×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Deep Reinforcement Learning with Python. Master classic RL, deep RL, distributional RL, inverse RL, and more with OpenAI Gym and TensorFlow - Second Edition

(ebook) (audiobook) (audiobook) Książka w języku 1
Deep Reinforcement Learning with Python. Master classic RL, deep RL, distributional RL, inverse RL, and more with OpenAI Gym and TensorFlow - Second Edition Sudharsan Ravichandiran - okladka książki

Deep Reinforcement Learning with Python. Master classic RL, deep RL, distributional RL, inverse RL, and more with OpenAI Gym and TensorFlow - Second Edition Sudharsan Ravichandiran - okladka książki

Deep Reinforcement Learning with Python. Master classic RL, deep RL, distributional RL, inverse RL, and more with OpenAI Gym and TensorFlow - Second Edition Sudharsan Ravichandiran - audiobook MP3

Deep Reinforcement Learning with Python. Master classic RL, deep RL, distributional RL, inverse RL, and more with OpenAI Gym and TensorFlow - Second Edition Sudharsan Ravichandiran - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
760
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (125,10 zł najniższa cena z 30 dni)

139,00 zł (-78%)
29,90 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(125,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

With significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit.

In addition to exploring RL basics and foundational concepts such as Bellman equation, Markov decision processes, and dynamic programming algorithms, this second edition dives deep into the full spectrum of value-based, policy-based, and actor-critic RL methods. It explores state-of-the-art algorithms such as DQN, TRPO, PPO and ACKTR, DDPG, TD3, and SAC in depth, demystifying the underlying math and demonstrating implementations through simple code examples.

The book has several new chapters dedicated to new RL techniques, including distributional RL, imitation learning, inverse RL, and meta RL. You will learn to leverage stable baselines, an improvement of OpenAI’s baseline library, to effortlessly implement popular RL algorithms. The book concludes with an overview of promising approaches such as meta-learning and imagination augmented agents in research.

By the end, you will become skilled in effectively employing RL and deep RL in your real-world projects.

Wybrane bestsellery

O autorze książki

Sudharsan Ravichandiran is a data scientist and artificial intelligence enthusiast. He holds a Bachelors in Information Technology from Anna University. His area of research focuses on practical implementations of deep learning and reinforcement learning including natural language processing and computer vision. He is an open-source contributor and loves answering questions on Stack Overflow.

Sudharsan Ravichandiran - pozostałe książki

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
29,90 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint