×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Hands-On Machine Learning for Algorithmic Trading. Design and implement investment strategies based on smart algorithms that learn from data using Python

(ebook) (audiobook) (audiobook) Książka w języku 1
Autor:
Stefan Jansen
Hands-On Machine Learning for Algorithmic Trading. Design and implement investment strategies based on smart algorithms that learn from data using Python Stefan Jansen - okladka książki

Hands-On Machine Learning for Algorithmic Trading. Design and implement investment strategies based on smart algorithms that learn from data using Python Stefan Jansen - okladka książki

Hands-On Machine Learning for Algorithmic Trading. Design and implement investment strategies based on smart algorithms that learn from data using Python Stefan Jansen - audiobook MP3

Hands-On Machine Learning for Algorithmic Trading. Design and implement investment strategies based on smart algorithms that learn from data using Python Stefan Jansen - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
684
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (170,10 zł najniższa cena z 30 dni)

189,00 zł (-84%)
29,90 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(170,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies.

This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You’ll practice the ML work?ow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies.

Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym.

Wybrane bestsellery

O autorze książki

Stefan is the founder and CEO of Applied AI. He advises Fortune 500 companies, investment firms, and startups across industries on data & AI strategy, building data science teams, and developing end-to-end machine learning solutions for a broad range of business problems.

Before his current venture, he was a partner and managing director at an international investment firm, where he built the predictive analytics and investment research practice. He was also a senior executive at a global fintech company with operations in 15 markets, advised Central Banks in emerging markets, and consulted for the World Bank.

He holds Master's degrees in Computer Science from Georgia Tech and in Economics from Harvard and Free University Berlin, and a CFA Charter. He has worked in six languages across Europe, Asia, and the Americas and taught data science at Datacamp and General Assembly.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
29,90 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint