×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Cloud Native AI and Machine Learning on AWS Premkumar Rangarajan, David Bounds

(ebook) (audiobook) (audiobook) Książka w języku 1
Cloud Native AI and Machine Learning on AWS Premkumar Rangarajan, David Bounds - okladka książki

Cloud Native AI and Machine Learning on AWS Premkumar Rangarajan, David Bounds - okladka książki

Cloud Native AI and Machine Learning on AWS Premkumar Rangarajan, David Bounds - audiobook MP3

Cloud Native AI and Machine Learning on AWS Premkumar Rangarajan, David Bounds - audiobook CD

Autorzy:
Premkumar Rangarajan, David Bounds
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
400
Dostępne formaty:
     ePub
     Mobi

Ebook (39,90 zł najniższa cena z 30 dni)

89,90 zł (-10%)
80,91 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(39,90 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Bring elasticity and innovation to Machine Learning and AI operations

Key Features
Coverage includes a wide range of AWS AI and ML services to help you speedily get fully operational with ML.
Packed with real-world examples, practical guides, and expert data science methods for improving AI/ML education on AWS.
Includes ready-made, purpose-built models as AI services and proven methods to adopt MLOps techniques.

Description
Using machine learning and artificial intelligence (AI) in existing business processes has been successful. Even AWS's ML and AI services make it simple and economical to conduct machine learning experiments. This book will show readers how to use the complete set of AI and ML services available on AWS to streamline the management of their whole AI operation and speed up their innovation.

In this book, you'll learn how to build data lakes, build and train machine learning models, automate MLOps, ensure maximum data reusability and reproducibility, and much more. The applications presented in the book show how to make the most of several different AWS offerings, including Amazon Comprehend, Amazon Rekognition, Amazon Lookout, and AutoML. This book teaches you to manage massive data lakes, train artificial intelligence models, release these applications into production, and track their progress in real-time. You will learn how to use the pre-trained models for various tasks, including picture recognition, automated data extraction, image/video detection, and anomaly detection.

Every step of your Machine Learning and AI project's development process is optimised throughout the book by utilising Amazon's pre-made, purpose-built AI services.

What you will learn
Learn how to build, deploy, and manage large-scale AI and ML applications on AWS.
Get your hands dirty with AWS AI services like SageMaker, Comprehend, Rekognition, Lookout, and AutoML.
Master data transformation, feature engineering, and model training with Amazon SageMaker modules.
Use neural networks, distributed learning, and deep learning algorithms to improve ML models.
Use AutoML, SageMaker Canvas, and Autopilot for Model Deployment and Evaluation.
Acquire expertise with Amazon SageMaker Studio, Jupyter Server, and ML frameworks such as TensorFlow and MXNet.

Who this book is for
Data Engineers, Data Scientists, AWS and Cloud Professionals who are comfortable with machine learning and the fundamentals of Python will find this book powerful. Familiarity with AWS would be helpful but is not required.

Table of Contents
1. Introducing the ML Workflow
2. Hydrating the Data Lake
3. Predicting the Future With Features
4. Orchestrating the Data Continuum
5. Casting a Deeper Net (Algorithms and Neural Networks)
6. Iteration Makes Intelligence (Model Training and Tuning)
7. Let George Take Over (AutoML in Action)
8. Blue or Green (Model Deployment Strategies)
9. Wisdom at Scale with Elastic Inference
10. Adding Intelligence with Sensory Cognition
11. AI for Industrial Automation
12. Operationalized Model Assembly (MLOps and Best Practices)

Wybrane bestsellery

O autorze książki

Premkumar Rangarajan is an enterprise solutions architect, specializing in AI/ML at Amazon Web Services. He has 25 years of experience in the IT industry in a variety of roles, including delivery lead, integration specialist, and enterprise architect. He has significant architecture and management experience in delivering large-scale programs across various industries and platforms. He is passionate about helping customers solve ML and AI problems.

BPB Publications - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
80,91 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.