×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Mastering Zero-knowledge Proofs Dr. Amit Dua, Gaurav Kumar

(ebook) (audiobook) (audiobook) Książka w języku 1
Autorzy:
Dr. Amit Dua, Gaurav Kumar
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
490
Dostępne formaty:
     ePub
     Mobi
Czytaj fragment

Ebook (39,90 zł najniższa cena z 30 dni)

84,99 zł (-5%)
80,91 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(39,90 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Description
"Mastering Zero-knowledge Proofs" is your ultimate guide to blockchain and ZKPs. It connects blockchain's core elements, like distributed ledgers and smart contracts, to ZKPs' advanced privacy solutions, emphasizing their significance in today's digital world, and provides a robust understanding of how these cryptographic techniques can revolutionize security and privacy in various applications.

In this book, you will explore the basics of blockchain and ZKPs. You will gain technical skills like group theory and elliptic curve cryptography. Each chapter covers practical applications of ZKPs in blockchain systems, addressing challenges, ongoing research, and real-world use cases across industries like healthcare and finance. You will find detailed explanations of SNARKs, STARKs, and PLONK, along with practical guidance on constructing and implementing these non-interactive proofs. You will learn about innovative solutions, zero-knowledge virtual machines, ZK-Rollups, and ZK-EVM, along with a step-by-step guide for building and deploying these technologies.

By the end of this book, you will have a solid understanding of Zero-knowledge Proofs and their applications in blockchain development. You will be equipped to implement privacy-preserving solutions, enhancing security and efficiency in your projects, making you a competent contributor in the evolving blockchain space.

Key Features
In-depth exploration of Zero-knowledge Proof concepts and applications.
Practical insights into implementing ZKP in real-world systems.
Comprehensive coverage from blockchain basics to advanced cryptography.

What you will learn
Understand the fundamentals of Zero-knowledge Proofs and blockchain.
Construct and implement SNARKs, STARKs, and PLONK proofs.
Apply Zero-knowledge Proofs to enhance security and privacy in applications.
Utilize zero-knowledge virtual machines and ZK-Rollups.
Integrate ZK-EVM into Ethereum for scalable solutions.
Identify and overcome challenges in Zero-knowledge Proofs.

Who this book is for
This book is ideal for blockchain developers, security professionals, and researchers with a foundational understanding of cryptography and blockchain technology.

Table of Contents
1. Introduction to Blockchain Technology
2. Introduction to Zero-knowledge Proofs
3. Introduction to SNARKS
4. SNARK Construction: Non-interactive Proof Building
5. Advanced SNARK Paradigms and Techniques
6. SNARK versus STARK
7. SNARKs In-depth and PLONK
8. Zero-Knowledge Virtual Machines
9. ZK-Rollups: Scalability Meets Privacy
10. Conceptualizing ZK-EVM in Ethereum
11. ZK Swaps: Revolutionizing Decentralized Exchanges
12. Zero-Knowledge Identity
13. Challenges and Limitations of Zero-knowledge Proofs
14. Ongoing Research and Development in Zero-knowledge Proofs
15. Real-world Applications of Zero-knowledge Proofs

Wybrane bestsellery

BPB Publications - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
80,91 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.