×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Generative Adversarial Networks Cookbook. Over 100 recipes to build generative models using Python, TensorFlow, and Keras

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Autor:
Josh Kalin
Generative Adversarial Networks Cookbook. Over 100 recipes to build generative models using Python, TensorFlow, and Keras Josh Kalin - okladka książki

Generative Adversarial Networks Cookbook. Over 100 recipes to build generative models using Python, TensorFlow, and Keras Josh Kalin - okladka książki

Generative Adversarial Networks Cookbook. Over 100 recipes to build generative models using Python, TensorFlow, and Keras Josh Kalin - audiobook MP3

Generative Adversarial Networks Cookbook. Over 100 recipes to build generative models using Python, TensorFlow, and Keras Josh Kalin - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
268
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (29,90 zł najniższa cena z 30 dni)

139,00 zł (-10%)
125,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(29,90 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Developing Generative Adversarial Networks (GANs) is a complex task, and it is often hard to find code that is easy to understand.

This book leads you through eight different examples of modern GAN implementations, including CycleGAN, simGAN, DCGAN, and 2D image to 3D model generation. Each chapter contains useful recipes to build on a common architecture in Python, TensorFlow and Keras to explore increasingly difficult GAN architectures in an easy-to-read format. The book starts by covering the different types of GAN architecture to help you understand how the model works. This book also contains intuitive recipes to help you work with use cases involving DCGAN, Pix2Pix, and so on. To understand these complex applications, you will take different real-world data sets and put them to use.

By the end of this book, you will be equipped to deal with the challenges and issues that you may face while working with GAN models, thanks to easy-to-follow code solutions that you can implement right away.

Wybrane bestsellery

O autorze książki

Josh Kalin is a Physicist and Technologist focused on the intersection of robotics and machine learning. Josh works on advanced sensors, industrial robotics, machine learning, and automated vehicle research projects. Josh holds degrees in Physics, Mechanical Engineering, and Computer Science. In his free time, he enjoys working on cars (has owned 36 vehicles and counting), building computers, and learning new techniques in robotics and machine learning (like writing this book).

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
125,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint