×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Hands-On Reinforcement Learning for Games. Implementing self-learning agents in games using artificial intelligence techniques Micheal Lanham

(ebook) (audiobook) (audiobook) Książka w języku 1
Hands-On Reinforcement Learning for Games. Implementing self-learning agents in games using artificial intelligence techniques Micheal Lanham - okladka książki

Hands-On Reinforcement Learning for Games. Implementing self-learning agents in games using artificial intelligence techniques Micheal Lanham - okladka książki

Hands-On Reinforcement Learning for Games. Implementing self-learning agents in games using artificial intelligence techniques Micheal Lanham - audiobook MP3

Hands-On Reinforcement Learning for Games. Implementing self-learning agents in games using artificial intelligence techniques Micheal Lanham - audiobook CD

Autor:
Micheal Lanham
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
432
Dostępne formaty:
     PDF
     ePub
     Mobi
With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python.

Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent’s productivity. As you advance, you’ll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games.

By the end of this book, you’ll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications.

Wybrane bestsellery

O autorze książki

Micheal Lanham is a proven software and tech innovator with 20 years of experience. During that time, he has developed a broad range of software applications in areas such as games, graphics, web, desktop, engineering, artificial intelligence, GIS, and machine learning applications for a variety of industries as an R&D developer. At the turn of the millennium, Micheal began working with neural networks and evolutionary algorithms in game development. He was later introduced to Unity and has been an avid developer, consultant, manager, and author of multiple Unity games, graphic projects, and books ever since.

Micheal Lanham - pozostałe książki

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
107,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.