×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Practical Statistics for Data Scientists. 50+ Essential Concepts Using R and Python. 2nd Edition Peter Bruce, Andrew Bruce, Peter Gedeck

(ebook) (audiobook) (audiobook) Książka w języku 1
Practical Statistics for Data Scientists. 50+ Essential Concepts Using R and Python. 2nd Edition Peter Bruce, Andrew Bruce, Peter Gedeck - okladka książki

Practical Statistics for Data Scientists. 50+ Essential Concepts Using R and Python. 2nd Edition Peter Bruce, Andrew Bruce, Peter Gedeck - okladka książki

Practical Statistics for Data Scientists. 50+ Essential Concepts Using R and Python. 2nd Edition Peter Bruce, Andrew Bruce, Peter Gedeck - audiobook MP3

Practical Statistics for Data Scientists. 50+ Essential Concepts Using R and Python. 2nd Edition Peter Bruce, Andrew Bruce, Peter Gedeck - audiobook CD

Autorzy:
Peter Bruce, Andrew Bruce, Peter Gedeck
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
368
Dostępne formaty:
     ePub
     Mobi

Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this popular guide adds comprehensive examples in Python, provides practical guidance on applying statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what’s important and what’s not.

Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.

With this book, you’ll learn:

  • Why exploratory data analysis is a key preliminary step in data science
  • How random sampling can reduce bias and yield a higher-quality dataset, even with big data
  • How the principles of experimental design yield definitive answers to questions
  • How to use regression to estimate outcomes and detect anomalies
  • Key classification techniques for predicting which categories a record belongs to
  • Statistical machine learning methods that "learn" from data
  • Unsupervised learning methods for extracting meaning from unlabeled data

Wybrane bestsellery

O autorach książki

Peter Bruce jest ekspertem w dziedzinie nauczania statystyki. Prowadzi Institute for Statistics Education, gdzie oferuje setki kursów skierowanych między innymi do naukowców. 
 

Dr Andrew Bruce jest głównym analitykiem w Amazonie. Od trzydziestu lat zajmuje się statystyką i nauką o danych, opracowując rozwiązania problemów z wielu branż. 
 

Dr Peter Gedeck jest badaczem w Collaborative Drug Discovery. Tworzy algorytmy uczenia maszynowego do przewidywania właściwości substancji stanowiących potencjalne leki. 

O'Reilly Media - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
220,15 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.