×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Big Data Analysis with Python. Combine Spark and Python to unlock the powers of parallel computing and machine learning

(ebook) (audiobook) (audiobook) Książka w języku 1
Big Data Analysis with Python. Combine Spark and Python to unlock the powers of parallel computing and machine learning Ivan Marin, Ankit Shukla, Sarang VK - okladka książki

Big Data Analysis with Python. Combine Spark and Python to unlock the powers of parallel computing and machine learning Ivan Marin, Ankit Shukla, Sarang VK - okladka książki

Big Data Analysis with Python. Combine Spark and Python to unlock the powers of parallel computing and machine learning Ivan Marin, Ankit Shukla, Sarang VK - audiobook MP3

Big Data Analysis with Python. Combine Spark and Python to unlock the powers of parallel computing and machine learning Ivan Marin, Ankit Shukla, Sarang VK - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
276
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (29,90 zł najniższa cena z 30 dni)

94,99 zł (-10%)
85,49 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(29,90 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Processing big data in real time is challenging due to scalability, information inconsistency, and fault tolerance. Big Data Analysis with Python teaches you how to use tools that can control this data avalanche for you. With this book, you'll learn practical techniques to aggregate data into useful dimensions for posterior analysis, extract statistical measurements, and transform datasets into features for other systems.

The book begins with an introduction to data manipulation in Python using pandas. You'll then get familiar with statistical analysis and plotting techniques. With multiple hands-on activities in store, you'll be able to analyze data that is distributed on several computers by using Dask. As you progress, you'll study how to aggregate data for plots when the entire data cannot be accommodated in memory. You'll also explore Hadoop (HDFS and YARN), which will help you tackle larger datasets. The book also covers Spark and explains how it interacts with other tools.

By the end of this book, you'll be able to bootstrap your own Python environment, process large files, and manipulate data to generate statistics, metrics, and graphs.

Wybrane bestsellery

O autorach książki

Ivan Marin is a systems architect and data scientist working at Daitan Group, a Campinas-based software company. He designs big data systems for large volumes of data and implements machine learning pipelines end to end using Python and Spark. He is also an active organizer of data science, machine learning, and Python in So Paulo, and has given Python for data science courses at university level.
Ankit Shukla is a data scientist working with World Wide Technology, a leading US-based technology solution provider, where he develops and deploys machine learning and artificial intelligence solutions to solve business problems and create actual dollar value for clients. He is also part of the company's R&D initiative, which is responsible for producing intellectual property, building capabilities in new areas, and publishing cutting-edge research in corporate white papers. Besides tinkering with AI/ML models, he likes to read and is a big-time foodie.
Sarang VK is a lead data scientist at StraitsBridge Advisors, where his responsibilities include requirement gathering, solutioning, development, and productization of scalable machine learning, artificial intelligence, and analytical solutions using open source technologies. Alongside this, he supports pre-sales and competency.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
85,49 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint