×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Hands-On GPU Programming with Python and CUDA. Explore high-performance parallel computing with CUDA

(ebook) (audiobook) (audiobook) Książka w języku 1
Hands-On GPU Programming with Python and CUDA. Explore high-performance parallel computing with CUDA Dr. Brian Tuomanen - okladka książki

Hands-On GPU Programming with Python and CUDA. Explore high-performance parallel computing with CUDA Dr. Brian Tuomanen - okladka książki

Hands-On GPU Programming with Python and CUDA. Explore high-performance parallel computing with CUDA Dr. Brian Tuomanen - audiobook MP3

Hands-On GPU Programming with Python and CUDA. Explore high-performance parallel computing with CUDA Dr. Brian Tuomanen - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
310
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (125,10 zł najniższa cena z 30 dni)

139,00 zł (-78%)
29,90 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(125,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Hands-On GPU Programming with Python and CUDA hits the ground running: you’ll start by learning how to apply Amdahl’s Law, use a code profiler to identify bottlenecks in your Python code, and set up an appropriate GPU programming environment. You’ll then see how to “query” the GPU’s features and copy arrays of data to and from the GPU’s own memory.

As you make your way through the book, you’ll launch code directly onto the GPU and write full blown GPU kernels and device functions in CUDA C. You’ll get to grips with profiling GPU code effectively and fully test and debug your code using Nsight IDE. Next, you’ll explore some of the more well-known NVIDIA libraries, such as cuFFT and cuBLAS.

With a solid background in place, you will now apply your new-found knowledge to develop your very own GPU-based deep neural network from scratch. You’ll then explore advanced topics, such as warp shuffling, dynamic parallelism, and PTX assembly. In the final chapter, you’ll see some topics and applications related to GPU programming that you may wish to pursue, including AI, graphics, and blockchain.

By the end of this book, you will be able to apply GPU programming to problems related to data science and high-performance computing.

Wybrane bestsellery

O autorze książki

Dr. Brian Tuomanen has been working with CUDA and General-Purpose GPU Programming since 2014. He received his Bachelor of Science in Electrical Engineering from the University of Washington in Seattle, and briefly worked as a Software Engineer before switching to Mathematics for Graduate School. He completed his Ph.D. in Mathematics at the University of Missouri in Columbia, where he first encountered GPU programming as a means for studying scientific problems. Dr. Tuomanen has spoken at the US Army Research Lab about General Purpose GPU programming, and has recently lead GPU integration and development at a Maryland based start-up company. He currently lives and works in the Seattle area.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
29,90 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint