×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Hands-On Ensemble Learning with R. A beginner's guide to combining the power of machine learning algorithms using ensemble techniques

(ebook) (audiobook) (audiobook) Książka w języku 1
Hands-On Ensemble Learning with R. A beginner's guide to combining the power of machine learning algorithms using ensemble techniques Prabhanjan Narayanachar Tattar - okladka książki

Hands-On Ensemble Learning with R. A beginner's guide to combining the power of machine learning algorithms using ensemble techniques Prabhanjan Narayanachar Tattar - okladka książki

Hands-On Ensemble Learning with R. A beginner's guide to combining the power of machine learning algorithms using ensemble techniques Prabhanjan Narayanachar Tattar - audiobook MP3

Hands-On Ensemble Learning with R. A beginner's guide to combining the power of machine learning algorithms using ensemble techniques Prabhanjan Narayanachar Tattar - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
376
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (29,90 zł najniższa cena z 30 dni)

139,00 zł (-10%)
125,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(29,90 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Ensemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy.

Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques – bagging, random forest, and boosting – then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how to improve the performance of your ensemble models.

By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples.

Wybrane bestsellery

O autorze książki

Prabhanjan Narayanachar Tattar is a lead statistician and manager at the Global Data Insights & Analytics division of Ford Motor Company, Chennai. He received the IBS(IR)-GK Shukla Young Biometrician Award (2005) and Dr. U.S. Nair Award for Young Statistician (2007). He held SRF of CSIR-UGC during his PhD. He has authored books such as Statistical Application Development with R and Python, 2nd Edition, Packt; Practical Data Science Cookbook, 2nd Edition, Packt; and A Course in Statistics with R, Wiley. He has created many R packages.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
125,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint