×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Practical Deep Learning at Scale with MLflow. Bridge the gap between offline experimentation and online production

(ebook) (audiobook) (audiobook) Książka w języku 1
Practical Deep Learning at Scale with MLflow. Bridge the gap between offline experimentation and online production Yong Liu, Dr. Matei Zaharia - okladka książki

Practical Deep Learning at Scale with MLflow. Bridge the gap between offline experimentation and online production Yong Liu, Dr. Matei Zaharia - okladka książki

Practical Deep Learning at Scale with MLflow. Bridge the gap between offline experimentation and online production Yong Liu, Dr. Matei Zaharia - audiobook MP3

Practical Deep Learning at Scale with MLflow. Bridge the gap between offline experimentation and online production Yong Liu, Dr. Matei Zaharia - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
288
Dostępne formaty:
     PDF
     ePub

Ebook (116,10 zł najniższa cena z 30 dni)

129,00 zł (-77%)
29,90 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(116,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

The book starts with an overview of the deep learning (DL) life cycle and the emerging Machine Learning Ops (MLOps) field, providing a clear picture of the four pillars of deep learning: data, model, code, and explainability and the role of MLflow in these areas.
From there onward, it guides you step by step in understanding the concept of MLflow experiments and usage patterns, using MLflow as a unified framework to track DL data, code and pipelines, models, parameters, and metrics at scale. You’ll also tackle running DL pipelines in a distributed execution environment with reproducibility and provenance tracking, and tuning DL models through hyperparameter optimization (HPO) with Ray Tune, Optuna, and HyperBand. As you progress, you’ll learn how to build a multi-step DL inference pipeline with preprocessing and postprocessing steps, deploy a DL inference pipeline for production using Ray Serve and AWS SageMaker, and finally create a DL explanation as a service (EaaS) using the popular Shapley Additive Explanations (SHAP) toolbox.
By the end of this book, you’ll have built the foundation and gained the hands-on experience you need to develop a DL pipeline solution from initial offline experimentation to final deployment and production, all within a reproducible and open source framework.

Wybrane bestsellery

O autorze książki

Yong Liu has been working in big data science, machine learning, and optimization since his doctoral student years at the University of Illinois at Urbana-Champaign (UIUC) and later as a senior research scientist and principal investigator at the National Center for Supercomputing Applications (NCSA), where he led data science R&D projects funded by the National Science Foundation and Microsoft Research. He then joined Microsoft and AI/ML start-ups in the industry. He has shipped ML and DL models to production and has been a speaker at the Spark/Data+AI summit and NLP summit. He has recently published peer-reviewed papers on deep learning, linked data, and knowledge-infused learning at various ACM/IEEE conferences and journals.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
29,90 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint