×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Python Natural Language Processing Cookbook. Over 60 recipes for building powerful NLP solutions using Python and LLM libraries - Second Edition Zhenya Antić, Saurabh Chakravarty

(ebook) (audiobook) (audiobook) Książka w języku 1
Python Natural Language Processing Cookbook. Over 60 recipes for building powerful NLP solutions using Python and LLM libraries - Second Edition Zhenya Antić, Saurabh Chakravarty - okladka książki

Python Natural Language Processing Cookbook. Over 60 recipes for building powerful NLP solutions using Python and LLM libraries - Second Edition Zhenya Antić, Saurabh Chakravarty - okladka książki

Python Natural Language Processing Cookbook. Over 60 recipes for building powerful NLP solutions using Python and LLM libraries - Second Edition Zhenya Antić, Saurabh Chakravarty - audiobook MP3

Python Natural Language Processing Cookbook. Over 60 recipes for building powerful NLP solutions using Python and LLM libraries - Second Edition Zhenya Antić, Saurabh Chakravarty - audiobook CD

Autorzy:
Zhenya Antić, Saurabh Chakravarty
Serie wydawnicze:
Cookbook
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
312
Dostępne formaty:
     PDF
     ePub

Ebook (116,10 zł najniższa cena z 30 dni)

129,00 zł (-10%)
116,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(116,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Harness the power of Natural Language Processing to overcome real-world text analysis challenges with this recipe-based roadmap written by two seasoned NLP experts with vast experience transforming various industries with their NLP prowess.
You’ll be able to make the most of the latest NLP advancements, including large language models (LLMs), and leverage their capabilities through Hugging Face transformers. Through a series of hands-on recipes, you’ll master essential techniques such as extracting entities and visualizing text data. The authors will expertly guide you through building pipelines for sentiment analysis, topic modeling, and question-answering using popular libraries like spaCy, Gensim, and NLTK. You’ll also learn to implement RAG pipelines to draw out precise answers from a text corpus using LLMs.
This second edition expands your skillset with new chapters on cutting-edge LLMs like GPT-4, Natural Language Understanding (NLU), and Explainable AI (XAI)—fostering trust and transparency in your NLP models.
By the end of this book, you'll be equipped with the skills to apply advanced text processing techniques, use pre-trained transformer models, build custom NLP pipelines to extract valuable insights from text data to drive informed decision-making.

Wybrane bestsellery

O autorze książki

Saurabh Chakravarty, Ph.D. is a seasoned veteran in the software industry with over 20 years of experience in software development. A software developer at heart, he is passionate about programming. He has held various roles, including architect, lead engineer, and software developer, specializing in AI and large-scale distributed systems. Saurabh has worked with Microsoft, Rackspace, and Accenture, as well as with a few startups. He holds a Ph.D. in Computer Science with a specialization in NLP from Virginia Tech, USA. Saurabh lives in California with his wife, Tina, and daughter, Aaliya, and works for AWS in Santa Clara, California.

Zobacz pozostałe książki z serii Cookbook

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
116,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.