×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Machine Learning With Go. Implement Regression, Classification, Clustering, Time-series Models, Neural Networks, and More using the Go Programming Language Daniel Whitenack

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Machine Learning With Go. Implement Regression, Classification, Clustering, Time-series Models, Neural Networks, and More using the Go Programming Language Daniel Whitenack - okladka książki

Machine Learning With Go. Implement Regression, Classification, Clustering, Time-series Models, Neural Networks, and More using the Go Programming Language Daniel Whitenack - okladka książki

Machine Learning With Go. Implement Regression, Classification, Clustering, Time-series Models, Neural Networks, and More using the Go Programming Language Daniel Whitenack - audiobook MP3

Machine Learning With Go. Implement Regression, Classification, Clustering, Time-series Models, Neural Networks, and More using the Go Programming Language Daniel Whitenack - audiobook CD

Autor:
Daniel Whitenack
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
304
Dostępne formaty:
     PDF
     ePub
     Mobi
The mission of this book is to turn readers into productive, innovative data analysts who leverage Go to build robust and valuable applications. To this end, the book clearly introduces the technical aspects of building predictive models in Go, but it also helps the reader understand how machine learning workflows are being applied in real-world scenarios.

Machine Learning with Go shows readers how to be productive in machine learning while also producing applications that maintain a high level of integrity. It also gives readers patterns to overcome challenges that are often encountered when trying to integrate machine learning in an engineering organization.

The readers will begin by gaining a solid understanding of how to gather, organize, and parse real-work data from a variety of sources. Readers will then develop a solid statistical toolkit that will allow them to quickly understand gain intuition about the content of a dataset. Finally, the readers will gain hands-on experience implementing essential machine learning techniques (regression, classification, clustering, and so on) with the relevant Go packages.

Finally, the reader will have a solid machine learning mindset and a powerful Go toolkit of techniques, packages, and example implementations.

Wybrane bestsellery

O autorze książki

Daniel Whitenack is a trained PhD data scientist with over 10 years' experience working on data-intensive applications in industry and academia. Recently, Daniel has focused his development efforts on open source projects related to running machine learning (ML) and artificial intelligence (AI) in cloud-native infrastructure (Kubernetes, for instance), maintaining reproducibility and provenance for complex data pipelines, and implementing ML/AI methods in new languages such as Go. Daniel co-hosts the Practical AI podcast, teaches data science/engineering at Ardan Labs and Purdue University, and has spoken at conferences around the world (including ODSC, PyCon, DataEngConf, QCon, GopherCon, Spark Summit, and Applied ML Days, among others).

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
134,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.