×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Hands-On Machine Learning with C++. Build, train, and deploy end-to-end machine learning and deep learning pipelines

(ebook) (audiobook) (audiobook) Książka w języku 1
Hands-On Machine Learning with C++. Build, train, and deploy end-to-end machine learning and deep learning pipelines Kirill Kolodiazhnyi - okladka książki

Hands-On Machine Learning with C++. Build, train, and deploy end-to-end machine learning and deep learning pipelines Kirill Kolodiazhnyi - okladka książki

Hands-On Machine Learning with C++. Build, train, and deploy end-to-end machine learning and deep learning pipelines Kirill Kolodiazhnyi - audiobook MP3

Hands-On Machine Learning with C++. Build, train, and deploy end-to-end machine learning and deep learning pipelines Kirill Kolodiazhnyi - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
530
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (134,10 zł najniższa cena z 30 dni)

159,00 zł (-81%)
29,90 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(134,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

C++ can make your machine learning models run faster and more efficiently. This handy guide will help you learn the fundamentals of machine learning (ML), showing you how to use C++ libraries to get the most out of your data. This book makes machine learning with C++ for beginners easy with its example-based approach, demonstrating how to implement supervised and unsupervised ML algorithms through real-world examples.

This book will get you hands-on with tuning and optimizing a model for different use cases, assisting you with model selection and the measurement of performance. You’ll cover techniques such as product recommendations, ensemble learning, and anomaly detection using modern C++ libraries such as PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib. Next, you’ll explore neural networks and deep learning using examples such as image classification and sentiment analysis, which will help you solve various problems. Later, you’ll learn how to handle production and deployment challenges on mobile and cloud platforms, before discovering how to export and import models using the ONNX format.

By the end of this C++ book, you will have real-world machine learning and C++ knowledge, as well as the skills to use C++ to build powerful ML systems.

Wybrane bestsellery

O autorze książki

Kirill Kolodiazhnyi is a seasoned software engineer with expertise in custom software development. He has several years of experience building machine learning models and data products using C++. He holds a bachelor degree in Computer Science from the Kharkiv National University of Radio-Electronics. He currently works in Kharkiv, Ukraine where he lives with his wife and daughter.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
29,90 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint