×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Data Science for IoT Engineers. Master Data Science Techniques and Machine Learning Applications for Innovative IoT Solutions

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Data Science for IoT Engineers. Master Data Science Techniques and Machine Learning Applications for Innovative IoT Solutions Mercury Learning and Information, P. G. Madhavan - okladka książki

Data Science for IoT Engineers. Master Data Science Techniques and Machine Learning Applications for Innovative IoT Solutions Mercury Learning and Information, P. G. Madhavan - okladka książki

Data Science for IoT Engineers. Master Data Science Techniques and Machine Learning Applications for Innovative IoT Solutions Mercury Learning and Information, P. G. Madhavan - audiobook MP3

Data Science for IoT Engineers. Master Data Science Techniques and Machine Learning Applications for Innovative IoT Solutions Mercury Learning and Information, P. G. Madhavan - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
170
Dostępne formaty:
     PDF
     ePub
This book introduces data science to professionals in engineering, physics, mathematics, and related fields. It serves as a workbook with MATLAB code, linking subject knowledge to data science, machine learning, and analytics, with applications in IoT. Part One integrates machine learning, systems theory, linear algebra, digital signal processing, and probability theory. Part Two develops a nonlinear, time-varying machine learning solution for modeling real-life business problems.
Understanding data science is crucial for modern applications, particularly in IoT. This book presents a dynamic machine learning solution to handle these complexities. Topics include machine learning, systems theory, linear algebra, digital signal processing, probability theory, state-space formulation, Bayesian estimation, Kalman filter, causality, and digital twins.
The journey begins with data science and machine learning, covering systems theory and linear algebra. Advanced concepts like the Kalman filter and Bayesian estimation lead to developing a dynamic machine learning model. The book ends with practical applications using digital twins.

Wybrane bestsellery

O autorach książki

MERCURY LEARNING and INFORMATION publishes content in the areas of science and medicine, technology and computing, engineering, and mathematics designed for the professional/reference, trade, library, higher education, career school, and online training markets.
P. G. Madhavan, Ph.D., has an extensive background in the Internet of Things (IoT), machine learning, digital twins, and wireless technologies in roles such as Chief IoT Officer and IoT Product Manager at large corporations (including Rockwell Automation, GE Aviation, and NEC).

Mercury Learning and Information, P. G. Madhavan - pozostałe książki

Mercury_Learning - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
161,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint