×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Python Deep Learning. Understand how deep neural networks work and apply them to real-world tasks - Third Edition

(ebook) (audiobook) (audiobook) Książka w języku 1
Autor:
Ivan Vasilev
Python Deep Learning. Understand how deep neural networks work and apply them to real-world tasks - Third Edition Ivan Vasilev - okladka książki

Python Deep Learning. Understand how deep neural networks work and apply them to real-world tasks - Third Edition Ivan Vasilev - okladka książki

Python Deep Learning. Understand how deep neural networks work and apply them to real-world tasks - Third Edition Ivan Vasilev - audiobook MP3

Python Deep Learning. Understand how deep neural networks work and apply them to real-world tasks - Third Edition Ivan Vasilev - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
362
Dostępne formaty:
     PDF
     ePub

Ebook (125,10 zł najniższa cena z 30 dni)

139,00 zł (-78%)
29,90 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(125,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

The field of deep learning has developed rapidly recently and today covers a broad range of applications. This makes it challenging to navigate and hard to understand without solid foundations. This book will guide you from the basics of neural networks to the state-of-the-art large language models in use today.
The first part of the book introduces the main machine learning concepts and paradigms. It covers the mathematical foundations, the structure, and the training algorithms of neural networks and dives into the essence of deep learning.
The second part of the book introduces convolutional networks for computer vision. We’ll learn how to solve image classification, object detection, instance segmentation, and image generation tasks.
The third part focuses on the attention mechanism and transformers – the core network architecture of large language models. We’ll discuss new types of advanced tasks they can solve, such as chatbots and text-to-image generation.
By the end of this book, you’ll have a thorough understanding of the inner workings of deep neural networks. You'll have the ability to develop new models and adapt existing ones to solve your tasks. You’ll also have sufficient understanding to continue your research and stay up to date with the latest advancements in the field.

Wybrane bestsellery

O autorze książki

Ivan Vasilev started working on the first open source Java deep learning library with GPU support in 2013. The library was acquired by a German company, where he continued to develop it. He has also worked as a machine learning engineer and researcher in the area of medical image classification and segmentation with deep neural networks. Since 2017, he has been focusing on financial machine learning. He is working on a Python-based platform that provides the infrastructure to rapidly experiment with different machine learning algorithms for algorithmic trading. Ivan holds an MSc degree in artificial intelligence from the University of Sofia, St. Kliment Ohridski.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
29,90 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint