×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Getting Started with Amazon SageMaker Studio. Learn to build end-to-end machine learning projects in the SageMaker machine learning IDE Michael Hsieh

(ebook) (audiobook) (audiobook) Książka w języku 1
Getting Started with Amazon SageMaker Studio. Learn to build end-to-end machine learning projects in the SageMaker machine learning IDE Michael Hsieh - okladka książki

Getting Started with Amazon SageMaker Studio. Learn to build end-to-end machine learning projects in the SageMaker machine learning IDE Michael Hsieh - okladka książki

Getting Started with Amazon SageMaker Studio. Learn to build end-to-end machine learning projects in the SageMaker machine learning IDE Michael Hsieh - audiobook MP3

Getting Started with Amazon SageMaker Studio. Learn to build end-to-end machine learning projects in the SageMaker machine learning IDE Michael Hsieh - audiobook CD

Autor:
Michael Hsieh
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
326
Dostępne formaty:
     PDF
     ePub

Ebook (107,10 zł najniższa cena z 30 dni)

119,00 zł (-10%)
107,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(107,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Amazon SageMaker Studio is the first integrated development environment (IDE) for machine learning (ML) and is designed to integrate ML workflows: data preparation, feature engineering, statistical bias detection, automated machine learning (AutoML), training, hosting, ML explainability, monitoring, and MLOps in one environment.
In this book, you'll start by exploring the features available in Amazon SageMaker Studio to analyze data, develop ML models, and productionize models to meet your goals. As you progress, you will learn how these features work together to address common challenges when building ML models in production. After that, you'll understand how to effectively scale and operationalize the ML life cycle using SageMaker Studio.
By the end of this book, you'll have learned ML best practices regarding Amazon SageMaker Studio, as well as being able to improve productivity in the ML development life cycle and build and deploy models easily for your ML use cases.

Wybrane bestsellery

O autorze książki

Michael Hsieh is a senior AI/machine learning (ML) solutions architect at Amazon Web Services. He creates and evangelizes for ML solutions centered around Amazon SageMaker. He also works with enterprise customers to advance their ML journeys.

Prior to working at AWS, Michael was an advanced analytic consultant creating ML solutions and enterprise-level ML strategies at Slalom Consulting in Philadelphia, PA. Prior to consulting, he was a data scientist at the University of Pennsylvania Health System, focusing on personalized medicine and ML research.

Michael has two master's degrees, one in applied physics and one in robotics.

Originally from Taipei, Taiwan, Michael currently lives in Sammamish, WA, but still roots for the Philadelphia Eagles.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
107,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.