

• Kup książkę
• Poleć książkę
• Oceń książkę

• Księgarnia internetowa
• Lubię to! » Nasza społeczność

https://helion.pl/rt/wysyjc
https://helion.pl/rf/wysyjc
https://helion.pl/ro/wysyjc
https://helion.pl
https://helion.pl/r/4CAKF

Spis treści 5

Spis treści

O autorze .. 14

O recenzencie ... 15

Przedmowa .. 16

Wstęp .. 17

ROZDZIAŁ 1
Przygotowywanie warsztatu pracy ... 23

Wymagania techniczne .. 23
Podstawowe narzędzia do tworzenia oprogramowania

dla mikrokontrolerów .. 24
Instalacja STM32CubeIDE .. 25
Instalacja GNU Arm Embedded Toolchain ... 27
Instalacja OpenOCD .. 28

Płytka rozwojowa .. 32
Funkcje płytki rozwojowej ... 33
Przegląd płytki rozwojowej NUCLEO-F411 .. 33

Karty katalogowe i instrukcje — odkrywanie szczegółów 34
Dokumentacja STMicroelectronics .. 34
Ogólny przewodnik użytkownika ARM ... 35
Pobieranie dokumentów ... 36

Praca w środowisku STM32CubeIDE .. 36
Ikony sterujące ... 40
Podsumowanie .. 40

ROZDZIAŁ 2
Konstruowanie rejestrów układów peryferyjnych
na podstawie adresów pamięci ... 41

Wymagania techniczne .. 42
Różne metody tworzenia oprogramowania układowego 42

HAL ... 42
LL .. 43

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

6 Wydajne systemy wbudowane w języku C

Programowanie niskopoziomowe w C .. 44
Asembler .. 45

Komponenty na płytce rozwojowej ... 47
Lokalizowanie połączenia diody LED ... 47
Lokalizowanie połączenia przycisku użytkownika 49
Lokalizowanie goldpinów i złączy kompatybilnych z Arduino 49

Definiowanie i tworzenie rejestrów na podstawie dokumentacji 52
Lokalizowanie portu GPIO PORTA ... 52
Bramkowanie zegara .. 56
AHB1 ENR ... 58
Ustawianie i zerowanie bitów w rejestrach ... 59
Rejestr trybu portu GPIO (GPIOx_MODER) ... 61
Rejestr danych wyjściowych portu GPIO (GPIOx_ODR) 64

Manipulowanie rejestrami — od konfiguracji
do uruchomienia pierwszego programu ... 65

Definicje rejestrów .. 66
Przyrostek UL .. 67
Funkcja main .. 69

Podsumowanie .. 72

ROZDZIAŁ 3
Proces budowania programów i eksplorowanie narzędzi GNU 74

Wymagania techniczne .. 74
Podstawy — proces budowania oprogramowania wbudowanego 75

Etap przetwarzania wstępnego ... 75
Etap kompilacji ... 76
Etap asemblacji ... 76
Etap konsolidacji ... 76
Etap lokalizacji .. 77

Przegląd narzędzi GNU dla systemów wbudowanych 77
arm-none-eabi-gcc .. 78
Często używane flagi kompilatora .. 78
Niektóre flagi specyficzne dla architektury .. 79
Inne polecenia w zestawie narzędzi GNU Arm Embedded Toolchain 81

Od IDE do wiersza poleceń — analiza procesu budowania programu 83
Proces budowania oprogramowania z perspektywy IDE 83
Kompilacja plików asemblera i C ... 84
Praca z narzędziami binarnymi GNU ... 85
Wgrywanie oprogramowania układowego do mikrokontrolera

za pomocą OpenOCD ... 89
Podsumowanie .. 92

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Spis treści 7

ROZDZIAŁ 4
Tworzenie skryptu linkera i pliku startowego .. 93

Wymagania techniczne .. 93
Model pamięci STM32 ... 93

Pamięć flash .. 94
SRAM .. 95
Pamięć układów peryferyjnych .. 96

Skrypt linkera ... 96
Proces konsolidacji .. 97
Kluczowe elementy skryptu linkera ... 98
Dyrektywy w skrypcie linkera .. 100
Stałe w skryptach linkera .. 108
Symbole w skryptach linkera ... 109

Pisanie skryptu linkera i pliku startowego .. 111
Regiony pamięci, do których wczytywane są poszczególne sekcje 111
Przerwania i tablica wektorów .. 112
Pisanie skryptu linkera .. 113
Pisanie pliku startowego ... 117
Testowanie skryptu linkera i pliku startowego 124

Podsumowanie .. 125

ROZDZIAŁ 5
System Make .. 127

Wymagania techniczne .. 127
Wprowadzenie do systemów budowania oprogramowania 127

Make .. 129
Maven .. 129

System budowania Make ... 130
Podstawy systemu Make ... 130
Instalowanie i konfigurowanie systemu Make 132

Tworzenie plików Makefile dla projektów
oprogramowania układowego .. 134

Testowanie pliku Makefile .. 136
Stosowanie zmiennych specjalnych i zdefiniowanych

przez użytkownika ... 138
Podsumowanie .. 138

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

8 Wydajne systemy wbudowane w języku C

ROZDZIAŁ 6
Common Microcontroller Software Interface Standard (CMSIS) 140

Wymagania techniczne .. 140
Definiowanie rejestrów układów peryferyjnych za pomocą struktur C 141

Uzyskiwanie adresu bazowego i przesunięć rejestrów 141
Implementowanie struktur układów peryferyjnych 143
Dostęp do rejestrów oparty na strukturach ... 145

Omówienie CMSIS ... 146
Czym jest CMSIS? ... 147
Kluczowe elementy CMSIS .. 147
Zasady kodowania CMSIS ... 148
Pliki CMSIS-Core .. 148

Przygotowywanie wymaganych plików CMSIS .. 150
Dołączanie odpowiednich plików nagłówkowych 150
Praca z plikami CMSIS ... 151

Podsumowanie .. 154

ROZDZIAŁ 7
Wejście-wyjście ogólnego przeznaczenia (GPIO) 156

Wymagania techniczne .. 156
Układ peryferyjny GPIO .. 157
Rejestry GPIO w mikrokontrolerach STM32 .. 158

Rejestr trybu GPIO (GPIOx_MODER) .. 158
Rejestr danych wyjściowych GPIO (GPIOx_ODR)

oraz rejestr danych wejściowych GPIO (GPIOx_IDR) 159
Rejestr ustawiania/zerowania bitów GPIO (GPIOx_BSRR) 160
Rejestry alternatywnych funkcji GPIO (GPIOx_AFRL i GPIOx_AFRH) 161

Tworzenie sterowników wejścia i wyjścia ... 164
Sterownik wyjścia GPIO wykorzystujący rejestr BSRR 164
Sterownik wejścia GPIO .. 167

Podsumowanie .. 169

ROZDZIAŁ 8
Timer systemowy (SysTick) .. 171

Wymagania techniczne .. 171
Wprowadzenie do timera SysTick .. 171

Przegląd timera SysTick ... 171
Rejestry timera SysTick .. 172

Tworzenie sterownika timera SysTick ... 175
Podsumowanie .. 178

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Spis treści 9

ROZDZIAŁ 9
Timery ogólnego przeznaczenia (TIM) ... 179

Wymagania techniczne .. 179
Wprowadzenie do timerów i ich zastosowań .. 179
Typowe zastosowania timerów .. 180

Pomiar interwałów czasowych .. 180
Generowanie opóźnień ... 181
Wyzwalanie zdarzeń ... 181

Timery STM32 .. 181
Wprowadzenie do timerów ogólnego przeznaczenia

i timerów zaawansowanych ... 182
Jak działają timery w mikrokontrolerach STM32? 183

Tworzenie sterownika timera ... 186
Podsumowanie .. 188

ROZDZIAŁ 10
Protokół uniwersalnego asynchronicznego
odbiornika-nadajnika (UART) .. 189

Wymagania techniczne .. 189
Wprowadzenie do protokołów komunikacyjnych 190

Czym są protokoły komunikacyjne? .. 190
Porównanie interfejsów UART, SPI i I2C .. 192
Typowe zastosowania protokołów UART, SPI i I2C 194

Przegląd protokołu UART ... 196
Czym jest UART? ... 197
Interfejs .. 197
Jak działa UART? ... 197
Układ peryferyjny UART w mikrokontrolerze STM32F4 200

Tworzenie sterownika UART .. 202
Podsumowanie .. 208

ROZDZIAŁ 11
Przetwornik analogowo-cyfrowy (ADC) .. 210

Wymagania techniczne .. 210
Podstawy konwersji analogowo-cyfrowej .. 211

Czym jest konwersja analogowo-cyfrowa? ... 211
Kluczowe parametry ADC — rozdzielczość,

wielkość kroku kwantyzacji oraz napięcie referencyjne (VREF) 213

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

10 Wydajne systemy wbudowane w języku C

Układ peryferyjny ADC w mikrokontrolerze STM32F4 215
Kanały ADC ... 215
Kanały zwykłe i wstrzykiwane w przetwornikach ADC

mikrokontrolerów STM32F411 ... 217
Kluczowe rejestry i flagi ADC ... 218

1. rejestr sterujący ADC (ADC_CR1) ... 218
2. rejestr sterujący ADC (ADC_CR2) ... 219
Rejestr sekwencji zwykłej ADC (ADC_SQRx) ... 219
Rejestr danych ADC (ADC_DR) .. 219
Rejestr statusu ADC (ADC_SR) ... 220
Kluczowe flagi ADC .. 220

Tworzenie sterownika ADC .. 221
Identyfikowanie pinów GPIO na użytek ADC ... 221

Podsumowanie .. 228

ROZDZIAŁ 12
Serial Peripheral Interface (SPI) ... 229

Wymagania techniczne .. 229
Przegląd protokołu SPI .. 229

Czym jest SPI? ... 230
Kluczowe cechy protokołu SPI .. 230
Interfejs SPI ... 230
Jak działa SPI? ... 232
CPHA i CPOL ... 233
Tryby danych .. 233
Prędkość SPI .. 234

Układ peryferyjny SPI w mikrokontrolerze STM32F4 234
Kluczowe cechy .. 234
Kluczowe rejestry SPI .. 235

Tworzenie sterownika SPI .. 236
Zdefiniowane makra ... 239
Inicjalizacja pinów GPIO na użytek SPI .. 240
Konfiguracja SPI1 .. 241
Wysyłanie danych przez SPI .. 242
Odbieranie danych przez SPI ... 242
Zarządzanie linią SS .. 242
Plik nagłówkowy ... 243
Akcelerometr ADXL345 ... 243
Kluczowe pojęcia — statyczne przyspieszenie grawitacyjne,

wykrywanie nachylenia oraz przyspieszenie dynamiczne 246
Tworzenie sterownika akcelerometru ADXL345 248

Podsumowanie .. 252

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Spis treści 11

ROZDZIAŁ 13
Inter-Integrated Circuit (I2C) .. 254

Wymagania techniczne .. 254
Przegląd protokołu I2C .. 254

Czym jest I2C? .. 254
Układ peryferyjny I2C w mikrokontrolerach STM32F4 260

Kluczowe rejestry I2C .. 260
Tworzenie sterownika I2C .. 262
Podsumowanie .. 274

ROZDZIAŁ 14
Przerwania i zdarzenia zewnętrzne (EXTI) .. 275

Wymagania techniczne .. 275
Przerwania i ich rola w oprogramowaniu układowym 276

Czym są przerwania? .. 276
Jak działają przerwania? ... 276
Znaczenie przerwań w oprogramowaniu układowym 277
Przerwania a wyjątki ... 277
Analiza porównawcza: rozwiązania oparte na przerwaniach

a rozwiązania oparte na odpytywaniu .. 280
Kontroler EXTI w STM32 .. 283

Kluczowe cechy EXTI ... 283
Odwzorowywanie zewnętrznych linii przerwań/zdarzeń 284

Tworzenie sterownika EXTI .. 285
EXTI_IMR .. 285
EXTI_RTSR ... 285
EXTI_FTSR ... 285
Rejestr przerwań oczekujących (EXTI_PR) .. 285
Sterownik EXTI .. 286

Podsumowanie .. 289

ROZDZIAŁ 15
Zegar czasu rzeczywistego (RTC) .. 290

Wymagania techniczne .. 290
Zegary RTC ... 290

Jak działają zegary RTC? ... 291
Typowe zastosowania zegarów RTC .. 291

Moduł RTC w mikrokontrolerach STM32 ... 293
Główne cechy modułu RTC w STM32F4 .. 293
Kluczowe elementy modułu RTC w STM32F4 .. 294

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

12 Wydajne systemy wbudowane w języku C

Kluczowe rejestry RTC .. 299
Rejestr czasu RTC (RTC_TR) .. 299
Rejestr daty RTC (RTC_DR) ... 299
Rejestr sterujący RTC (RTC_CR) .. 300
Rejestr inicjalizacji i statusu RTC (RTC_ISR) .. 300
Rejestr preskalera RTC (RTC_PRER) .. 300
Rejestry alarmów RTC (RTC_ALRMAR i RTC_ALRMBR) 301
Rejestr timera wybudzania RTC (RTC_WUTR) ... 301

Tworzenie sterownika RTC ... 301
Plik implementacji RTC .. 302
Format BCD .. 310
Plik nagłówkowy ... 312
Główny plik .. 313

Podsumowanie .. 315

ROZDZIAŁ 16
Niezależny watchdog (IWDG) ... 317

Wymagania techniczne .. 317
Watchdogi ... 318

Czym są watchdogi? ... 318
Jak działa watchdog? ... 318
Typowe zastosowania ... 319
Typy watchdogów .. 320

IWDG w mikrokontrolerach STM32 ... 322
Kluczowe cechy IWDG .. 323
Jak działa IWDG? .. 323
Rejestry IWDG ... 324

Tworzenie sterownika IWDG .. 325
Plik implementacji IWDG ... 325
Plik nagłówkowy ... 327
Główny plik .. 328
Testowanie projektu ... 330

Podsumowanie .. 330

ROZDZIAŁ 17
Bezpośredni dostęp do pamięci (DMA) .. 331

Wymagania techniczne .. 331
Bezpośredni dostęp do pamięci (DMA) .. 332

Jak działa DMA? ... 332
Kluczowe cechy .. 332
Typowe zastosowania ... 333

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Spis treści 13

Moduły DMA mikrokontrolera STM32F4 .. 335
Kluczowe cechy kontrolera DMA w mikrokontrolerze STM32F4 335
Tryby transferu ... 336
Tryby danych DMA .. 337
Schemat blokowy modułu DMA w mikrokontrolerze STM32F4 337
Kluczowe rejestry DMA w mikrokontrolerach STM32 339

Tworzenie sterownika DMA ... 341
Sterownik DMA dla przetwornika ADC ... 341

Sterownik DMA dla układu UART ... 344
Sterownik DMA do transferu danych między obszarami pamięci 352
Podsumowanie .. 356

ROZDZIAŁ 18
Zarządzanie energią i efektywność energetyczna
w systemach wbudowanych .. 357

Wymagania techniczne .. 358
Przegląd technik zarządzania energią .. 358

Dynamiczne skalowanie napięcia i częstotliwości (DVFS) 358
Bramkowanie zegara .. 359
Bramkowanie zasilania ... 359
Tryby niskiego poboru mocy ... 360
Studium przypadku 1. Energooszczędny smartwatch 360
Studium przypadku 2. Monitor środowiskowy zasilany

energią słoneczną .. 361
Tryby niskiego poboru mocy w mikrokontrolerze STM32F4 362

Źródła i wyzwalacze wybudzania w STM32F4 .. 364
Źródła wybudzania ... 364
Kwestie praktyczne ... 366

Tworzenie sterownika do wchodzenia w stan gotowości
i wybudzania mikrokontrolera ... 367

Podsumowanie .. 371

Skorowidz .. 373

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Rozdział 10  Protokół uniwersalnego asynchronicznego odbiornika-nadajnika (UART) 189

Protokół uniwersalnego
asynchronicznego

odbiornika-nadajnika
(UART)

Rozdział
10

W tym rozdziale poznasz protokół uniwersalnego asynchronicznego odbiornika-na-
dajnika (ang. Universal Asynchronous Receiver/Transmitter, UART) — ważną metodę komunikacji szeroko stosowaną w systemach wbudowanych. UART umożliwia komu-nikację między mikrokontrolerami a różnymi urządzeniami peryferyjnymi, co czyni go niezbędnym elementem w rozwoju systemów wbudowanych. Zaczniemy od omówienia znaczenia protokołów komunikacyjnych w systemach wbu-dowanych i przedstawimy typowe przypadki użycia UART obok innych protokołów, takich jak SPI i I2C. Następnie zajmiemy się kompleksowym przeglądem protokołu UART, szczegółowo opisując jego zasadę działania i funkcje. Przeanalizujemy rejestry UART opisane w podręczniku referencyjnym STM32, aby zdobyć wiedzę niezbędną do tworzenia sterowników. Na koniec wykorzystamy tę wiedzę do napisania niskopozio-mowego sterownika UART, aby zilustrować praktyczne aspekty inicjalizacji i przesyła-nia danych za pomocą tego interfejsu. W tym rozdziale omówimy następujące główne tematy:

 wprowadzenie do protokołów komunikacyjnych,
 przegląd protokołu UART,
 układy peryferyjne UART w mikrokontrolerach STM32F4,
 tworzenie sterownika UART. Po zakończeniu tego rozdziału będziesz dobrze rozumieć protokół UART i zdobędziesz umiejętności potrzebne do tworzenia niskopoziomowych sterowników do komunika-cji UART.

Wymagania techniczne Wszystkie przykłady kodu z tego rozdziału są dostępne w repozytorium na GitHubie pod adresem https://github.com/PacktPublishing/Bare-Metal-Embedded-C-Programming. Spolszczone przykłady można pobrać pod adresem https://ftp.helion.pl/przyklady/
wysyjc.zip.

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

190 Wydajne systemy wbudowane w języku C

Wprowadzenie do protokołów
komunikacyjnych W świecie systemów wbudowanych protokoły komunikacyjne odgrywają ważną rolę, umożliwiając wymianę informacji między mikrokontrolerami a urządzeniami peryfe-ryjnymi. Można je porównać do języków, którymi posługują się różne urządzenia — od smartfonów po inteligentne urządzenia domowe — aby rozumieć się nawzajem i wy-mieniać dane. Zobaczmy zatem, czym są protokoły komunikacyjne, jak je klasyfikujemy, jakie mają cechy charakterystyczne i zalety, a następnie przeanalizujmy kilka typowych zastosowań, aby zobaczyć te protokoły w akcji.
Czym są protokoły komunikacyjne? Protokoły komunikacyjne to zbiory reguł i konwencji umożliwiających urządzeniom elektronicznym wzajemną komunikację. Określają one sposób formatowania, przesy-łania i odbierania danych, zapewniając dokładną i niezawodną wymianę informacji między urządzeniami. Bez tych protokołów próba komunikacji przypominałaby rozmowę z kimś mówiącym zupełnie innym językiem — byłaby chaotyczna i podatna na błędy. W systemach wbudowanych protokoły te mają kluczowe znaczenie, ponieważ umożli-wiają interakcję między mikrokontrolerami a urządzeniami peryferyjnymi, takimi jak czujniki, siłowniki, wyświetlacze czy inne mikrokontrolery. Niezależnie od tego, czy chodzi o przesłanie prostego odczytu temperatury z czujnika do mikrokontrolera, czy transmisję danych wideo z modułu kamery, to właśnie protokoły komunikacyjne spra-wiają, że jest to możliwe. Przyjrzyjmy się klasyfikacji protokołów komunikacyjnych, zaczynając od ogólnego po-działu na komunikację szeregową i równoległą.
Komunikacja szeregowa i równoległa Zacznijmy od komunikacji szeregowej.
Komunikacja szeregowa Protokoły komunikacyjne tej kategorii można podzielić na asynchroniczne i synchroniczne:

 Asynchroniczne. Protokoły tego typu przesyłają dane bit po bicie bez sygnału zegarowego do synchronizacji nadajnika i odbiornika. Można to porównać do wysyłania listów pocztą bez ustalonego czasu doręczenia. Popularnym przykładem jest UART, który jest prosty i nadaje się do wielu zastosowań.
 Synchroniczne. W przeciwieństwie do komunikacji asynchronicznej ta forma komunikacji wykorzystuje sygnał zegarowy do koordynacji przesyłania bitów. To jak marsz w rytm bębna, który zapewnia, że wszyscy równo stawiają kroki. Przykładami są Serial Peripheral Interface (SPI) i Inter-Integrated Circuit (I2C). Te protokoły zapewniają integralność danych i precyzyjne taktowanie, co czyni je odpowiednimi do bardziej złożonych zadań.

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Rozdział 10  Protokół uniwersalnego asynchronicznego odbiornika-nadajnika (UART) 191

Komunikacja równoległa Ten typ komunikacji polega na przesyłaniu wielu bitów jednocześnie przez wiele ka-nałów. Wyobraź sobie wysłanie całej floty samochodów zamiast jednego pojazdu — jest to szybsze, ale wymaga więcej pasów ruchu (w naszym przypadku pinów). Chociaż komunikacja równoległa jest szybsza, rzadziej stosuje się ją w systemach wbudowa-nych ze względu na większą liczbę potrzebnych pinów. Ponadto jest bardziej podatna na zakłócenia i problemy z integralnością sygnału, szczególnie na dłuższych dystansach. Protokoły komunikacyjne możemy również klasyfikować ze względu na ich architekturę. W tym systemie klasyfikacji wyróżniamy komunikację punkt-punkt oraz komunikację wielourządzeniową.
Komunikacja punkt-punkt a komunikacja wielourządzeniowa Przyjrzyjmy się różnicom.
Komunikacja punkt-punkt Jest to bezpośrednia linia komunikacyjna między dwoma urządzeniami. Klasycznym przykładem jest interfejs UART, w którym dane przepływają bezpośrednio między mi-krokontrolerem a urządzeniem peryferyjnym. Jest to proste, niezawodne i odpowied-nie dla wielu systemów wbudowanych.
Komunikacja wielourządzeniowa (magistrala) W tym przypadku wiele urządzeń korzysta z tych samych linii komunikacyjnych. Może to być realizowane na dwa sposoby:

 Wiele urządzeń nadrzędnych. Wiele urządzeń może kontrolować magistralę komunikacyjną. Świetnym przykładem jest interfejs I2C, który pozwala na obecność wielu urządzeń nadrzędnych i podrzędnych na tej samej magistrali. Przypomina to grupę przyjaciół, którzy na zmianę zabierają głos w rozmowie.
 Nadrzędny-podrzędny. Komunikacją steruje jedno urządzenie nadrzędne, które kontroluje wymianę danych z wieloma urządzeniami podrzędnymi. W ten sposób działa SPI — jedno urządzenie nadrzędne komunikuje się z wieloma urządzeniami podrzędnymi za pomocą osobnych linii. I2C również może działać w tym trybie. Przypomina to nauczyciela (urządzenie nadrzędne) wywołującego po kolei uczniów do odpowiedzi. Wreszcie protokoły komunikacyjne można klasyfikować ze względu na ich możliwości w zakresie przepływu danych.

Komunikacja pełnodupleksowa i półdupleksowa Przyjrzyjmy się różnicom między komunikacją pełnodupleksową i półdupleksową:
 Pełny dupleks. Umożliwia jednoczesną komunikację w obu kierunkach. Wyobraź sobie dwupasmową drogę, po której samochody mogą poruszać się w obu kierunkach w tym samym czasie. Interfejsy UART i SPI obsługują komunikację w trybie pełnodupleksowym, co umożliwia bardzo wydajną wymianę danych w czasie rzeczywistym.

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

192 Wydajne systemy wbudowane w języku C

 Półdupleks. W tym przypadku komunikacja może odbywać się w obu kierunkach, ale niejednocześnie — to jak jednokierunkowa droga, po której samochody jeżdżą na zmianę. Protokół I2C zazwyczaj działa w trybie półdupleksowym, co sprawdza się dobrze w jego zamierzonych zastosowaniach, ale może stanowić ograniczenie w scenariuszach wymagających szybkiej transmisji danych. Porównajmy teraz trzy popularne protokoły komunikacyjne używane we współczesnych systemach wbudowanych.
Porównanie interfejsów UART, SPI i I2C Zacznijmy od protokołu UART.
UART Oto kluczowe cechy interfejsu UART:

 Komunikacja asynchroniczna. UART nie wymaga sygnału zegarowego. Zamiast tego wykorzystuje bity startu i stopu do synchronizacji transmisji danych.
 Pełny dupleks. UART może jednocześnie wysyłać i odbierać dane, co przydaje się w wielu zastosowaniach wymagających komunikacji w czasie rzeczywistym.
 Prostota i niski koszt. Dzięki minimalnym wymaganiom sprzętowym UART jest łatwy w implementacji i ekonomiczny. Oto niektóre z zalet interfejsu UART:
 Łatwość użycia. Konfiguracja komunikacji UART jest prosta, przez co jest on popularny wśród początkujących i w prostych aplikacjach.
 Szerokie wsparcie. UART jest powszechnie obsługiwany przez większość mikrokontrolerów i urządzeń peryferyjnych.
 Niskie koszty dodatkowe. Brak sygnału zegarowego oznacza, że używanych jest mniej pinów, co zmniejsza złożoność układu. Ma on jednak również pewne wady:
 Ograniczona szybkość. UART jest zazwyczaj wolniejszy w porównaniu z SPI i I2C, więc nie nadaje się do szybkiej transmisji danych.
 Ograniczony zasięg. Podatność na zakłócenia przy dłuższych odległościach może ograniczać zasięg niezawodnej komunikacji.
 Tylko połączenia punkt-punkt. UART jest przeznaczony do bezpośredniej komunikacji między dwoma urządzeniami, co może być problemem, gdy potrzebna jest komunikacja między wieloma urządzeniami. Przejdźmy teraz do omówienia interfejsu SPI.

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Rozdział 10  Protokół uniwersalnego asynchronicznego odbiornika-nadajnika (UART) 193

SPI Oto kluczowe cechy interfejsu SPI:
 Komunikacja synchroniczna. SPI wykorzystuje sygnał zegara wraz z liniami danych, co umożliwia synchroniczne przesyłanie informacji.
 Pełny dupleks. Protokół umożliwia jednoczesne wysyłanie i odbieranie danych.
 Architektura nadrzędny-podrzędny. Jedno urządzenie nadrzędne (ang. master) kontroluje wiele urządzeń podrzędnych (ang. slave), przy czym każde z nich ma osobną linię. Oto niektóre z jego zalet:
 Duża szybkość. SPI umożliwia szybki transfer danych, więc nadaje się idealnie do zastosowań wymagających szybkiej komunikacji.
 Wszechstronność. SPI pozwala na podłączenie wielu urządzeń o różnych konfiguracjach, zapewniając elastyczność w projektowaniu. Jednak ma on również pewne wady:
 Większa liczba pinów. Każde urządzenie podrzędne wymaga osobnej linii wyboru, co może znacznie zwiększyć liczbę potrzebnych pinów.
 Brak standardowego potwierdzenia. W przeciwieństwie do I2C — SPI nie ma wbudowanego mechanizmu potwierdzania, co może utrudniać wykrywanie błędów.
 Ograniczona możliwość pracy w trybie z wieloma urządzeniami

nadrzędnymi. SPI nie jest zaprojektowany do systemów z wieloma urządzeniami nadrzędnymi, co może być ograniczeniem w niektórych scenariuszach. Ostatnim popularnym protokołem komunikacyjnym, który tu omówimy, jest I2C.
I2C Oto kluczowe cechy interfejsu I2C:

 Komunikacja synchroniczna. I2C wykorzystuje sygnał zegarowy do synchronicznej transmisji danych.
 Obsługa wielu urządzeń nadrzędnych. Kilka urządzeń master może współdzielić tę samą magistralę, co jest przydatne w bardziej złożonych systemach.
 Interfejs dwuprzewodowy. I2C wymaga tylko dwóch linii (SDA i SCL), minimalizując liczbę potrzebnych pinów. Oto niektóre z jego zalet:
 Proste połączenia. Dwuprzewodowy interfejs zmniejsza złożoność i liczbę wymaganych pinów.
 Obsługa wielu urządzeń. I2C łatwo łączy wiele urządzeń na tej samej magistrali, każde z unikatowym adresem.

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

194 Wydajne systemy wbudowane w języku C

 Wbudowane adresowanie. I2C ma wbudowany mechanizm adresowania, co ułatwia komunikację z wieloma urządzeniami. Ma jednak również pewne wady:
 Niższa szybkość. I2C jest zazwyczaj wolniejszy niż SPI, co może być ograniczeniem w zastosowaniach wymagających dużej szybkości.
 Złożony protokół. Protokół jest bardziej skomplikowany niż UART i SPI, więc wymaga bardziej zaawansowanej obsługi przesyłania danych i adresowania.
 Podatność na zakłócenia. Podobnie jak UART, przy większych odległościach I2C może być podatny na zakłócenia, co potencjalnie wpływa na niezawodność komunikacji. Wybór odpowiedniego protokołu komunikacyjnego zależy od konkretnych potrzeb Twojej aplikacji. Jeśli potrzebujesz prostej, nieskomplikowanej komunikacji i nie prze-szkadza Ci mniejsza prędkość, UART jest świetnym wyborem. Do zastosowań wyma-gających dużej szybkości i komunikacji pełnodupleksowej idealnie nadaje się SPI, zwłaszcza jeśli dysponujesz większą liczbą wolnych pinów. Gdy potrzebujesz połączyć wiele urządzeń z użyciem jak najmniejszej liczby przewodów i masz złożoną konfigu-rację komunikacyjną, najlepszym rozwiązaniem będzie I2C. Aby lepiej zrozumieć, kiedy wybrać który protokół, przyjrzyjmy się kilku typowym zastosowaniom.

Typowe zastosowania protokołów UART, SPI i I2C Podczas projektowania systemów wbudowanych wybór odpowiedniego protokołu ko-munikacyjnego ma kluczowe znaczenie dla zapewnienia wydajnej i niezawodnej wy-miany danych. UART, SPI i I2C mają swoje unikatowe zalety, co sprawia, że nadają się do różnych zastosowań. Przyjrzyjmy się kilku praktycznym zastosowaniom i studiom przypadków użycia każdego z tych protokołów.
UART Oto kilka typowych zastosowań protokołu UART:

 Komunikacja szeregowa z komputerami. Interfejsu UART często używa się do komunikacji szeregowej między mikrokontrolerem a komputerem, szczególnie w celu debugowania, aktualizacji oprogramowania i rejestrowania danych.
 Moduły GPS. Interfejsu UART można użyć do przesyłania danych o lokalizacji z modułu GPS do mikrokontrolera.
 Moduły Bluetooth. UART umożliwia bezprzewodową komunikację z urządzeniami przez Bluetooth. Przykłady te reprezentują najpowszechniejsze zastosowania UART, ale protokół ten jest wszechstronny i może być używany w wielu innych scenariuszach wymagających prostej komunikacji szeregowej.

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Rozdział 10  Protokół uniwersalnego asynchronicznego odbiornika-nadajnika (UART) 195

Studium przypadku — integracja modułu GPS
w autonomicznym dronie

Wyobraź sobie, że projektujesz autonomicznego drona, który wymaga precyzyjnej
nawigacji do wykonywania zadań, takich jak pomiary i mapowanie terenu. Integra-
cja modułu GPS z użyciem UART może dostarczyć danych o lokalizacji niezbędnych
do nawigacji.

Konfiguracja. Podłącz pin nadawczy (TX) modułu GPS do pinu odbiorczego (RX)
mikrokontrolera i odwrotnie. Ustaw prędkość transmisji tak, aby odpowiadała wyj-
ściu modułu GPS.

Działanie. Moduł GPS nieustannie wysyła zdania NMEA (ciągi tekstowe) zawierające
dane o położeniu. Mikrokontroler odczytuje te ciągi przez interfejs UART, analizuje
je i wykorzystuje zawarte w nich informacje do precyzyjnego sterowania dronem.

Zalety. Prostota interfejsu UART i jego uniwersalna kompatybilność sprawiają, że
integracja modułu GPS jest stosunkowo łatwa. Zapewnia to niezawodny i ciągły
przepływ danych bez konieczności skomplikowanej konfiguracji.

 Spójrzmy teraz na interfejs SPI.
SPI Oto kilka typowych zastosowań protokołu SPI:

 Szybki transfer danych. Idealnie nadaje się do zastosowań, takich jak obsługa kart pamięci, przetworników analogowo-cyfrowych (ADC), przetworników
cyfrowo-analogowych (DAC) i wyświetlaczy.

 Moduły wyświetlaczy. Interfejsu SPI można używać do komunikacji z wyświetlaczami o wysokiej rozdzielczości wymagającymi szybkiego odświeżania.
 Czujniki i siłowniki. SPI radzi sobie z odczytem danych o wysokiej częstotliwości z różnych czujników. Podobnie jak w przypadku UART, przykłady te pokazują typowe zastosowania SPI, ale wysoka szybkość transmisji sprawia, że protokół ten nadaje się do szerokiej gamy in-nych zastosowań wymagających szybkiego przesyłania danych.
Studium przypadku — rejestrowanie danych
na karcie SD w urządzeniach przemysłowych

Rozważmy przemysłowy system monitorowania, który zapisuje dane z różnych
czujników na karcie SD do celów długoterminowej analizy. SPI jest idealnym proto-
kołem do szybkiego przesyłania takich danych.

Konfiguracja. Podłącz mikrokontroler do karty SD za pomocą pinów SPI (MISO, MOSI,
SCLK i CS). Zainicjuj magistralę SPI i skonfiguruj kartę SD.

Działanie. Mikrokontroler zbiera dane z czujników (np. temperatury, ciśnienia i wi-
bracji) i zapisuje je na karcie SD w czasie rzeczywistym.

Zalety. Szybka transmisja danych przez SPI zapewnia, że duże ilości informacji są
rejestrowane szybko i efektywnie, co zapobiega utracie danych i gwarantuje do-
kładne monitorowanie.

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

196 Wydajne systemy wbudowane w języku C

Wykorzystanie SPI w tym scenariuszu pozwala systemowi przemysłowemu na precy-zyjne rejestrowanie kluczowych parametrów, co ma kluczowe znaczenie dla konser-wacji prewencyjnej i efektywności operacyjnej. Na koniec omówimy I2C.
I2C Rozważmy dwa typowe zastosowania magistrali I2C:

 Integracja wielu czujników. Polega na podłączeniu kilku czujników o różnych adresach do tej samej magistrali I2C.
 Rozszerzanie układów peryferyjnych. Polega na dodawaniu dodatkowych pinów GPIO do mikrokontrolera za pomocą ekspanderów I2C. To tylko dwa przykłady zastosowań I2C. Zdolność tego interfejsu do obsługi wielu urzą-dzeń na jednej magistrali sprawia, że jest on doskonałym wyborem w wielu innych sce-nariuszach, w których ważna jest skalowalność.
Studium przypadku — system monitorowania
środowiskowego w inteligentnym rolnictwie

Załóżmy, że opracowujesz inteligentny system rolniczy wykorzystujący wiele czujni-
ków (temperatury, wilgotności powietrza i gleby) do optymalizacji warunków uprawy.
I2C idealnie nadaje się do takiej integracji wielu czujników.

Konfiguracja. Podłącz wszystkie czujniki do magistrali I2C (linie SDA i SCL). Przypisz
każdemu czujnikowi unikatowy adres.

Działanie. Mikrokontroler odpytuje kolejno każdy czujnik, zbiera dane i przetwarza
je, aby dostarczyć informacje i sterować systemami nawadniania, wentylacji i oświe-
tlenia.

Zalety. Możliwość obsługi wielu urządzeń na tej samej magistrali przy użyciu tylko
dwóch linii upraszcza okablowanie, obniża koszty i oszczędza piny GPIO, co czyni
I2C efektywnym rozwiązaniem dla złożonych sieci czujników.

 W kolejnym podrozdziale skupimy się wyłącznie na protokole UART. Protokoły I2C i SPI omówimy w następnych rozdziałach.
Przegląd protokołu UART Jednym z najbardziej podstawowych i powszechnie stosowanych protokołów jest UART. Niezależnie od tego, czy debugujesz sprzęt, czy chcesz zapewnić komunikację między mikrokontrolerem a urządzeniami peryferyjnymi, zrozumienie działania UART ma klu-czowe znaczenie. Zbadajmy dokładniej, jak działa ten protokół.

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Rozdział 10  Protokół uniwersalnego asynchronicznego odbiornika-nadajnika (UART) 197

Czym jest UART? UART to sprzętowy protokół komunikacyjny, który wykorzystuje asynchroniczną transmi-sję szeregową, umożliwiając regulację prędkości przesyłania danych. „Asynchronicz-ność” UART oznacza, że nie wymaga on sygnału zegarowego do synchronizacji przesy-łania bitów między nadajnikiem a odbiornikiem. Zamiast tego oba urządzenia muszą uzgodnić konkretną prędkość w bodach (ang. baud rate), nazywaną też prędkością mo-dulacji, która określa szybkość wymiany danych. Przyjrzyjmy się teraz bliżej temu in-terfejsowi.
Interfejs Interfejs UART wykorzystuje do komunikacji dwa przewody: TX i RX. Aby nawiązać połączenie między dwoma urządzeniami, wystarczy podłączyć pin TX pierwszego urządzenia do pinu RX drugiego urządzenia, a pin RX pierwszego urządzenia do pinu TX drugiego urządzenia. Dodatkowo trzeba połączyć piny masy obu urządzeń, aby za-pewnić wspólny punkt odniesienia elektrycznego. Połączenie między dwoma urządze-niami UART pokazano na rysunku 10.1.

Rysunek 10.1. Interfejs UART

Jak działa UART? W transmisji UART dane są przesyłane w ramkach zawierających bit startu, bity da-
nych, opcjonalny bit parzystości oraz bity stopu (rysunek 10.2).

Rysunek 10.2. Pakiet danych UART Oto szczegółowy opis tego procesu:

1. Bit startu. W stanie spoczynku linia transmisyjna jest utrzymywana w stanie wysokim. Aby rozpocząć przesyłanie danych, nadajnik UART obniża stan linii na jeden cykl zegara. Sygnalizuje to początek nowej ramki danych.
Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

198 Wydajne systemy wbudowane w języku C

2. Ramka danych. Po bicie startu następuje ramka danych, która zwykle składa się z 5 do 9 bitów i jest wysyłana od najmniej znaczącego bitu (ang. least significant
bit, LSB) do najbardziej znaczącego bitu (ang. most significant bit, MSB).

3. Bit parzystości. Jest to opcjonalny bit używany do wykrywania błędów. Wskazuje on, czy liczba ustawionych bitów (jedynek) w danych jest parzysta czy nieparzysta.
4. Bity stopu. Jeden lub dwa bity oznaczające koniec pakietu danych. Podczas transmisji bitów stopu linia jest utrzymywana w stanie wysokim. Przyjrzyjmy się bliżej bitom startu, stopu i parzystości.

Bity startu, stopu i parzystości Te bity stanowią podstawę protokołu UART, umożliwiając urządzeniom synchroniza-cję i weryfikację integralności przesyłanych danych.
Bit startu Bit startu to początkowy sygnał oznaczający rozpoczęcie ramki danych w komunikacji UART. Gdy urządzenie nadające jest bezczynne, linia danych utrzymywana jest na wy-sokim poziomie napięcia (stan logiczny 1). Aby zasygnalizować początek transmisji, nadajnik UART obniża napięcie na linii do poziomu niskiego (stan logiczny 0) na czas trwania 1 bitu. To przejście ze stanu wysokiego do niskiego informuje urządzenie od-bierające o nowym nadchodzącym pakiecie danych, pozwalając mu zsynchronizować się i przygotować do odbioru.
Bit stopu Po przesłaniu bitów danych i opcjonalnego bitu parzystości, bit stopu sygnalizuje ko-niec ramki danych. Nadajnik przywraca linię danych do wysokiego poziomu napięcia (stan logiczny 1) na czas trwania 1 bitu lub 2 bitów, w zależności od konfiguracji. Bit stopu zapewnia odbiornikowi czas na przetworzenie ostatniego bitu danych i przygo-towanie się na kolejny bit startu. W istocie bit stopu działa jak bufor, zapewniając wy-raźne rozgraniczenie między kolejnymi ramkami danych i pomagając w utrzymaniu synchronizacji między komunikującymi się urządzeniami.
Bit parzystości Bit parzystości to opcjonalna funkcja używana do podstawowej kontroli błędów w ko-munikacji UART. Zapewnia prostą metodę wykrywania błędów, które mogły wystąpić podczas transmisji danych. Bit parzystości może być skonfigurowany jako parzysty lub nieparzysty:

 Parzystość parzysta. Bit parzystości jest ustawiany na 0, jeśli liczba jedynek w ramce danych jest parzysta, i na 1, jeśli liczba jedynek jest nieparzysta. Oznacza to, że łączna liczba jedynek (włącznie z bitem parzystości) jest zawsze parzysta.
 Parzystość nieparzysta. Bit parzystości jest ustawiany na 0, jeśli liczba jedynek w ramce danych jest nieparzysta, i na 1, jeśli liczba jedynek jest parzysta. Oznacza to, że całkowita liczba jedynek (włącznie z bitem parzystości) jest zawsze nieparzysta.

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Rozdział 10  Protokół uniwersalnego asynchronicznego odbiornika-nadajnika (UART) 199

Gdy odbiornik otrzymuje ramkę danych, sprawdza bit parzystości w odniesieniu do odebranych bitów danych. Jeśli występuje niezgodność, oznacza to, że podczas transmisji wystąpił błąd. Chociaż parzystość nie koryguje błędów, pomaga w ich identyfikacji, umożliwiając w razie potrzeby ponowne przesłanie danych. Bity startu, stopu i parzystości są kluczowymi elementami komunikacji UART. Każdy z nich odgrywa istotną rolę w zapewnieniu integralności danych i synchronizacji. Bit startu sygnalizuje początek transmisji, bit stopu oznacza jej koniec, a bit parzystości zapew-nia podstawowy mechanizm kontroli błędów. Razem tworzą solidne ramy dla nieza-wodnej i efektywnej komunikacji szeregowej między urządzeniami. Zanim zakończymy ten podrozdział, przyjrzyjmy się jednostce prędkości stosowanej w komunikacji UART.
Prędkość w bodach — szybkość komunikacji
w systemach wbudowanych W świecie systemów wbudowanych często spotyka się pojęcie prędkości w bodach (ang. baud rate). Niezależnie od tego, czy debugujesz mikrokontroler, konfigurujesz łącze komunikacji szeregowej czy pracujesz z różnymi urządzeniami peryferyjnymi, zrozu-mienie prędkości w bodach ma kluczowe znaczenie. Czym jednak właściwie jest pręd-kość w bodach i dlaczego jest tak ważna? Przyjrzyjmy się temu bliżej.
Czym jest prędkość w bodach? Prędkość w bodach to zasadniczo szybkość, z jaką dane są przesyłane przez kanał ko-munikacyjny. Mierzy się ją w bitach na sekundę (b/s). Można to porównać do ogra-niczenia prędkości na autostradzie: im wyższa prędkość modulacji, tym więcej danych może przepłynąć przez kanał komunikacyjny w danym czasie. Na przykład, prędkość 9600 bodów oznacza, że w ciągu sekundy przesyłanych jest 9600
bitów danych. Innymi słowy, określa ona tempo, w jakim pakiety danych są wysyłane i odbierane. Warto jednak rozróżnić prędkość w bodach od prędkości w bitach (ang. bit rate). Podczas gdy prędkość w bodach odnosi się do liczby zmian sygnału na sekundę, prędkość w bi-tach to liczba bitów przesyłanych na sekundę. W prostych systemach każda zmiana
sygnału może reprezentować jeden bit, co sprawia, że prędkość w bodach i prędkość w bi-tach są takie same. W bardziej złożonych systemach każda zmiana sygnału może repre-zentować wiele bitów, przez co prędkość w bitach jest wyższa od prędkości w bodach.
Dlaczego prędkość transmisji jest ważna? Wyobraź sobie, że próbujesz rozmawiać z kimś, kto mówi w zupełnie innym tempie niż Ty. Byłoby to dezorientujące i nieefektywne, prawda? Ta sama zasada dotyczy urzą-dzeń elektronicznych komunikujących się ze sobą. Zarówno urządzenie nadające, jak i odbierające muszą uzgodnić wspólną prędkość w bodach, aby poprawnie się komu-nikować. Jeśli tego nie zrobią, dane mogą zostać utracone lub zniekształcone, co pro-wadzi do błędów w komunikacji.

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

200 Wydajne systemy wbudowane w języku C

Aby komunikacja przebiegła pomyślnie, nadajnik i odbiornik muszą mieć ustawioną tę samą prędkość transmisji, co pozwala im na osiągnięcie synchronizacji. Jeśli jedno urządzenie jest ustawione na 9600 b/s, a drugie na 115 200 b/s, komunikacja się nie powiedzie, podobnie jak rozmowa nie udaje się, gdy jedna osoba mówi zbyt szybko lub zbyt wolno, by druga mogła ją zrozumieć. Istnieją standardowe prędkości transmisji, które są powszechnie stosowane w komu-nikacji szeregowej. Oto kilka z nich:
 300 bodów. Bardzo niska prędkość, często używana do komunikacji na duże odległości, kiedy przepustowość jest ograniczona.
 9600 bodów. Powszechnie stosowana domyślna prędkość wielu urządzeń, w tym mikrokontrolerów.
 19 200 bodów. Większa prędkość, często używana w aplikacjach wymagających intensywniejszej wymiany danych.
 115 200 bodów. Komunikacja wysokiej prędkości, popularna w zastosowaniach wymagających szybkiego przesyłu danych. Na tym zakończymy przegląd protokołu UART. W następnym punkcie omówimy układ peryferyjny UART w mikrokontrolerze STM32F4.

Układ peryferyjny UART w mikrokontrolerze
STM32F4 Mikrokontrolery STM32 często zawierają kilka układów peryferyjnych UART, choć ich liczba zależy od konkretnego modelu. Mikrokontroler STM32F411 jest wyposażony w trzy układy peryferyjne UART:

 USART1,
 USART2,
 USART6.
USART a UART

W dokumentacji STM32 układ peryferyjny UART jest nazywany USART, co oznacza
uniwersalny synchroniczny/asynchroniczny nadajnik-odbiornik. Nazwa ta odzwier-
ciedla podwójną funkcjonalność tego układu:

Tryb asynchroniczny (UART). W tym trybie USART działa jako tradycyjny UART.
Nadaje i odbiera dane bez sygnału zegarowego, co jest typowe dla standardowej
komunikacji szeregowej.

Tryb synchroniczny (USART). W tym trybie USART może również działać z syn-
chronicznym sygnałem zegarowym, umożliwiając komunikację z urządzeniami
wymagającymi linii zegarowej oprócz linii danych.

 Przeanalizujmy teraz kluczowe rejestry tego układu peryferyjnego, zaczynając od re-jestru stanu USART.
Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Rozdział 10  Protokół uniwersalnego asynchronicznego odbiornika-nadajnika (UART) 201

Rejestr stanu USART (USART_SR)
USART_SR jest jednym z głównych rejestrów używanych do monitorowania stanu inter-fejsu UART. Dostarcza on informacji w czasie rzeczywistym o różnych flagach opera-cyjnych i błędach. Przyjrzyjmy się kluczowym bitom tego rejestru:

 Rejestr pustych danych nadawczych (TXE). Ten bit jest ustawiany, gdy rejestr danych jest pusty i gotowy na przyjęcie nowych danych do wysłania. Oznacza to, że nadajnik może wysłać więcej danych.
 Rejestr niepustych danych odbiorczych (RXNE). Ten bit wskazuje, że rejestr danych zawiera dane, które nie zostały jeszcze odczytane. Sygnalizuje to, że są dostępne nowe dane do przetworzenia.
 Transmisja zakończona (TC). Ten bit jest ustawiany po zakończeniu ostatniej transmisji, włącznie ze wszystkimi bitami stopu. Oznacza to, że dane zostały w pełni wysłane.
 Błąd przepełnienia (ORE). Ten bit wskazuje, że dane zostały utracone, ponieważ rejestr danych nie został odczytany przed nadejściem nowych danych. Sygnalizuje to wystąpienie błędu. Szczegółowe informacje na temat tego rejestru można znaleźć na stronie 547 podręcz-nika referencyjnego STM32F411 (RM0383). Kolejnym ważnym rejestrem jest rejestr

danych USART (USART_DR).
Rejestr danych USART (USART_DR) Rejestr USART_DR służy zarówno do wysyłania, jak i odbierania danych. Odgrywa on rolę głównego interfejsu do wymiany informacji przez moduł UART. Oto kluczowe funkcje tego rejestru:

 Transmisja danych. Zapisanie bajta do rejestru USART_DR powoduje wysłanie danych przez linię TX. Moduł UART automatycznie zajmuje się konwersją i szeregową transmisją danych.
 Odbieranie danych. Odczyt z rejestru USART_DR pobiera dane odebrane przez linię RX. Należy to robić niezwłocznie, aby uniknąć nadpisania danych. Następnie mamy rejestr prędkości transmisji USART (USART_BRR).

Rejestr prędkości transmisji USART (USART_BRR) Rejestr USART_BRR służy do ustawiania prędkości transmisji (w bodach) w komuni-kacji UART, co ma kluczowe znaczenie dla synchronizacji przesyłania danych między urządzeniami. Rejestr ten składa się z dwóch pól:
 Mantysa. Część całkowita dzielnika określającego prędkość transmisji.
 Ułamek. Część ułamkowa dzielnika, która pozwala na dokładne dostrojenie prędkości transmisji.

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

202 Wydajne systemy wbudowane w języku C

Ostatnim rejestrem, któremu się przyjrzymy, jest 1. rejestr sterujący USART (USART_CR1).
1. rejestr sterujący USART 1 (USART_CR1) Rejestr USART_CR1 to kompleksowy rejestr sterujący, który umożliwia konfigurację róż-nych funkcji interfejsu UART. Przyjrzyjmy się kluczowym bitom tego rejestru:

 Włączenie USART (UE). Ten bit włącza lub wyłącza moduł UART. Trzeba go ustawić w celu aktywowania komunikacji UART.
 Długość słowa (M). Ten bit konfiguruje długość słowa, pozwalając wybrać 8-bitowe lub 9-bitowe ramki danych.
 Włączenie kontroli parzystości (PCE). Ten bit włącza sprawdzanie parzystości w celu wykrywania błędów.
 Wybór parzystości (PS). Ten bit wybiera parzystość parzystą lub nieparzystą.
 Włączenie nadajnika (TE). Ten bit włącza nadajnik, umożliwiając wysyłanie danych.
 Włączenie odbiornika (RE). Ten bit włącza odbiornik, umożliwiając odbieranie danych. Teraz, kiedy znasz już te rejestry, jesteśmy gotowi do napisania sterownika UART. Zajmiemy się tym w następnym podrozdziale.

Tworzenie sterownika UART W tym rozdziale wykorzystasz wszystko, czego nauczyłeś się o układzie peryferyjnym UART, aby napisać sterownik do transmisji danych za pośrednictwem układu USART2. Zacznijmy od zidentyfikowania pinów GPIO podłączonych do układu UART2. W tym celu należy zajrzeć do tabeli na stronie 39 karty katalogowej STM32F411RE. Tabela ta za-wiera listę wszystkich pinów GPIO mikrokontrolera wraz z ich opisami i dodatkowymi funkcjami. Jak pokazano na rysunku 10.3, część tej tabeli wskazuje, że pin PA1 ma funk-cję alternatywną oznaczoną jako USART2_TX.

Rysunek 10.3. Pin USART2_TX Aby użyć pinu PA2 jako linii USART2_TX, musimy skonfigurować go do trybu funkcji al-ternatywnej w rejestrze GPIOA_MODER, a następnie określić numer funkcji alternatywnej

USART2_TX w rejestrze GPIOA_AFRL. Mikrokontroler STM32F4 pozwala wybrać jedną spo-śród 16 różnych funkcji alternatywnych, ponumerowanych od AF00 do AF15. Funkcje
Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Rozdział 10  Protokół uniwersalnego asynchronicznego odbiornika-nadajnika (UART) 203

i ich numery są opisane w tabeli funkcji alternatywnych, którą można znaleźć na stro-nie 47 karty katalogowej. Jak pokazano na rysunku 10.4, zaczerpniętym z karty katalo-gowej, skonfigurowanie pinu PA2 jako AF07 ustawi go w tryb linii USART2_TX.

Rysunek 10.4. Funkcja alternatywna PA2 Teraz mamy wszystkie informacje potrzebne do napisania sterownika nadajnika UART2. Utwórz kopię poprzedniego projektu i zmień jej nazwę na UART. Następnie utwórz nowy plik o nazwie uart.c w folderze Src oraz kolejny plik o nazwie uart.h w folderze Inc. W pliku uart.c wpisz następujący kod:

#include <stdint.h>
#include "uart.h"

#define GPIOAEN (1U<<0)
#define UART2EN (1U<<17)

#define DBG_UART_BAUDRATE 115200
#define SYS_FREQ 16000000
#define APB1_CLK SYS_FREQ
#define CR1_TE (1U<<3)
#define CR1_UE (1U<<13)
#define SR_TXE (1U<<7)

static void uart_set_baudrate(uint32_t periph_clk,uint32_t baudrate);
static void uart_write(int ch);

int __io_putchar(int ch)
{
 uart_write(ch);
 return ch;
}

void uart_init(void)
{
 /* Włączanie dostępu do zegara dla GPIOA */
 RCC->AHB1ENR |= GPIOAEN;

 /* Ustawianie trybu PA2 na tryb funkcji alternatywnej */
 GPIOA->MODER &=~(1U<<4);
 GPIOA->MODER |=(1U<<5);

 /* Ustawianie typu funkcji alternatywnej na AF7(UART2_TX) */
 GPIOA->AFR[0] |=(1U<<8);

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

204 Wydajne systemy wbudowane w języku C

 GPIOA->AFR[0] |=(1U<<9);
 GPIOA->AFR[0] |=(1U<<10);
 GPIOA->AFR[0] &=~(1U<<11);

 /* Włączanie dostępu do zegara dla UART2 */
 RCC->APB1ENR |= UART2EN;

 /* Konfigurowanie prędkości transmisji UART */
 uart_set_baudrate(APB1_CLK,DBG_UART_BAUDRATE);

 /* Konfigurowanie kierunku transmisji */
 USART2->CR1 = CR1_TE;

 /* Włączanie modułu UART */
 USART2->CR1 |= CR1_UE;
}

static void uart_write(int ch)
{
 /* Upewniamy się, że rejestr transmisji jest pusty */
 while(!(USART2->SR & SR_TXE)){}

 /* Zapisujemy dane do rejestru transmisji */
 USART2->DR =(ch & 0xFF);
}

static uint16_t compute_uart_bd(uint32_t periph_clk,uint32_t baudrate)
{
 return((periph_clk + (baudrate/2U))/baudrate);
}

static void uart_set_baudrate(uint32_t periph_clk,uint32_t baudrate)
{
 USART2->BRR = compute_uart_bd(periph_clk,baudrate);
} Przeanalizujmy ten kod. Najpierw dołączamy pliki nagłówkowe i definiujemy makra:
#include <stdint.h>
#include "uart.h"

#define GPIOAEN (1U<<0)
#define UART2EN (1U<<17)

#define DBG_UART_BAUDRATE 115200
#define SYS_FREQ 16000000
#define APB1_CLK SYS_FREQ
#define CR1_TE (1U<<3)
#define CR1_UE (1U<<13)
#define SR_TXE (1U<<7)

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Rozdział 10  Protokół uniwersalnego asynchronicznego odbiornika-nadajnika (UART) 205

Makr tych użyjemy do następujących celów:
 GPIOAEN. To makro włącza zegar dla GPIOA poprzez ustawienie bitu 0. W rejestrze AHB1ENR.
 UART2EN. To makro włącza zegar dla UART2 poprzez ustawienie bitu 17. W rejestrze APB1ENR.
 DBG_UART_BAUDRATE. To makro definiuje prędkość transmisji dla komunikacji UART, ustawiając ją na 115 200 bodów.
 SYS_FREQ. To makro definiuje częstotliwość zegara systemowego, 16 MHz, która jest domyślną częstotliwością mikrokontrolera STM32F411 na płytce rozwojowej NUCLEO.
 APB1_CLK. To makro ustawia częstotliwość zegara dla urządzeń peryferyjnych na magistrali APB1 na wartość równą częstotliwości systemowej (16 MHz).
 CR1_TE. To makro włącza nadajnik przez ustawienie bitu 3. w rejestrze

USART_CR1.
 CR1_UE. To makro włącza moduł UART poprzez ustawienie bitu 13. w rejestrze

USART_CR1.
 SR_TXE. To makro reprezentuje bit TXE w rejestrze USART_SR. Następnie mamy funkcje pomocnicze do obliczania i ustawiania prędkości transmisji:
static uint16_t compute_uart_bd(uint32_t periph_clk, uint32_t baudrate)
{
 return ((periph_clk + (baudrate / 2U)) / baudrate);
} Ta funkcja pomocnicza oblicza dzielnik dla prędkości transmisji. Wykorzystuje często-tliwość zegara układów peryferyjnych oraz żądaną prędkość transmisji do wyliczenia wartości, która zostanie wpisana do rejestru prędkości transmisji (BRR).
static void uart_set_baudrate(uint32_t periph_clk, uint32_t baudrate)
{
 USART2->BRR = compute_uart_bd(periph_clk, baudrate);
} Ta funkcja ustawia szybkość transmisji dla UART2 poprzez zapisanie obliczonego dzielnika do rejestru BRR. Przyjrzyjmy się teraz funkcji inicjalizacyjnej.
RCC->AHB1ENR |= GPIOAEN; Powyższy wiersz włącza zegar dla GPIOA poprzez ustawienie odpowiedniego bitu w rejestrze włączania zegara dla urządzeń peryferyjnych AHB1.
GPIOA->MODER &= ~(1U << 4);
GPIOA->MODER |= (1U << 5); Powyższe wiersze konfigurują pin PA2 do pracy w trybie funkcji alternatywnej, co jest niezbędne do obsługi interfejsu UART.
GPIOA->AFR[0] |= (1U << 8);
GPIOA->AFR[0] |= (1U << 9);
GPIOA->AFR[0] |= (1U << 10);
GPIOA->AFR[0] &= ~(1U << 11);

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

206 Wydajne systemy wbudowane w języku C

Powyższe wiersze konfigurują pin PA2 w tryb funkcji alternatywnej (AF7), który odpo-wiada funkcji UART2_TX.
RCC->APB1ENR |= UART2EN; Powyższy wiersz włącza zegar dla UART2 poprzez ustawienie odpowiedniego bitu w rejestrze włączającym zegar dla urządzeń peryferyjnych na magistrali APB1.
uart_set_baudrate(APB1_CLK, DBG_UART_BAUDRATE); To wywołanie funkcji ustawia prędkość transmisji dla UART2 za pomocą funkcji

uart_set_baudrate().
USART2->CR1 = CR1_TE; Powyższy wiersz konfiguruje UART2 do transmisji poprzez ustawienie bitu włączają-cego nadajnik w rejestrze sterującym.
USART2->CR1 |= CR1_UE; Powyższy wiersz włącza moduł UART2 poprzez ustawienie bitu włączenia UART w re-jestrze sterującym. Następnie mamy funkcję do zapisywania danych do UART:
static void uart_write(int ch)
{
 /* Upewniamy się, że rejestr transmisji jest pusty */
 while(!(USART2->SR & SR_TXE)){}

 /* Zapisujemy dane do rejestru transmisji */
 USART2->DR =(ch & 0xFF);
} Przeanalizujmy ją:
while (!(USART2->SR & SR_TXE)) {} Ta pętla gwarantuje, że rejestr danych wyjściowych będzie pusty, zanim zapiszemy do niego dane.
USART2->DR = (ch & 0xFF); Powyższy wiersz zapisuje znak do rejestru danych w celu transmisji. Mamy też użyteczną funkcję, która pozwala przekierować wyjście funkcji printf do na-szego nadajnika UART:
int __io_putchar(int ch)
{
 uart_write(ch);
 return ch;
} Funkcja ta wywołuje uart_write() w celu wysłania znaku, a następnie zwraca ten sam znak. Po wysłaniu znaku __io_putchar zwraca przekazany znak ch. Zwracanie znaku jest standardową praktyką, pozwalającą funkcji zachować zgodność z typową sygnaturą funkcji putchar, która zwraca zapisany znak jako zmienną typu int.

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Rozdział 10  Protokół uniwersalnego asynchronicznego odbiornika-nadajnika (UART) 207

Naszym kolejnym zadaniem jest uzupełnienie pliku uart.h. Oto kod:
#ifndef _UART_H
#define _UART_H
#include "stm32f4xx.h"
void uart_init(void);
#endif Deklarujemy tu po prostu funkcję inicjalizacji UART zaimplementowaną w pliku uart.c, umożliwiając wywołanie jej z innych plików. Teraz możemy przetestować nasz sterow-nik w pliku main.c. Zaktualizuj plik main.c w następujący sposób:
#include <stdio.h>
#include "uart.h"
int main(void)
{
 /* Inicjalizacja UART */
 uart_init();
 while(1)
 {
 printf("STM32 - witamy...\r\n");
 }
} Funkcja main po prostu inicjalizuje interfejs UART2, a następnie w nieskończonej pętli wypisuje zdanie STM32 - witamy... Przetestujmy nasz projekt. W tym celu musisz zainstalować na komputerze program, który będzie wyświetlał dane odbierane przez port szeregowy komputera. W tym ukła-dzie nasza płytka rozwojowa działa jako nadajnik, a komputer jako odbiornik.
1. Zainstaluj program terminala szeregowego:
 Wybierz program terminala szeregowego odpowiedni dla Twojego systemu operacyjnego. Dostępne opcje to między innymi Realterm, Tera Term,

Hercules i Cool Term.
 Jeśli korzystasz z systemu Windows, polecam Realterm. Możesz go pobrać ze strony SourceForge: https://sourceforge.net/projects/realterm/.
 Postępuj zgodnie ze wskazówkami kreatora, aby zainstalować program.

2. Przygotuj się do zidentyfikowania portu szeregowego płytki rozwojowej:
I. Odłącz płytkę rozwojową od komputera.
II. Otwórz program Realterm i przejdź do karty Port.
III. Kliknij menu rozwijane Port; zobaczysz listę dostępnych portów. Ponieważ płytka rozwojowa jest obecnie odłączona, jej port nie pojawi się na liście. Zapamiętaj wyświetlone porty.

3. Zidentyfikuj port płytki rozwojowej:
I. Zamknij Realterm i podłącz płytkę rozwojową do komputera.
II. Ponownie otwórz Realterm i wróć do rozwijanego menu Port. Powinieneś teraz zobaczyć na liście nowy port, który odpowiada twojej płytce rozwojowej.

III. Wybierz ten nowo dodany port.
Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

208 Wydajne systemy wbudowane w języku C

4. Ustaw prędkość transmisji: Wybierz z rozwijanego menu opcję Baud i wybierz wartość 115200. Jest to prędkość transmisji, którą skonfigurowaliśmy w naszym sterowniku. Aby zmienić ustawienia, kliknij przycisk Change.
5. Zbuduj i uruchom projekt: Wróć do środowiska programistycznego, zbuduj projekt i wgraj oprogramowanie na mikrokontroler.
6. Przetestuj konfigurację:
 Wróć do programu Realterm i kliknij przycisk Open, aby rozpocząć komunikację.
 W oknie terminala powinieneś zobaczyć ciągle powtarzany komunikat

STM32 - witamy... Ustawienia programu Realterm pokazano na rysunku 10.5.

Rysunek 10.5. Ustawienia programu Realterm

Podsumowanie W tym rozdziale poznałeś protokół UART — prostą metodę komunikacji szeroko sto-sowaną w systemach wbudowanych. Rozpoczęliśmy od omówienia znaczenia proto-kołów komunikacyjnych w systemach wbudowanych, podkreślając, jak UART, wraz z SPI i I2C, umożliwiają komunikację między mikrokontrolerami a urządzeniami pery-feryjnymi.
Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Rozdział 10  Protokół uniwersalnego asynchronicznego odbiornika-nadajnika (UART) 209

Następnie przedstawiliśmy szczegółowy przegląd protokołu UART, omawiając jego za-sady działania, w tym sposób asynchronicznego przesyłania danych za pomocą bitów startu i stopu oraz rolę bitu parzystości w wykrywaniu błędów. Dowiedziałeś się rów-nież, jak konfiguruje się prędkość transmisji w bodach, aby zapewnić zsynchronizo-wany transfer danych między urządzeniami. Później zagłębiliśmy się w szczegóły dotyczące układu peryferyjnego UART w mikro-kontrolerach STM32, analizując kluczowe rejestry, takie jak rejestr statusu (USART_SR), rejestr danych (USART_DR), rejestr prędkości transmisji (USART_BRR) i 1. rejestr sterujący (USART_CR1). Zrozumienie tych rejestrów jest niezbędne do prawidłowej konfiguracji UART w mikrokontrolerach STM32. Na koniec wykorzystaliśmy teoretyczną wiedzę do utworzenia niskopoziomowego ste-rownika UART dla mikrokontrolera STM32F4. Obejmowało to: inicjalizację układu pe-ryferyjnego UART, ustawienie prędkości transmisji i implementację funkcji do przesyła-nia danych. Dowiedziałeś się również, jak przekierować wyjście funkcji printf do UART, co umożliwia łatwe debugowanie i rejestrowanie danych przez terminal szeregowy. W następnym rozdziale zajmiemy się przetwornikiem analogowo-cyfrowym (ang.
analog-to-digital converter, ADC).

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Skorowidz 373

Skorowidz

A ADC, Analog-to-Digital Converter, 54, 210 ADC_CR1, 218 ADC_CR2, 219 ADC_DR, 219 ADC_SQRx, 219 ADC_SR, 220 adres GPIOA MODER, 62 GPIOA ODR, 64 LMA, 97, 105 początkowy GPIOA, 56 RCC_AHB1ENR, 59 VMA, 97, 105 adresy bazowe GPIO, 142 RCC, 57, 142 ADXL345, 243 cechy akcelerometru, 244 funkcja pomiarowa, 244 podłączenie do płytki NUCLEO, 253 tworzenie sterownika, 248 zastosowania, 244 AHB, Advanced High-Performance Bus, 54 AHB1, Advanced High-Performance Bus 1, 58 AHB1 ENR, 58 akcelerometr ADXL345, 243 alias, 68 APB, Advanced Peripheral Bus, 54 Arduino, 48 asemblacja, 76 asembler, 42
B bezpośredni dostęp do pamięci, DMA, 331, 332 biblioteka HAL, 42 niższego poziomu, LL, 42

bit, 59 GPIOAEN, 59 parzystości, 198 startu, 198 stopu, 198 bity ustawianie, 60, 158, 160 zerowanie, 60, 158, 160 bramkowanie zasilania, 359 zegara, clock gating, 56, 359 budowanie oprogramowania, 74 etapy procesu, 75–77 system Make, 127 w środowisku IDE, 83
C CMSIS, Common Microcontroller Software Interface Standard, 140, 146 integrowanie plików, 151 komponenty, 147 komunikacja z mikrokontrolerami, 147 programowanie procesorów, 140 zasady kodowania, 148 CMSIS-Core, 147, 148 CMSIS-Driver, 147 CMSIS-DSP, 147 CMSIS-NN, 147 CMSIS-Pack, 148 CMSIS-RTOS, 147 CMSIS-SVD, 148 CPU, Central Processing Unit, 53
D debuger GDB, 25, 91 definiowanie rejestrów, 52, 66, 141 deklaracja (*(volatile unsigned int *), 67 dioda LED lokalizowanie połączenia, 47

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

374 Wydajne systemy wbudowane w języku C

DMA, 331, 332 cechy kontrolera, 332, 335 działanie, 332 rejestry, 339 schemat blokowy modułu, 337 testowanie projektu, 352, 356 tryby danych, 337 tryby transferu, 336 tworzenie sterownika, 341 w mikrokontrolerze STM32F4, 335 zastosowania, 333 DMA_SxCR, 339 DMA_SxM0AR, 340 DMA_SxM1AR, 340 DMA_SxNDTR, 340 DMA_SxPAR, 340 dokumentacja, 52 STMicroelectronics, 34 dokumenty, 36 dostęp do rejestrów, 145 dupleks, 191 DVFS, 358 dynamiczne skalowanie napięcia i częstotliwości, DVFS, 358 dyrektywa >region, 106 ALIGN, 107 AT, 108 ENTRY, 102 KEEP, 106 MEMORY, 101 PROVIDE, 107 SECTIONS, 102
E ENR, Enable Register, 44, 58 EXTI, 275, 369 kluczowe cechy, 283 tworzenie sterownika, 285 w STM32, 283 EXTI_FTSR, 285 EXTI_IMR, 285 EXTI_PR, 285 EXTI_RTSR, 285
F flagi ADC, 220 kompilatora, 78, 79 specyficzne dla architektury, 79, 80

format BCD, 310 ELF, 77 funkcja main, 69 funkcje alternatywne GPIO, 161, 163
G gęstość pamięci, 94 GNU Arm Embedded Toolchain, 25 instalacja, 27 GNU Compiler Collection, 25 GNU Debugger, 25 goldpiny, 49, 51 GPIO, General Purpose Input/Output, 42, 141, 156 konfigurowanie pinu, 42, 44, 45 konfigurowanie pinu ADC, 221 rejestr BSRR, 164 rejestry, 158 rejestry funkcji alternatywnych, 161 sterownik wejścia, 167 sterowniki, 164 GPIO PORTA, 52 GPIOx_AFRH, 161 GPIOx_AFRL, 161 GPIOx_BSRR, 158, 160 GPIOx_IDR, 158, 159 GPIOx_LCKR, 158 GPIOx_MODER, 61, 158 GPIOx_ODR, 64, 158, 159 GPIOx_OSPEEDR, 158 GPIOx_OTYPER, 158 GPIOx_PUPDR, 158
H HAL, Hardware Abstraction Layer, 42
I I2C, Inter-Integrated Circuit, 54, 254 cechy interfejsu, 193, 255 działanie magistrali, 256 interfejs, 255 kluczowe rejestry, 260 tworzenie sterownika, 262 zastosowania magistrali, 196 I2C_CCR, 261 I2C_CR1, 260 I2C_CR2, 261 I2C_DR, 262

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Skorowidz 375

I2C_TRISE, 262 IAR Embedded Workbench, 24 IDE, Integrated Development Environment, 23 ikona budowania, 71 Build, 40 Debug, 40 New, 40 uruchamiania, 71 instalacja GNU Arm Embedded Toolchain, 27 OpenOCD, 28 STM32CubeIDE, 25 systemu Make, 132 instrukcja użytkownika NUCLEO-F411, 48 instrukcje, 34 interfejs komunikacji szeregowej I2C, 54, 193, 255 SPI, 54, 193, 230 UART, 53, 192, 197 IWDG, Independent Watchdog,
Patrz także watchdog cechy układu, 323 działanie modułu, 323 rejestry, 324 schemat blokowy, 323 testowanie projektu, 330 tworzenie sterownika, 325 w mikrokontrolerach STM32, 322 IWDG_KR, 324 IWDG_PR, 324 IWDG_RLR, 325 IWDG_SR, 325

J jednostka centralna, CPU, 53 zarządzania pamięcią, MMU, 105 język C dostęp do rejestrów, 145 sterowanie diodą LED, 69 sterownik ADC, 221 sterownik ADXL345, 248 funkcja adxl_init, 250 funkcja adxl_read, 250 funkcja adxl_write, 250 plik nagłówkowy, 248 sterownik dla mikrokontrolera, 367 sterownik DMA dla przetwornika ADC, 341 dla układu UART, 344 do transferu danych, 352

sterownik EXTI, 286 sterownik GPIO, 164 sterownik I2C, 262 aktualizacja ASXL345, 270 funkcja inicjalizacyjna, 262 funkcja main, 272 funkcja odczytu, 265 funkcja zapisu, 269 plik nagłówkowy, 270 sterownik IWDG, 325 plik implementacji, 325 plik main.c, 328 plik nagłówkowy, 327 sterownik RTC, 301 plik implementacji, 302 plik main.c, 313 plik nagłówkowy, 312 sterownik SPI, 236 inicjalizacja pinów GPIO, 240 konfiguracja SPI1, 241 odbieranie danych, 242 plik nagłówkowy, 243 plik spi.c, 236 wysyłanie danych, 242 zarządzanie linią SS, 242 zdefiniowane makra, 239 sterownik timera, 175, 186 sterownik UART, 202 struktura układów peryferyjnych, 143 wskaźnik, 67, 146
K kanał ADC, 215 karta katalogowa, datasheet, 34 katalog bin, 85 Debug, 87 Keil µVision, 24 kodowanie, 212 kompilacja, 76 plików asemblera, 84 plików C, 84 kompilator GCC, 25 komunikacja pełnodupleksowa, 191 półdupleksowa, 191 punkt-punkt, 191 równoległa, 191 szeregowa, 190 wielourządzeniowa, 191

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

376 Wydajne systemy wbudowane w języku C

konfigurowanie bitów MODER, 62 pinu GPIO z użyciem HAL, 42 z użyciem LL, 43 za pomocą asemblera, 45 za pomocą języka C, 44 systemu Make, 132 konsolidacja, 76, 97 kontroler przerwań zewnętrznych, EXTI, 275, 283 zagnieżdżonych przerwań wektorowych, NVIC, 275, 278 konwersja analogowo-cyfrowa, 211 kodowanie, 212 kwantyzacja, 211 próbkowanie, 211
L licznik lokacji, 107 liczniki, 54 LL, Low Layer, 42 LMA, 105 lokalizator, 77, 98 lokalizowanie goldpinów, 49 połączenia diody LED, 47 połączenia przycisku użytkownika, 49 portu GPIO PORTA, 52 złączy kompatybilnych z Arduino, 49
Ł łańcuch narzędzi, toolchain GNU Arm Embedded Toolchain, 24
M magistrala, 191 AHB1, 54, 58 AHB2, 54 APB1, 54 APB2, 54 portu GPIOA, 56 RCC, 57 Make, 127, 129 mapa pamięci mikrokontrolera, 53 STM32F11, 94 układów peryferyjnych, 55

maski bitowe, 68 Maven, 129 mikrokontroler STM32F4 moduły DMA, 335 tryby niskiego poboru mocy, 362 tworzenie sterownika, 367 źródła wybudzania, 364–366 STM32F411, 34 kanały ADC, 215, 217 konfigurowanie projektu, 152 mapa pamięci, 53 układ peryferyjny ADC, 215 układ peryferyjny I2C, 260 układ peryferyjny SPI, 234 układ wyprowadzeń, 52 STM32F411RE, 33 mikrokontrolery porty, 157 rejestry GPIO, 158 STM32, 34 IWDG, 322 moduł EXTI, 283 moduł RTC, 293 timery, 183 układ peryferyjny UART, 200 WWDG, 322 układy peryferyjne, 53 model pamięci STM32, 93 modulacja szerokości impulsu, PWM, 180 moduł DMA, 335 multipleksowanie kanałów ADC, 216
N napięcie referencyjne, VREF, 213 narzędzia GNU Arm Embedded Toolchain, 77, 81, 85 niezależny watchdog, IWDG, 317 Notepad++, 24 nowy projekt, 36, 65 NUCLEO-F411, 33
O ODR, Output Data Register, 63, 159 ogólny przewodnik użytkownika ARM, 35 OpenOCD instalacja, 28 wgrywanie oprogramowania układowego, 89 wyświetlanie informacji, 89

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Skorowidz 377

operacja bitowa AND, &, 60 NOT, ~, 60 OR, |, 60
P pakiet danych UART, 197 GNU Arm Embedded Toolchain, 77, 81, 85 I2C, 257 STM32CubeF4, 150 pamięć flash, 94, 112 SRAM, 95, 112 układów peryferyjnych, 96 plik Makefile, 130 testowanie, 136 tworzenie, 134 zmienne specjalne, 138 obiektowy sekcje, 97, 104 relokowalny, 98 startowy testowanie, 124 tworzenie, 117 wykonywalny, 98 pliki CMSIS, 150, 151 CMSIS-Core, 148 nagłówkowe, 150 płytka rozwojowa, 32 funkcje, 33 NUCLEO-F411, 33 goldpiny, 50 komponenty, 47 podłączenie akcelerometru, 253, 273 systemy nazewnictwa pinów, 49 układ pinów, 51 złącza Arduino, 50 podłączanie potencjometru, 227 akcelerometru, 253, 273 podręcznik referencyjny, RM, 34, 58 użytkownika, UM, 35 polecenie arm-none-eabi-gcc, 78, 80, 82 arm-none-eabi-nm, 81, 82 arm-none-eabi-objcopy, 82 arm-none-eabi-objdump, 81, 82 arm-none-eabi-readelf, 81, 82

arm-none-eabi-size, 81, 82, 88 cd, 87 monitor reset init, 91 porty GPIO, 52, 157 rejestr MODER, 62 rejestr ODR, 64 zestawy rejestrów, 157 półdupleks, 192 prędkość komunikacji, 199 procedura obsługi przerwań, ISR, 111, 112, 275, 279 proces budowania oprogramowania układowego, 75 asemblacja, 76 kompilacja, 76 konsolidacja, 76, 97 lokalizacja, 77, 96 przetwarzanie wstępne, 75 program GDB, 90 Open On-Chip Debugger, 89 RealTerm, 208, 252 programowanie niskopoziomowe, 41 w C, 42 programy nowy projekt, 36, 65 protokoły komunikacyjne, 190 protokół I2C, 196, 254 SPI, 195, 229 UART, 189, 194 próbkowanie, 211 przerwania, 112, 276 a wyjątki, 277 działanie, 276 odwzorowywanie linii przerwań/zdarzeń, 284 programowe, 113 sprzętowe, 112 zastosowania, 280 zewnętrzne, 275, 369 znaczenie, 277 przesunięcie, offset, 141 rejestrów GPIO, 142 przetwarzanie wstępne, 75 przetwornik analogowo-cyfrowy, ADC, 54, 96, 159, 181, 210 flagi, 220 kanały wstrzykiwane, 217 kanały zwykłe, 217 konwersja analogowo-cyfrowa, 211 napięcie referencyjne VREF, 214
Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

378 Wydajne systemy wbudowane w języku C

przetwornik analogowo-cyfrowy, ADC rejestry, 218 rozdzielczość, 213 tryby pracy, 216 tworzenie sterownika, 221 w mikrokontrolerze STM32F4, 215 wielkość kroku kwantyzacji, 214 przycisk użytkownika lokalizowanie połączenia, 49 przyrostek UL, 67 przyspieszenie dynamiczne, 247 grawitacyjne, 246
R RCC, Reset and Clock Control, 44, 58 RCC AHB1ENR, 59 rdzeń Cortex-M4, 36 rejestry, 59 adresu pamięci strumienia DMA, 340 adresu układu peryferyjnego strumienia DMA, 340 alarmów RTC, 301 automatycznego przeładowania, 183 blokowania, 158 BSRR, 164 czasu narastania I2C, 262 RTC, 299 danych ADC, 219 I2C, 262 SPI, 236 USART, 201 wejściowych, IDR, 158, 159 wyjściowych, ODR, 63, 64, 158, 159 daty RTC, 299 definiowanie, 52, 66, 141 funkcji alternatywnych, 161 GPIO, 158 inicjalizacji i statusu RTC, 300 kluczowy IWDG, 324 konfiguracji strumienia DMA, 339 liczby danych strumienia DMA, 340 MODER, 62 podciągania/ściągania, 158 preskalera, 183 IWDG, 324 RTC, 300 prędkości transmisji USART, 201 przeładowania IWDG, 325 przerwań oczekujących EXTI, 285 sekwencji zwykłej ADC, 219

stanu USART, 201 statusu, SR, 183 ADC, 220 IWDG, 325 SPI, 236 sterowania zegarem I2C, 261 sterujący ADC, 218, 219 I2C, 260, 261 RTC, 300 SPI, 235 USART 1, 202 szybkości wyjścia, 158 timera, 183 wybudzania RTC, 301 trybu, 158 portu GPIO, 61, 62 tworzenie, 52 typu wyjścia, 158 układów peryferyjnych, 141 ustawianie bitu, 60, 158, 160 włączania, ENR, 44, 58 zerowanie bitu, 60, 158, 160 RM, Reference Manual, 34 RTC, Real Time Clock, 290 tworzenie sterownika, 301 RTC_ALRMAR, 301 RTC_ALRMBR, 301 RTC_CR, 300 RTC_DR, 299 RTC_ISR, 300 RTC_PRER, 300 RTC_TR, 299 RTC_WUTR, 301 rzutowanie na wskaźnik, 67 typu, 67
S schemat blokowy DMA, 337 IWDG, 323 RTC, 294–298 skrypt linkera, 77, 96 dyrektywy, 100 opcje i symbole, 100 prefiksy i sufiksy, 109 sekcje, 99, 100 stałe, 108 symbole, 109 testowanie, 124 tworzenie, 111, 113 układ pamięci, 98

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

Skorowidz 379

słowo kluczowe typedef, 143 volatile, 66, 68 SPI, Serial Peripheral Interface, 54, 229 cechy interfejsu, 193, 234 kluczowe rejestry, 235 testowanie sterownika, 243 tworzenie sterownika, 236 zastosowania protokołu, 195 SPI_CR1, 235 SPI_DR, 236 SPI_SR, 236 SR, status register, 183 SRAM, 95 sterowanie procesami przemysłowymi, IPC, 181 resetem i zegarem, RCC, 44 sterownik ADC, 221 akcelerometru ADXL345, 248 dla mikrokontrolera, 367 DMA, 341, 344, 352 EXTI, 285 GPIO, 164, 167 I2C, 262 IWDG, 325 RTC, 301 SPI, 236 timera, 186 timera SysTick, 175 wejścia i wyjścia, 164, 167 STM32, 93 pamięć flash, 94 pamięć SRAM, 95 STM32CubeIDE, 24 ikony sterujące, 40 instalacja, 25 karta Includes, 152 Information Center, 37 Symbols, 153 okienko Console, 84 Project Explorer, 37, 39 okno Edit Configurations, 72 Setup STM32 project, 39 Target Selection, 38 proces budowania oprogramowania, 83 tworzenie projektu, 36 struktura układów peryferyjnych, 143 symbole linkera, 110

system kontroli wersji, SCM, 129 Make, 129 instalowanie, 132 konfigurowanie, 132 plik Makefile, 130, 134 Maven, 129 operacyjny czasu rzeczywistego, RTOS, 180 systemy budowania oprogramowania, 127 SysTick, 171 cechy timera, 172 rejestry timera, 172 tworzenie sterownika, 175 zastosowania, 172
T tabela IVT, 279 wektorów przerwań, IVT, 275 tablica wektorów, 112 testowanie pliku Makefile, 136 pliku startowego, 124 skryptu linkera, 124 TIM, 179 timer, 54 ogólnego przeznaczenia, TIM, 179 generowanie opóźnień, 181 pomiar interwałów czasowych, 180 wyzwalanie zdarzeń, 181 STM32, 181 cechy, 182 działanie, 183 tryby zliczania, 183 wstępne skalowanie, 184 systemowy SysTick, 171 tworzenie sterownika, 186 watchdoga, WDT, 317 tryby niskiego poboru mocy, 360 tworzenie kopii zapasowej projektu, 86 nowego projektu, 36, 65 oprogramowania układowego asembler, 42 biblioteka niższego poziomu, LL, 42 programowanie niskopoziomowe w C, 42 warstwa abstrakcji sprzętowej, HAL, 42 pliku Makefile, 134 pliku startowego, 117

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

380 Wydajne systemy wbudowane w języku C

tworzenie rejestrów, 52 skryptu linkera, 111, 113 sterownika ADC, 221 ADXL345, 248 dla mikrokontrolera, 367 DMA, 341, 344, 352 EXTI, 285 GPIO, 164 I2C, 262 IWDG, 325 RTC, 301 SPI, 236 timera, 175, 186 UART, 202 sterowników wejścia i wyjścia, 164 struktury języka C, 143
U UART, Universal Asynchronous Receiver/Transmitter, 53, 189, 197 cechy interfejsu, 192 działanie, 197 interfejs, 197 tworzenie sterownika, 202 zastosowania protokołu, 194 UEV, update event, 183, 185 układ peryferyjny ADC, 215 GPIO, 157 I2C, 260 RCC, 57, 58 SPI, 234 UART, 200 układy peryferyjne adres bazowy, 54 definiowanie rejestrów, 141 implementowanie struktury, 143 interfejsy komunikacyjne, 53 mapa pamięci, 55 porty GPIO, 53 przetworniki analogowo-cyfrowe, 54 timery i liczniki, 54 UM, User Manual, 35 uniwersalny asynchroniczny odbiornik-nadajnik, UART, 197 USART_BRR, 201 USART_CR1, 202 USART_DR, 201 USART_SR, 201

V VMA, 105 VREF, 214
W warstwa abstrakcji sprzętowej, HAL, 42 watchdog, 318 działanie, 318 typy, 320 zastosowania, 319 wejście-wyjście ogólnego przeznaczenia,

Patrz GPIO wgrywanie oprogramowania układowego, 89 wiersz poleceń, 83, 87, 88 działanie programu GDB, 90 działanie programu OpenOCD, 91 wskaźnik do struktury, ->, 146 WWDG, Window Watchdog, 322 wyjątki, 277 wykrywanie nachylenia, 246 wyłuskanie wskaźnika, 67 wyzwalanie zdarzeń, 181
Z zarządzanie energią, 358 bramkowanie zasilania, 359 bramkowanie zegara, 359 dynamiczne skalowanie napięcia i częstotliwości, 358 tryby niskiego poboru mocy, 360, 362 zdarzenia, 181 zdarzenie aktualizacji, UEV, 183, 185 zegar bramkowanie, 56, 359 czasu rzeczywistego, RTC, 290 cechy modułu, 293 działanie, 291 kluczowe elementy modułu, 294 kluczowe rejestry, 299 schemat blokowy, 294–298 w mikrokontrolerach STM32, 293 zastosowania, 291 faza, 253 polaryzacja, 253 skalowanie, 184 zintegrowane środowisko programistyczne, IDE IAR Embedded Workbench, 24 Keil µVision, 24 STM32CubeIDE, 24 złącza kompatybilne z Arduino, 49, 50

Poleć książkęKup książkę

https://helion.pl/rf/wysyjc
https://helion.pl/rt/wysyjc

https://program-partnerski.helion.pl

	!5-14_spis
	10
	19_WYSYJC_skorowidz-po-sprawdzeniu
	Blank Page

