×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Machine Learning for Cybersecurity Cookbook. Over 80 recipes on how to implement machine learning algorithms for building security systems using Python Emmanuel Tsukerman

(ebook) (audiobook) (audiobook) Książka w języku 1
Machine Learning for Cybersecurity Cookbook. Over 80 recipes on how to implement machine learning algorithms for building security systems using Python Emmanuel Tsukerman - okladka książki

Machine Learning for Cybersecurity Cookbook. Over 80 recipes on how to implement machine learning algorithms for building security systems using Python Emmanuel Tsukerman - okladka książki

Machine Learning for Cybersecurity Cookbook. Over 80 recipes on how to implement machine learning algorithms for building security systems using Python Emmanuel Tsukerman - audiobook MP3

Machine Learning for Cybersecurity Cookbook. Over 80 recipes on how to implement machine learning algorithms for building security systems using Python Emmanuel Tsukerman - audiobook CD

Autor:
Emmanuel Tsukerman
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
346
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (125,10 zł najniższa cena z 30 dni)

129,00 zł (-3%)
125,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(125,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Organizations today face a major threat in terms of cybersecurity, from malicious URLs to credential reuse, and having robust security systems can make all the difference. With this book, you'll learn how to use Python libraries such as TensorFlow and scikit-learn to implement the latest artificial intelligence (AI) techniques and handle challenges faced by cybersecurity researchers.
You'll begin by exploring various machine learning (ML) techniques and tips for setting up a secure lab environment. Next, you'll implement key ML algorithms such as clustering, gradient boosting, random forest, and XGBoost. The book will guide you through constructing classifiers and features for malware, which you'll train and test on real samples. As you progress, you'll build self-learning, reliant systems to handle cybersecurity tasks such as identifying malicious URLs, spam email detection, intrusion detection, network protection, and tracking user and process behavior. Later, you'll apply generative adversarial networks (GANs) and autoencoders to advanced security tasks. Finally, you'll delve into secure and private AI to protect the privacy rights of consumers using your ML models.
By the end of this book, you'll have the skills you need to tackle real-world problems faced in the cybersecurity domain using a recipe-based approach.

Wybrane bestsellery

O autorze książki

Emmanuel Tsukerman graduated from Stanford University and obtained his Ph.D. from UC Berkeley. In 2017, Dr. Tsukerman's anti-ransomware product was listed in the Top 10 ransomware products of 2018 by PC Magazine. In 2018, he designed an ML-based, instant-verdict malware detection system for Palo Alto Networks' WildFire service of over 30,000 customers. In 2019, Dr. Tsukerman launched the first cybersecurity data science course.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
125,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.