×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Machine Learning for Imbalanced Data. Tackle imbalanced datasets using machine learning and deep learning techniques Kumar Abhishek, Dr. Mounir Abdelaziz

(ebook) (audiobook) (audiobook) Książka w języku 1
Machine Learning for Imbalanced Data. Tackle imbalanced datasets using machine learning and deep learning techniques Kumar Abhishek, Dr. Mounir Abdelaziz - okladka książki

Machine Learning for Imbalanced Data. Tackle imbalanced datasets using machine learning and deep learning techniques Kumar Abhishek, Dr. Mounir Abdelaziz - okladka książki

Machine Learning for Imbalanced Data. Tackle imbalanced datasets using machine learning and deep learning techniques Kumar Abhishek, Dr. Mounir Abdelaziz - audiobook MP3

Machine Learning for Imbalanced Data. Tackle imbalanced datasets using machine learning and deep learning techniques Kumar Abhishek, Dr. Mounir Abdelaziz - audiobook CD

Autorzy:
Kumar Abhishek, Dr. Mounir Abdelaziz
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
344
Dostępne formaty:
     PDF
     ePub
As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to significantly improve model performance.

Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods.

As you progress, you’ll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that’ll demonstrate the practical implementation of each technique.

By the end of this book, you’ll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models.

Wybrane bestsellery

O autorach książki

Kumar Abhishek is a seasoned Senior Machine Learning Engineer at Expedia Group, US, specializing in risk analysis and fraud detection for Expedia brands. With over a decade of experience at companies such as Microsoft, Amazon, and a Bay Area startup, Kumar holds an MS in Computer Science from the University of Florida.
Dr. Mounir Abdelaziz is a deep learning researcher specializing in computer vision applications. He holds a Ph.D. in computer science and technology from Central South University, China. During his Ph.D. journey, he developed innovative algorithms to address practical computer vision challenges. He has also authored numerous research articles in the field of few-shot learning for image classification.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
125,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.