×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Deep Learning for Beginners. A beginner's guide to getting up and running with deep learning from scratch using Python Dr. Pablo Rivas, Laura Montoya

(ebook) (audiobook) (audiobook) Książka w języku 1
Deep Learning for Beginners. A beginner's guide to getting up and running with deep learning from scratch using Python Dr. Pablo Rivas, Laura Montoya - okladka książki

Deep Learning for Beginners. A beginner's guide to getting up and running with deep learning from scratch using Python Dr. Pablo Rivas, Laura Montoya - okladka książki

Deep Learning for Beginners. A beginner's guide to getting up and running with deep learning from scratch using Python Dr. Pablo Rivas, Laura Montoya - audiobook MP3

Deep Learning for Beginners. A beginner's guide to getting up and running with deep learning from scratch using Python Dr. Pablo Rivas, Laura Montoya - audiobook CD

Autorzy:
Dr. Pablo Rivas, Laura Montoya
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
432
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (107,10 zł najniższa cena z 30 dni)

119,00 zł (-10%)
107,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(107,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started.
The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book.
By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks.

Wybrane bestsellery

O autorze książki

Dr. Pablo Rivas is an assistant professor of computer science at Baylor University in Texas. He worked in industry for a decade as a software engineer before becoming an academic. He is a senior member of the IEEE, ACM, and SIAM. He was formerly at NASA Goddard Space Flight Center performing research. He is an ally of women in technology, a deep learning evangelist, machine learning ethicist, and a proponent of the democratization of machine learning and artificial intelligence in general. He teaches machine learning and deep learning. Dr. Rivas is a published author and all his papers are related to machine learning, computer vision, and machine learning ethics. Dr. Rivas prefers Vim to Emacs and spaces to tabs.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
107,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.