×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Modern Data Mining with Python Dushyant Singh Sengar, Vikash Chandra

(ebook) (audiobook) (audiobook) Książka w języku 1
Autorzy:
Dushyant Singh Sengar, Vikash Chandra
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
438
Dostępne formaty:
     ePub
     Mobi
Czytaj fragment
Data miners survival kit for explainable, effective, and efficient algorithms enabling responsible decision-making

Key Features
Accessible, and case-based exploration of the most effective data mining techniques in Python.
An indispensable guide for utilizing AI potential responsibly.
Actionable insights on modeling techniques, deployment technologies, business needs, and the art of data science, for risk mitigation and better business outcomes.

Description
"Modern Data Mining with Python" is a guidebook for responsibly implementing data mining techniques that involve collecting, storing, and analyzing large amounts of structured and unstructured data to extract useful insights and patterns.

Enter into the world of data mining and machine learning. Use insights from various data sources, from social media to credit card transactions. Master statistical tools, explore data trends, and patterns. Understand decision trees and artificial neural networks (ANNs). Manage high-dimensional data with dimensionality reduction. Explore binary classification with logistic regression. Spot concealed patterns with unsupervised learning. Analyze text with recurrent neural networks (RNNs) and visuals with convolutional neural networks (CNNs). Ensure model compliance with regulatory standards.

After reading this book, readers will be equipped with the skills and knowledge necessary to use Python for data mining and analysis in an industry set-up. They will be able to analyze and implement algorithms on large structured and unstructured datasets.

Explore the data mining spectrum ranging from data exploration and statistics.
Gain hands-on experience applying modern algorithms to real-world problems in the financial industry.
Develop an understanding of various risks associated with model usage in regulated industries.
Gain knowledge about best practices and regulatory guidelines to mitigate model usage-related risk in key banking areas.
Develop and deploy risk-mitigated algorithms on self-serve ModelOps platforms.

Who this book is for
This book is for a wide range of early career professionals and students interested in data mining or data science with a financial services industry focus. Senior industry professionals, and educators, trying to implement data mining algorithms can benefit as well.

Table of Contents
1. Understanding Data Mining in a Nutshell
2. Basic Statistics and Exploratory Data Analysis
3. Digging into Linear Regression
4. Exploring Logistic Regression
5. Decision Trees with Bagging and Boosting
6. Support Vector Machines and K-Nearest Neighbors
7. Putting Dimensionality Reduction into Action
8. Beginning with Unsupervised Models
9. Structured Data Classification using Artificial Neural Networks
10. Language Modeling with Recurrent Neural Networks
11. Image Processing with Convolutional Neural Networks
12. Understanding Model Risk Management for Data Mining Models
13. Adopting ModelOps to Manage Model Risk

Wybrane bestsellery

BPB Publications - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
67,43 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.