×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Machine Learning Engineering with MLflow. Manage the end-to-end machine learning life cycle with MLflow

(ebook) (audiobook) (audiobook) Książka w języku 1
Machine Learning Engineering with MLflow. Manage the end-to-end machine learning life cycle with MLflow Natu Lauchande - okladka książki

Machine Learning Engineering with MLflow. Manage the end-to-end machine learning life cycle with MLflow Natu Lauchande - okladka książki

Machine Learning Engineering with MLflow. Manage the end-to-end machine learning life cycle with MLflow Natu Lauchande - audiobook MP3

Machine Learning Engineering with MLflow. Manage the end-to-end machine learning life cycle with MLflow Natu Lauchande - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
248
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (107,10 zł najniższa cena z 30 dni)

119,00 zł (-75%)
29,90 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(107,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

MLflow is a platform for the machine learning life cycle that enables structured development and iteration of machine learning models and a seamless transition into scalable production environments.
This book will take you through the different features of MLflow and how you can implement them in your ML project. You will begin by framing an ML problem and then transform your solution with MLflow, adding a workbench environment, training infrastructure, data management, model management, experimentation, and state-of-the-art ML deployment techniques on the cloud and premises. The book also explores techniques to scale up your workflow as well as performance monitoring techniques. As you progress, you’ll discover how to create an operational dashboard to manage machine learning systems. Later, you will learn how you can use MLflow in the AutoML, anomaly detection, and deep learning context with the help of use cases. In addition to this, you will understand how to use machine learning platforms for local development as well as for cloud and managed environments. This book will also show you how to use MLflow in non-Python-based languages such as R and Java, along with covering approaches to extend MLflow with Plugins.
By the end of this machine learning book, you will be able to produce and deploy reliable machine learning algorithms using MLflow in multiple environments.

Wybrane bestsellery

O autorze książki

Natu Lauchande is a principal data engineer in the fintech space currently tackling problems at the intersection of machine learning, data engineering, and distributed systems. He has worked in diverse industries, including biomedical/pharma research, cloud, fintech, and e-commerce/mobile. Along the way, he had the opportunity to be granted a patent (as co-inventor) in distributed systems, publish in a top academic journal, and contribute to open source software. He has also been very active as a speaker at machine learning/tech conferences and meetups.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
29,90 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint