×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Redis Stack for Application Modernization. Build real-time multi-model applications at any scale with Redis Luigi Fugaro, Mirko Ortensi

(ebook) (audiobook) (audiobook) Książka w języku 1
Redis Stack for Application Modernization. Build real-time multi-model applications at any scale with Redis Luigi Fugaro, Mirko Ortensi - okladka książki

Redis Stack for Application Modernization. Build real-time multi-model applications at any scale with Redis Luigi Fugaro, Mirko Ortensi - okladka książki

Redis Stack for Application Modernization. Build real-time multi-model applications at any scale with Redis Luigi Fugaro, Mirko Ortensi - audiobook MP3

Redis Stack for Application Modernization. Build real-time multi-model applications at any scale with Redis Luigi Fugaro, Mirko Ortensi - audiobook CD

Autorzy:
Luigi Fugaro, Mirko Ortensi
Serie wydawnicze:
Learning
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
336
Dostępne formaty:
     PDF
     ePub
In modern applications, efficiency in both operational and analytical aspects is paramount, demanding predictable performance across varied workloads. This book introduces you to Redis Stack, an extension of Redis and guides you through its broad data modeling capabilities. With practical examples of real-time queries and searches, you’ll explore Redis Stack’s new approach to providing a rich data modeling experience all within the same database server.
You’ll learn how to model and search your data in the JSON and hash data types and work with features such as vector similarity search, which adds semantic search capabilities to your applications to search for similar texts, images, or audio files. The book also shows you how to use the probabilistic Bloom filters to efficiently resolve recurrent big data problems. As you uncover the strengths of Redis Stack as a data platform, you’ll explore use cases for managing database events and leveraging introduce stream processing features. Finally, you’ll see how Redis Stack seamlessly integrates into microservices architectures, completing the picture.
By the end of this book, you’ll be equipped with best practices for administering and managing the server, ensuring scalability, high availability, data integrity, stored functions, and more.

Wybrane bestsellery

O autorach książki

Luigi Fugaro's first encounter with computers was in the early 80s when he was a kid. He started with a Commodore Vic-20, passing through a Sinclair, a Commodore 64, and an Atari ST 1040, where he spent days and nights giving breath mints to Otis. In 1998, he started his career as a webmaster doing HTML, JavaScript, Applets, and some graphics with Paint Shop Pro. He then switched to Delphi, Visual Basic, and then started working on Java projects. He has been developing all kinds of web applications, dealing with backend and frontend frameworks. In 2012, he started working for Red Hat and is now an architect in the EMEA Middleware team.



He has authored WildFly Cookbook and Mastering JBoss Enterprise Application Platform 7 by Packt Publishing.
Mirko Ortensi earned a degree in Electronic Engineering and a Master's degree in Software Engineering. Mirko’s career has spanned several roles from Software Engineering to Customer Support, particularly centered around distributed database systems. As a Senior Technical Enablement Architect at Redis, Mirko shares technical knowledge about Redis’s products and services.

Zobacz pozostałe książki z serii Learning

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
98,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.