×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Hands-On Q-Learning with Python. Practical Q-learning with OpenAI Gym, Keras, and TensorFlow

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Autor:
Nazia Habib
Hands-On Q-Learning with Python. Practical Q-learning with OpenAI Gym, Keras, and TensorFlow Nazia Habib - okladka książki

Hands-On Q-Learning with Python. Practical Q-learning with OpenAI Gym, Keras, and TensorFlow Nazia Habib - okladka książki

Hands-On Q-Learning with Python. Practical Q-learning with OpenAI Gym, Keras, and TensorFlow Nazia Habib - audiobook MP3

Hands-On Q-Learning with Python. Practical Q-learning with OpenAI Gym, Keras, and TensorFlow Nazia Habib - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
212
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (98,10 zł najniższa cena z 30 dni)

109,00 zł (-73%)
29,90 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(98,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Q-learning is a machine learning algorithm used to solve optimization problems in artificial intelligence (AI). It is one of the most popular fields of study among AI researchers.
This book starts off by introducing you to reinforcement learning and Q-learning, in addition to helping you become familiar with OpenAI Gym as well as libraries such as Keras and TensorFlow. A few chapters into the book, you will gain insights into model-free Q-learning and use deep Q-networks and double deep Q-networks to solve complex problems. This book will guide you in exploring use cases such as self-driving vehicles and OpenAI Gym’s CartPole problem. You will also learn how to tune and optimize Q-networks and their hyperparameters. As you progress, you will understand the reinforcement learning approach to solving real-world problems. You will also explore how to use Q-learning and related algorithms in scientific research. Toward the end, you’ll gain insight into what’s in store for reinforcement learning.
By the end of this book, you will be equipped with the skills you need to solve reinforcement learning problems using Q-learning algorithms with OpenAI Gym, Keras, and TensorFlow.

Wybrane bestsellery

O autorze książki

Nazia Habib is a data scientist who has worked in a variety of industries to generate predictive analytics solutions for diverse groups of stakeholders. She is an expert in building solutions to optimization problems under conditions of uncertainty. Her projects range from predicting user behavior and engagement with social media apps to designing adaptive testing software. Her ongoing specialization is in designing custom reinforcement learning algorithms for modeling control problems with limited inputs that converge to optimal solutions.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
29,90 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint