency trading. This is where quantum computing can give you the edge. Quantum Machine Learning and Optimisation in Finance shows you how to create hybrid quantum-classical machine learning and optimisation models that can harness the power of NISQ hardware.

This book will take you through the real-world productive applications of quantum computing. The book explores the main quantum computing algorithms implementable on existing NISQ devices and highlights a range of financial applications that can benefit from this new quantum computing paradigm.

This book will help you be one of the first in the finance industry to use quantum machine learning models to solve classically hard real-world problems. We may have moved past the point of quantum computing supremacy, but our quest for establishing quantum computing advantage has just begun!

Wybrane bestsellery

O autorach książki

Antoine Jacquier obtained his PhD in 2010 in Mathematics from Imperial College London, where his research was focused on large deviations and asymptotic methods for stochastic volatility. Over the past 10 years, he has been working on stochastic analysis and volatility modelling, publishing about 50 papers and co-writing several books. He is also the Head of the MSc in Mathematics and Finance at Imperial College and regularly works as a quantitative consultant for the Finance industry.
Oleksiy Kondratyev obtained his PhD in Mathematical Physics from the Institute for Mathematics, National Academy of Sciences of Ukraine, where his research was focused on studying phase transitions in quantum lattice systems. Oleksiy has over 20 years of quantitative finance experience, primarily in banking. He was recognised as Quant of the Year 2019 by Risk magazine and joined Abu Dhabi Investment Authority as a Quantitative Research & Development Lead in the summer of 2021.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
125,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.