×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Deep Learning and XAI Techniques for Anomaly Detection. Integrate the theory and practice of deep anomaly explainability

(ebook) (audiobook) (audiobook) Książka w języku 1
Autorzy:
Cher Simon, Jeff Barr
Deep Learning and XAI Techniques for Anomaly Detection. Integrate the theory and practice of deep anomaly explainability Cher Simon, Jeff Barr - okladka książki

Deep Learning and XAI Techniques for Anomaly Detection. Integrate the theory and practice of deep anomaly explainability Cher Simon, Jeff Barr - okladka książki

Deep Learning and XAI Techniques for Anomaly Detection. Integrate the theory and practice of deep anomaly explainability Cher Simon, Jeff Barr - audiobook MP3

Deep Learning and XAI Techniques for Anomaly Detection. Integrate the theory and practice of deep anomaly explainability Cher Simon, Jeff Barr - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
218
Dostępne formaty:
     PDF
     ePub

Ebook (116,10 zł najniższa cena z 30 dni)

129,00 zł (-77%)
29,90 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(116,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Despite promising advances, the opaque nature of deep learning models makes it difficult to interpret them, which is a drawback in terms of their practical deployment and regulatory compliance.
Deep Learning and XAI Techniques for Anomaly Detection shows you state-of-the-art methods that’ll help you to understand and address these challenges. By leveraging the Explainable AI (XAI) and deep learning techniques described in this book, you’ll discover how to successfully extract business-critical insights while ensuring fair and ethical analysis.
This practical guide will provide you with tools and best practices to achieve transparency and interpretability with deep learning models, ultimately establishing trust in your anomaly detection applications. Throughout the chapters, you’ll get equipped with XAI and anomaly detection knowledge that’ll enable you to embark on a series of real-world projects. Whether you are building computer vision, natural language processing, or time series models, you’ll learn how to quantify and assess their explainability.
By the end of this deep learning book, you’ll be able to build a variety of deep learning XAI models and perform validation to assess their explainability.

Wybrane bestsellery

O autorach książki

Cher Simon is a principal solutions architect specializing in artificial intelligence, machine learning, and data analytics at AWS. Cher has 20 years of experience in architecting enterprise-scale, data-driven, and AI-powered industry solutions. Besides building cloud-native solutions in her day-to-day role with customers, Cher is also an avid writer and a frequent speaker at AWS conferences.
Contacted on 3/2/2017 for AWS for Architects by Nishit Shetty

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
29,90 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint