×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Empirical Cloud Security. A Guide To Practical Intelligence to Evaluate Risks and Attacks Mercury Learning and Information, Aditya K. Sood

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Empirical Cloud Security. A Guide To Practical Intelligence to Evaluate Risks and Attacks Mercury Learning and Information, Aditya K. Sood - okladka książki

Empirical Cloud Security. A Guide To Practical Intelligence to Evaluate Risks and Attacks Mercury Learning and Information, Aditya K. Sood - okladka książki

Empirical Cloud Security. A Guide To Practical Intelligence to Evaluate Risks and Attacks Mercury Learning and Information, Aditya K. Sood - audiobook MP3

Empirical Cloud Security. A Guide To Practical Intelligence to Evaluate Risks and Attacks Mercury Learning and Information, Aditya K. Sood - audiobook CD

Autorzy:
Mercury Learning and Information, Aditya K. Sood
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
468
Dostępne formaty:
     PDF
     ePub

Ebook (170,10 zł najniższa cena z 30 dni)

189,00 zł (-10%)
170,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(170,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

This book, updated to include the latest research and developments in cloud security, is essential for security professionals, DevOps engineers, penetration testers, cloud security engineers, and cloud software developers. It offers practical approaches to securing cloud infrastructure and applications against threats, attacks, and data breaches. The content is refined for better accessibility and engagement, providing a comprehensive guide to cloud security.
The course starts with fundamental cloud security concepts and progresses to hands-on assessment techniques based on real-world case studies. It covers cloud architecture, IAM for authentication and authorization, network security, database and storage security, cryptography controls, secure code review, and monitoring and logging. The practical strategies for assessing security and privacy are crucial for building a robust cloud infrastructure.
The journey concludes with advanced topics such as privacy in the cloud, identifying security flaws and attacks, and understanding the impact of malicious code. New case studies reveal how threat actors exploit cloud environments, offering preventative measures to enhance cloud security. This structured approach ensures a thorough understanding and practical application of cloud security principles.

Wybrane bestsellery

O autorach książki

MERCURY LEARNING and INFORMATION publishes content in the areas of science and medicine, technology and computing, engineering, and mathematics designed for the professional/reference, trade, library, higher education, career school, and online training markets.
Aditya K. Sood (PhD) is a cybersecurity practitioner with more than 15 years of experience working with cross-functional teams, management, and customers to create the best-of-breed information security experience. His articles have appeared in magazines and journals, including IEEE, Elsevier, ISACA, Virus Bulletin, and USENIX, and he is the author of Targeted Cyber Attacks (Syngress). He has presented his research at industry leading security conferences such as BlackHat, DEFCON, Virus Bulletin, and others.

Mercury Learning and Information, Aditya K. Sood - pozostałe książki

Mercury_Learning - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
170,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.