×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Learning Cascading. Build reliable, robust, and high-performance big data applications using the Cascading application development efficiently Michael Covert, Victoria Loewengart

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Learning Cascading. Build reliable, robust, and high-performance big data applications using the Cascading application development efficiently Michael Covert, Victoria Loewengart - okladka książki

Learning Cascading. Build reliable, robust, and high-performance big data applications using the Cascading application development efficiently Michael Covert, Victoria Loewengart - okladka książki

Learning Cascading. Build reliable, robust, and high-performance big data applications using the Cascading application development efficiently Michael Covert, Victoria Loewengart - audiobook MP3

Learning Cascading. Build reliable, robust, and high-performance big data applications using the Cascading application development efficiently Michael Covert, Victoria Loewengart - audiobook CD

Autorzy:
Michael Covert, Victoria Loewengart
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
276
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (125,10 zł najniższa cena z 30 dni)

129,00 zł (-10%)
116,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(125,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Wybrane bestsellery

O autorach książki

Michael Covert, CEO, Analytics Inside LLC, has significant experience in a variety of business and technical roles. Michael is a mathematician and computer scientist and is involved in machine learning, deep learning, predictive analytics, graph theory, and big data. He earned a bachelor's of science degree in mathematics with honors and distinction from The Ohio State University. He also attended it as a PhD student, specializing in machine learning and high-performance computing. Michael is a Cloudera Hadoop Certified Developer. Michael served as the vice president of performance management in Whittman-Hart, Inc., based in Chicago, and as the chief operating officer of Infinis, Inc., a business intelligence consulting company based in Columbus, Ohio. Infinis merged with Whittman-Hart in 2005. Prior to working at Infinis, Michael was the vice president of product development and chief technology officer at Alta Analytics, and the producer of data mining and visualization software. In addition to this, he has served in technology management roles for Claremont Technology Group, Inc., where he was the director of advanced technology.
Victoria Loewengart, COO, Analytics Inside LLC, is an innovative software systems architect with a proven record of bringing emerging technologies to clients through discovery, design, and integration. Additionally, Victoria spent a large part of her career developing software technologies that extract information from unstructured text. Victoria has published numerous articles on topics ranging from text analytics to intelligence analysis and cyber security. Her book An Introduction to Hacking & Crimeware: A Pocket Guide was published by IT Governance, UK, in January 2012. Victoria earned a bachelor's degree in computer science from Purdue University and a master's degree in intelligence studies from the American Military University.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
116,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.