Software
Performance
Engineering

A comprehensive guide for
high-performance development

Alon Rotem

www.bpbonline.com

ii

First Edition 2025
Copyright © BPB Publications, India
ISBN: 978-93-65895-445

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in
any form or by any means or stored in a database or retrieval system, without the prior written
permission of the publisher with the exception to the program listings which may be entered,
stored and executed in a computer system, but they can not be reproduced by the means of
publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true and correct to the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
the publisher cannot be held responsible for any loss or damage arising from any information
in this book.

All trademarks referred to in the book are acknowledged as properties of their respective
owners but BPB Publications cannot guarantee the accuracy of this information.

To View Complete E E

BPB Publications Catalogue He)
Scan the QR Code: E

www.bpbonline.com

iii

Dedicated to

Antonia and Benji

iv

About the Author

Alon Rotem is a soulful geek and musician. His encounters with code go back to his
teenage years in the mid-1980s, where he discovered the ATARI 800 8-bit computers and
the BASIC programming language. His days in the actual tech industry, all around software
engineering, go back to the mid-1990s, the days of DOS, Windows 3.1, and prehistoric Red
Hat distributions.

Since then, he has worked as a quality assurance engineer, a software engineer, a lecturer, an
educational manager, a solutions consultant, a team lead, a tech lead, a solution enterprise
architect and a senior engineer at one of the most well-known database companies, the
MariaDB Foundation. He has been managing a team of software architects for one of
the big four global accounting companies, KPMG. He also established and created a
certification program for one of the biggest enterprise-level content management systems,
Sitefinity, being one of the senior engineers who had built it firsthand for the most
successful Bulgarian software company, Telerik.

Apart from his work, he is an active hacker and developer, always exploring technological
solutions, workarounds, free alternatives, and hacks, and is an avid supporter of Linux
and open-source software.

He studied computer science at the Open University of Israel, and in recent years has been
living and working on both ends of East and West Europe.

He is also an electro-acoustic musician whose works can be found on all major streaming
platforms, as well as on his personal site.

7
0.0

About the Reviewers

Martin Yanev is a highly accomplished software engineer with nearly a decade of
experience across diverse industries, including aerospace and medical technology.
Throughout his illustrious career, Martin has carved out a niche for himself in
developing and integrating cutting-edge software solutions for critical domains,
including air traffic control and chromatography systems. Renowned as an esteemed
instructor and computer science professor at Fitchburg State University, he possesses
a deep understanding of the full spectrum of OpenAl APIs and exhibits mastery in
constructing, training, and fine-tuning Al systems. As a widely recognized author,
Martin has shared his expertise to help others navigate the complexities of Al
development. With his exceptional track record and multifaceted skill set, Martin
continues to propel innovation and drive transformative advancements in the field of
software engineering.

Tareq is a performance engineering senior architect with nearly 15 years of experience
in quality engineering, including a decade specializing in performance engineering.
He focuses on optimizing system performance, API tuning, and architectural design.
His expertise spans tools like JMeter, LoadRunner, AppDynamics, DataDog, and
New Relic. He was a speaker at the Xpand Conference 2024, where he talked about
Observability in an Age of Microservices. He is an active reader, enjoying comics,
manga, science fiction, and IT-related books, and continuously shares best practices
and insights on software performance through various platforms.

vi

Acknowledgement

As someone who has been deeply immersed in the tech industry for almost four decades,
I have taken on many roles and undertaken a wide variety of tasks. I have written blog
posts, recorded training videos, and tech videos, but I have never written an entire book.
This was a golden opportunity, brought to me by BPB Publications, and I am immensely
grateful for it. Their guidance and expertise in bringing this book to reality cannot be
emphasized enough. Their patient support and assistance were invaluable in navigating
the complexities of the publishing process. My experience was intriguing, interesting, and
educational, all of which I am grateful for.

I would like to acknowledge the reviewers, technical experts, and editors who provided
valuable feedback and contributed to the refinement of the book’s contents through their
insights and suggestions, which significantly improved its quality. Not to mention their
patience with my constant corrections and additions, as technology has been running
forward, even while I was researching and writing.

Special thanks to my literary editor, to whom I have given a whole lot of painstaking, fine-
tuned work, which she has executed meticulously and flawlessly, and made this book so
much better.

Lastly, I would like to express my gratitude to the readers who have shown interest in this
book. Your support and encouragement are warmly appreciated.

Thank you to everyone who has played a part in making this book a reality.

vii

Preface

Performance engineering is a broad and elusive subject on which several books can be
written, and indeed, quite a few have been. Commonly, users do not give a lot of thought
to how fast their app runs before they intuitively sense it is slow. Many moving parts
contribute to how well an app performs: from the architecture of the CPU cores and the
hardware setup, through the optimization of the code, the underlying runtime environment,
efficiency of algorithms, data structures, databases, storages and strategies, all the way to
the broad worldwide deployment and scaling schemes of services, networking components
and security constraints. This renders performance and efficiency complex cross-cutting
concerns throughout the entire process of producing and running software in our
modern era.

Since ENIAC, the very first digital computer, was introduced just 80 years ago, in the
1940s, the performance and capabilities of computers have been evolving astronomically,
in the endless race to accommodate ever-heavier tasks. Unlike in the old times, software
today is expected to be operated by hundreds of millions of users, literally around the
world, to process vast amounts of data records, while remaining pleasing, easy, and
quick to use, all the way down to the single user’s experience. The evolution of big data,
with machine learning and artificial intelligence, keeps pushing even the most powerful
supercomputers to the edge of their abilities, while on the other hand, quantum computers
advance in lightning speed towards a completely new world of computing. We really are
living in the future that science fiction has charted for us.

As the topic is so broad and versatile, this book covers some of the practical aspects of
developing and delivering performant software in the modern world of technology, while
mentioning other areas as knowledge pointers, in order to help direct the curious readers
to acquire more knowledge, with the intention to provide a wholistic understanding of
performance engineering, right from the standard processes of inception, production,
testing and delivery, to the high level runtime view and analysis. This book is current.
It talks about the past, but looks into the future, demonstrating current trends, tools,
programming languages, frameworks, and platforms, to provide a strong base for people
who are interested in learning the basics of performance engineering.

Chapter 1: Introduction to Performance Engineering- This chapter presents some
of the aspects of performance engineering to understand its broad meaning in today’s
world, in order to acquaint the readers with the concept itself, which not many are aware

viii

of, at least not in depth. We look at how it is integrated in our modern-day software
development lifecycle processes, we discuss principles of modern software delivery, in
light of the evolution of computers, and some of the performance concerns software must
accommodate nowadays, and why they count.

Chapter 2: Performance Driven Development- In many ways, performance-oriented
development is baked into the software delivery methodology itself. In this chapter, we
get into more refined details of the current-day processes of software delivery. We look
at the evolution of various methodologies, each with its advantages and flaws, and learn
how applications are being planned, built, provisioned, and delivered with modern tools,
in order to get the most out of them. We also mention different types of tests that help
us evaluate the quality of our software and to understand how well it is performing in
comparison to our expectations and requirements.

Chapter 3: Non-functional Requirements Definition and Tracking- Performance planning
is a first-class citizen in the functionality of our application, how it is perceived, how it
functions, how it reacts, and responds. However, it comes with a detailed underlying,
well-defined set of requirements that we need to plan and take into account, attributes
such as security, maintainability, and compliance, as well as considerations related directly
to runtime performance features. This chapter looks at ways we can structure our non-
functional requirements’ definitions as part of our product plan.

Chapter 4: Workload Modeling and Projection- Continuing the analysis and breakdown
of the features in our software, in this chapter, we look at how we identify and map
use cases, usage flows, and workloads, in order to understand how and by whom our
application is expected to be used. We discuss future load projection methods and
performance measurements.

Chapter 5: High Performance Design Patterns- In this detailed technical chapter, we
take a closer look at software and system design. We review the evolution of software
architecture and approaches throughout the decades and how modern architectural design
accommodates modern requirements. We discuss and review in detail several software
design principles, which are directly related to scalability and performance enhancements.

Chapter 6: Performance Antipatterns- In continuation of the discussion of useful design
patterns, in this chapter, we look at potential pitfalls of common design, which are
sometimes overlooked by software architects and developers. Accompanied by concrete
code examples, we take a deep technical look at a number of antipatterns, discuss their
flaws, and why and how to avoid and mitigate them, in order to improve the performance
and overall quality of our application.

ix

Chapter 7: Performance in the Clouds- Cloud platforms are all the rage in modern
software development and delivery. We discuss advancements in high-power computing,
which is made accessible to all through the cloud, as well as a look into the future of
quantum computing, which is, in fact, already the present, and becoming available as we
speak. We discuss the advantages of running our microservice applications in the cloud,
we look at scalability, elasticity, and large data management.

Chapter 8: Designing Performance Monitoring- Once we have our application running,
we want to make sure it runs smoothly. Monitoring its performance metrics and telemetry,
following detailed logs and runtime traces, gives us real-time insights into issues and
helps us design and plan for improvements. This chapter explains the concepts, tools, and
methodologies to monitor our app, to ensure it lives up to the promises we had made for
it.

Chapter 9: Tools and Techniques for Code Profiling- Looking deeper into the code of our
application, in this practical chapter, we take a technical dive into the analysis of our code,
in development as well as during execution. We discuss static vs. dynamic profiling, we
look at code profiling tools such as cProfile, pyinstrument, line profiler, VisualVM, pprof,
and eBPF, by going through detailed code examples and walkthroughs, to understand
how to put them to use in the real world.

Chapter 10: Performance Testing, Checklist to Best Practices- After learning about tools
for optimizing our code, in this chapter, we look at what we can do once it’s already built.
Testing is a crucial pillar of software development and improvement, and performance
counts for quality. In this chapter, we look at different types of performance tests, how they
are executed, and the importance of test environments, conditions, and practices.

Chapter 11: Test Data Management- Still in the realm of testing, data is at the heart of any
modern-day application. Providing proper quality data for testing is just as important
as the test itself, and the area of test data management (TDM) has been marked as a core
emerging technology by Gartner’s hype cycle for Agile and DevOps. This chapter explains
test data management, strategies for good quality test data, as well as practical demos for
automated test data production, in order to achieve the most from our tests.

Chapter 12: Performance Benchmarking- Another aspect of understanding how well
our application runs is benchmarking and execution analysis over time. In this chapter,
we revisit the different types of performance tests while practically looking at runtime
test tools, such as Locust and JMeter. We differentiate benchmarking from baselining and
discuss the important aspect of continuous performance monitoring and validation, using
an automation server (Jenkins) and containers (Docker).

X

Chapter 13: Golden Signals, KPI, Metrics, and Tools- As we run tests and benchmarks to
monitor and get acquainted with our application’s performance, we also want to refer to a
well-defined set of measurable metrics, in order to actually know how well we are doing.
In this chapter, we understand key performance indicators (KPIs). We map different types
of metrics to different levels of roles; we discuss monitoring tools and take a practical
example with the ELK stack and the Elastic Application Performance Monitoring suite.

Chapter 14: Performance Behavioral Correlation- Continuing the discussion on metrics
and runtime monitoring, in this chapter, we look further into how to better understand
the reports of our monitoring tools. While discussing practical examples, we investigate
root cause analysis, data correlations, behavioral analytics, as well as strategies for future
predictions, and practical code examples of mapping and charting them. We also talk
about how to follow up on issues and the process of closing and completing them.

Chapter 15: Post-Production Management- As the previous chapters focused on delivering
the software, making sure it complies with our requirements, code quality, performance
definitions, test requirements, and runtime measurements, this chapter looks at the next
day: once we have our app up and running in a live production environment. We look at
managing dashboards and alerts, about the endless, continuous journey of improvement,
we discuss the different stakeholders and different levels of ownership and responsibility,
and briefly look at predictive analytics for the future.

xi

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/rdwrmS8;j

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Software-Performance-Engineering.

In case there’s an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to
ensure the accuracy of our content to provide with an indulging reading experience to our
subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve
upon human errors, if any, that may have occurred during the publishing processes
involved. To let us maintain the quality and help us reach out to any readers who might be
having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’
Family.

Did you know that BPB offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.bpbonline.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at :

business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical articles,

sign up for a range of free newsletters, and receive exclusive discounts and offers
on BPB books and eBooks.

xii

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

xiii

Table of Contents

1. Introduction to Performance Engineering 1
INETOAUCHON. ..ottt 1
SHUCKUTC ...ttt 1
ODJECHIVES. ...t 2
The story of performance engineeringcocceveeueerieurerieueunieenieenrieesseeeneeenens 2

About performance engineeringcococvviviviviiieieicciiiiininie s 2
Modern principles of software engineeringcccococoveurririninininiiiicnennes 4
THE TOACTIL @F . 4
Development process principles and practices.............coocvveeueeeieieiiiieieceeeeiiiisisisennnns 6
Software design PrinCiples...........cccvvevoiiiiiieieiiiiiiiiiiccccc e 8
Importance of performance engineering in software developmentc.cccoevevvvivnnnee 10
Objectives of performance engineering........oouuuvvvvreeeeessisisiieeieeseeesesesissnas 12
Common performance issues in modern applicAtionsccocoeveeeeevivvivirerereienennnnn. 13
Consequences of downtime and performance impactcoccevvvvcvviiiiciciesecnnnn, 16
How performance engineering solves problems that software brings incccuee.... 17
Mindset for performance engineering Adoptionc.cccevevvvvcininciinisciininiiiniiinnas 18
Common challenges in performarnce engineering...........covvevvvvvereirneeiviiiiviseieisenenennns 19
Early problem detection and anticipating failures.............ccoovvvvevevvvevcvuveneeiiiiiincnns 20
Creating sustainability in the digital [andscape..............cccovvvvvivviviicicniciininiini, 22
CONCIUSION. ..ottt 23
Key 1earnings ... 23

2. Performance Driven Development 25
INETOAUCHON. ..ttt 25
SHUCKUT® ...t 26
ODJECHIVES. ...t 26
Waterfall and Agile ways of delivering software ..., 26

The Waterfall WYcoccvvvviviiiiiiiciiiiiiiciciicc s 27
AAVANEAZES ... 28
DiSAAUANEAGES ... 28

The AGILE TAY ...t 29

AAVANEAZES ... 31

xiv

DiSAAVANEAGES ... 32
SCIUNMT oottt e 32
DEVOPS vttt 32
Plan for performance in SPIints..........ccooeeieieiiiniiiiiiicc e 34
The right tools at the right Placecoccccviiirinicnniie e 35
Process management and Agile collaboration ..., 36
Jira by Atlassian, and tools for SDLC management.............ccoceveeeeieiviiincucneieininininn. 36
Confluence by Atlassian, or similar, for collaborative documentation.............c.c.cccu..... 36
DEVOPS FOOIS.......oeeveiiiiisieiisietectsett sttt 37
CI/CD t00l8, Jenkins, OF SIMILATccoeveveierereiereteieteesieveies et seas s 37
Controlling iNfrASHUCIUTEooueiviviiiiiiiiiiciiiicet et 38
Test aUtOMAtION. ... 39
UIIE ESES ..ottt 39
Ul/integration/end-t0-end tESESouueuverieeeririeieisicieistcestee et 40
Performance teSHNGccccovvvviueuiuiiiiiiiiiiiiiciccccc 40
LOAA FESES ..ot 41
SEIESS EOSES .evvvvsiittte s 41
SCALADIITHY FESES ...t 41
ENAUTANICE FESES ...t 41
Volume tests 0F fIOOA LESEScccvueiriviiiiiiiiiiiciiiiiciiicis s 42
Backend and code-related tests..............c.cccviviviiiiiiiiiiiciiiiiiiii 42
The t00lS for the JOD..........ccvueueveieiiiciiiiiicicciee s 42
T00Is for 10ad related teSEScovvvviiiiviiiiiiciiiiiciicc s 42
Tools for code execution MEASUTEMENTcccuvuvuriiiiiiiiiiiieicc s 43
COMPreRenSIvE L00IScccvviuieeieieieiciiiiicccce s 43
Requirement eNgineering..........ccccoeiviviiiiiniiiiiniiice e 43
Design for performance and scalability ..., 44
Code OptimizZation ..o 45
Performance validation and scalability optimization............cccccoeeviiiiiiiiinicnnnnes 46
Capacity planning ... 46
Performance engineering using Jenkinscccoooiinnnininnnccceeccnes 47
Velocity of performance bug fixes...........cccocoviuiuiiiiiiiiniiiiiicicces 47
Roles and responsibilities of a performance engineercccocoeeuiiiiiiinninininnnne. 48
CONCIUSION. ... 49

Key 1earnings ... 49

3. Non-functional Requirements Definition and Tracking.....
INErOAUCHON. ...ttt
SEIUCHUTE....oviniiit e
ODJECHIVES. ...ttt
Functional and non-functional requirements............cccocoueueueuiueiinininnnncccccieeees
Types of non-functional requirementscccccoviiviiiiiiiiiiciies

PerfOrmancCecooviiucicieieieicicictcccs s
SCAIADIITIY ..ot s
SECUTTEY c.voviiietiictctcistc s
USADIITEY .ottt s
ReLIADIITEY ..ottt s
Maintainabilityccooviiiiiiiiiiiiii
POTEADIIIEY ..o
COMPLIATICE ...ttt s
Defining attributes related to system performance............cccccoeviviiiiiniiiiiiiininnnns
THe USET's PEYSPECHIVCcuvvevvveieieieiiicicicicieie et
The SYSEEM's PETSPECIIVCcovcueirieiiiiieiiiiiciciieii sttt
NFR templatec.cciiiiiiiiiiiiiiiiii s
Introduction And 0VETVIETD.............cccvieiiiiiciciciciciiiccc e
SEAKEROIACTS ...
Definitions and ACYONYMISccoviiiiiieiiiniiiiiiiiiiiicieie e
SYSLEI QVETVICD ...ttt
Non-functional requirerments ...ttt
Requirement SECtiOnS.ocvivvvviviiriiiciiicicic
DePENACNCIES ...
Approval and SiQN-0ff......ccccoveivniiniiiiiiiiiiiec
Guidelines for defining NFERS..........cccocoviiiiiiiiies
Managing NFRs through the development lifecyclecccccoeuviiiiiiiniiincniciniiane
NEFR tracing and management in GitLab...........cccocccocniiiniininiiniinicns
CONCIUSION....ooviiiiiiii s

Key 1€arningsccueuiiiiiiiiiic e

4. Workload Modeling and Projection........

| 5aRa y'eTe 10 Tet s (o) o DERRRRRR RSO ORRRRRRTNY

SETUCEUTC .. ettt e ettt e e e e ettt eeesesaaateeeeesssaaaeseessssaaateeessssnsaseessannns

ODJECHIVES. ...ttt

xvi

Identifying use cases in @ SYStemccccvviuriciiininiiiiiicccc e 74
Understanding USE CASESccovrveuiirieiiiiiieiiiiieiisisiciisie ittt 74
TAeNtIfYING USE CASES ..ottt 76

The coffee break MEtNOdccccvurueueveieiciiiiiiicieeee s 76
The CRUD MEEROG.ovovoviviiiiiiiieieieieeictte e 77
Event decomposition Method................ccccvvciiiiiiiiiiiiiiiiciiciciciccccc 78
INferring 1eal USE-CASES.........cvvveveeeueieieieiiiiiiicieteis et 78

Defining key business flows and users of a systemcccccccevvviiiiiiniiiiinnnnns 79
Key DUSTNESS flOWSc.cvviiiiiiiiiiiicic it 79
USET ANALYSIS.....vovevevivieiiiiicieieteeic e 80

Identifying Workloads ..o 81

Usage patterns based on demand and market study.........ccccccoevviviiiniiiiiiiinnnnns 83

Trend aNalySis ... 83

Pitfalls in performance measurement and projectionscceceeeueeeccrinininieienenenee. 85

Modeling approaches for varying conditions............ccevecueericreenieemnencenrenceneereenen. 85

Projection algorithms for business growth and demand............ccccccoeuccuvicininiccinicnnes 86

Performance test Planning ...t e 88

CONCIUSION. ..ot 90

Key 1€arningsccueviiiiiiiciiccccc e 90

5. High Performance Design Patterns 93

INtrOdUCHON. ..o 93

SEIUCHUTE. ... 94

ODJECHIVES. ...ttt 94

Different types of software architeCturescocccovveeueericirniceniiceeeeeeeeeenene 94
A brief history of software complexity and architecture..............cccoovvvvicciiiciiininnnns 95
Architectur@l Frems.coovoviieiiiiiiiiicicicicie e 98

Design Principles.......ccciiiiiiiii e 99
ADSHTACHION. .ot 99
SOLID PFINCIPIES....c.vvveviiiieiiiiiiiiiiiiciiisiciict sttt 100
KISS NA DRY ..ottt 100
DeCOUPLING..c..oovvviiiiieieieieectcc e 101
Law of [east aStOniSHIMENEccccvviviiininiiniiiiniiiisecisest e 101

Hidden aspects of running software on virtual machines vs. containers................ 102

Legacy monolithic architecture vs. MiCrOSEIVICeSsccccuvuucuiuriniirieciniinicisiciiecinns 104

Design patterns for performancecooeeueeciiininininiciccccieeeeeeeeeeennen 106

CACHE ASIAE..........oiiiiiiiic 106
ABDOULE CACHING.c.ovviiiiiiiiiiiicieicistt et 106

CACHE ASIAE ... 107
Additional considerationscoccovivieiiiiiiciiiiiiiiiiii s 108
Command query responsibility SeQTeQAIONcccvviriviiniiciriciiiiieiiieiiias 108
Quene-based thrOtHIING.........ccccooovviviiiiiiiciiiiiiiiciccccc 111
SRATAING c.ovvvvi s 112

The need for data SHATAINGccocovviviiiiiiiiiiiiiciic e 112

Enter SHAYAING.........cccviiiiiiiiiiiiiiiiiiiicc 112
Challenges of SHATAINGccvueveieieiiiiiiiiiicicieeisse e 113
Design patterns for scalabilityccccoeeiiiiiiiiiiiiiiiie 114
Lazy [0AdINg.......c.covoiiiiiiiiiiiiciiiiicici s 114
Partitioningcoeveveeiiiiiiiiieieieec e 115
Horizontal partitioning ...t 116
Vertical partitioning...........cccccvcciiiiiiiiiniiiiiiiciictccc s 116
Defining a partitioning KeY............cccocovveeeuereinisisiiiiiiiiinieiseeiesesesscee s 117

L0ad DALANICING ...ttt s 117
ASYNCHTONY .ot 118
Design patterns for high-availability..........cccccociiiniiiiiiicccccces 119
CIPCUTE DTCAKET ..o 120
ReAUNAANCY ..ot 121
DeCOUPLING..co.oovvviiiiieieieieieie e 122
Dynamically scalable architectures............coccuveueicunieininiciniciniecccceeeeccnes 123
Cloud-native deSignscccceiiiiiiiiiiniiiii s 124
Highly scalable datastores............ccociiuiiciiciiiniciicicicsccc e 125
CONCIUSION. ...ttt 125
Key 1earnings ... 126
6. Performance Antipatterns.......... ceeeeeeneneneneane 127
INErOAUCHON. ..ot 127
SEUCTUTE ..ottt 127
ODJECHIVES. ...ttt 128
Introduction to antipatterns. ... 128
Performance antipatterns overview ... 129
God object antipattern ... 130

Tight coupling antipatternccccviiiiiiiiriiicee e 131

xviii

Premature optimization antipattern ... 137
The 100t Of Al €UILo.ocuviiiiiiiiiiiiciiict 137
Prioritize performance optimizations properlycccoovvvivviccciiinniiiininns 138

Blob antipatterncciuiiiiiiiiiccc s 140
Chatty communication antipatterN...........ccoceveuiciniueieinicirieeieicee e eceenaens 141
Global interpreter lock antipattern ... 144
Python and CPYLROMc.cucuvveiiieiiiiiicicicieieeictccci s 144
Disadvantages Of GIL..........cccoccivviviiiininiiiiiiiiciiiciniitscset s 145

Busy waiting antipattern..........ccooivviiniiiii s 146
Refactoring and optimizing performance antipatternsccccocoevvriicccccnennnn. 148
Common pitfalls and best practices...........cccocovvvririeiiiiiiinininiieccccceeeeeee 149
CONCIUSION. ..ottt 150
Key 1€arningsccvveioiiiiiiiciiie e 150
7. Performance in the Clouds........ . . . rereeneneaeneasaenenes 151
INtrOdUCHON. ..o 151
SEUCEUTE....viiiiic s 151
ODJECHIVES. ...ttt 152
Architectural cONSIAErations...........ccceuieuerricieiricieirieerce e 152
High performance COMPUINGccoovuvvrrueieieiiiiiiiiicieie e 152
Advancements in qUANTUI COMPULITLG c...oovevvirieiriiiiiiiiiiciiiieesieeiseet e 154
Performarnce considerations.............coccuivvvnviciiiiiiiiiiiiiiiiiiis e 157
Tenancy and VIrtUALIZALIONcvuvveveveieieiiiiiccee s 157
INFINIEE OPHIONS .ottt 158
ClOUA-NALTVE SCIDICES ...ttt 158
MaANAGE APPS ... 159
Application architectural considerations.........ccocvvcvivvevininiiinncciniiiiiseineecsnns 160
The 12-factor principle of @ MOAETTL APPc.cccuvvvvvuviiiiiciiiiiiciciics s 160
Scalability and elastiCityccccovuriiieiiiiiicc 162
SCAIADIITIY ..ot 162
ELASHICTHY oot 163
Microservices performance challengescccuvicininicinicinisiniicnceecces 165
With great power comes a great electricity Dill............cccovvvvivviiniviiinininiiciiieiia, 165
COMMUNICALION ISSUES ...v.vivvveriicririieritisiciesiei e 165
Growing complexity of breaking the MONOIItNcccovvvviicvcnieiciicciine, 166

Integration overhead and dependency Rellccccovvvvincivnviinincinncinincnn, 166

Cloud-native performance optimizationcccccoovrrinniinnncee 167
Fine 0rChestrationocuevevoviioiiiiiiiicieieictecc s 167
Migrating to the ClOUdccccviiiiiiiiiiiiiiicic s 167
CloUA-NAETVE APPS.....vovvviieieiieieieicieieiciicce e 167

The Cloud Native Computing FOUNAationcccvvvvivvvinvecinniiineiinniinas 168
Computing performance OPHMIZAtIONcccovuvecviiiiiiiiinisiecciiiiceeeeas 168
Networking performance optimizationcceeeevvoveceeeseiiiniscee e, 169

Data management and StOTage...........cccvuvueciririiiniiiininiiiicice e 170
CONCIUSION. ..ottt 172
Key 1€arningsccvveviiiiiiiciiccccc 172
8. Designing Performance Monitoring....... . . vererenenneaeasaenenes 173
INtrOdUCHON. ..o 173
SEUCEUTE....cviiiiiiicc s 173
ODJECLIVES. ...ttt 174
Concepts and tOOLINEGccccucuiiiiiiiiiiiiic e 174
LOGGITG ottt 174
TOIEHIEETY .ottt 175
INSEYUMENEALION ..ot 175
Application performance MONitoringcococeveeenieisiiiiiinineseieesesessccee e 175
Monitoring and 0bServabIlIYcccovivivieiiiniiiiiiiiiicicisccc 176
BenChmarkingccovvueciiiiiiiiiiiiiiicicicictc s 176
Common deployment architeCturescccecuviciniricinicininicccceee s 177
Infrastructure and software imitationsc.cccceoeeiiiiiiiiiiccicccccce 180
Key components in the architecturecoccoeuveiininicniienierceeeeeeceeeees 181
Metrics, events, 10gs, and traces...........cccoouvuiuiiiiiiiiiinininiicc e 182
EDCTES oottt 182
MEEFICS .ot 183
LOGS ottt 183
THACES .ottt 184
AWS Distro for OpenTelemetry ..o 186
OPENTRLEICLTY ..ottt s 186
AWS Distro for OpenTelemettyoccvvvcivivcininiiiiiiicinisiiisiseisieciseteee 188
List of key attributes to measure from each component...........ccccccceuvicurnicreenecnne. 189
General MACKINE METICS...........ccuvucuciiiiiiiiicicici s 189

Data collectors and aggregatorscccovecviiiniiiciniiiiiniiicieceeeees 190

XX

Data aggregation and processing lAYer.............cwvvvevevcccenisieieiiiiiiiciesieeesesisnnns 191
Data agQregators........coccviviiiiiiiiiiiiiiii 191
Data transformation and normalization................ccceeccviiiiiniiinniiciciiiiiicicececans 192
Application performance managementcccoceeueueiiirininiinnne s 192
Anomaly detection and suspect Tankingccccoevvvriniiiiiini, 192
Predictive analytics ... 194
USEY LOAG ... 195
RESPONISE HIIME ...ttt 195
Infrastructure CAPACILYccvvvuviiiiiiiiicicicccc 195
CONCIUSION ... 196
Key 1earnings ... 196
9. Tools and Techniques for Code Profiling . . reereneesaeeasseanenes 197
INErOAUCHON. ...t 197
SHUCKUTE. ...t 197
ODJECHIVES.....viiiiiiiiiicc 198
Static vs. dynamic Profiling ..o 198
Static code ANALYSISccovviviviiiiiiiciiiiiicc e 198
Dynamic code profiling..........ccccocvveieiviiiiiiiiiiiiiiiiiiicccct s 199
Example with Python’s cProfile and pyinstrumentccccceevvvvvvvccccieeinnnnnn, 200
Profiler collection MEthOdsc..c.cucuiciiiciniiiciiciciccc e 204
SAMPIING ..o 204
Instrumentation ... 206
Line Profilifig.....cccvciveininiiiiiiiiiiciisecisets st s 206
Continuous Profiling.......cccoevvvcciiiiiiiiiiiiiiicccct s 207
Choosing the right profiling tooL.........cccccccciiiiiniciniiiiiciic s 207
COomMMON CHAIIENEEScevirieiiicieiecieirecie ettt 208
OUTHEAL ...t 209
Sampling vs. INStYUMENEALIONvvvieieciceeieieieieictccce e 209
Complexity of analysis, debugging, and troubleshooting.............ccccevvvivvicirvininnenenn, 209
ReSoUTCe CONSEIAINES ...vovvvviiciiiiiciiiicicc s 210
Profiling across distributed SYSEMISccvvevvviiiiciiieieieieiciiiiccce s 210
Security and Privacy CONCEINS.ouvirviiiniiiiiiiiniiiisieicisieit sttt 210
Profile code and runtime with VisualVM........c.ccocciiviiiiniinnicrcccceceeeeens 210
Continuous profiling Using PProf.........cccveeiiiiiiiiiiiie e 213

xxi

PIOLODUS ..o 214
PPTOf ot 214
Continuous Profilifng.......cccoeveiviciiiiiiiiiciiisiieccc s 217
Linux kernel profiling using eBPFccccccoiiiiiiiiccccccces 218
Automation for gathering profiler SNapshotscccccviericnnccnncrcceecene 222
Code profiling best practices ..o 223
CONCIUSION.....oviiiiiiii s 224
Key 1earnings ... 225
10. Performance Testing, Checklist to Best Practices.. reereeesaeensseanenes 227
INErOAUCHON. ...t 227
SHUCKUTE. ...ttt 227
ODJECHIVES. ...t 228
Performance validation checkliSt........c.cooueueuicieiricieiniccniccrceecee e neeens 228
SYSEEIN ANALYSTS.....cviivciiiiiciiiiiiciic e 228
TESt PLATL .o 228

TBSE EXCCUBION ...ttt 229
REPOTt .o 229
Script development ... 230
Leverage functional test suite to create JMeter scripts.........ccccoevveueiiniicccncnennnnn, 232
Workload model to scenario mappingcccccveecnieininiiininiinneinneieeeeneeenes 234
Environment preparation..........oviviiniiiinii s 236
Production vs. performance test environments.............cccceeveieiiiniiciceeniiicnns 237
Production environment..............ccooveeeveveieieieiiiiiieieee e 237
Performance test environment..........ccccoovvivviciiiiiiiiiiiiiieciccc 238
Test environment cONSIACYALIONScccvvvvivieiviriiiciiiiiicicice s 239
Performance testing toOlS.........cccccouvriririiiiiiiinininiic e 239
The right t00l fOr the JObccuvuveeviiiiiiiiiciciiicicc s 239
Mentionable performance testing t00lscocovvvrrureieiesiiiciiicceeeeiesesnns 241
Performance testing best PractiCes...........cocouiviriririnirieiiiciininininniecccceesee e 242
CONCIUSION.....oviiiiiiit e 243
Key 1€arningsccvveioiiiiiiiciiie e 243
11. Test Data Management .“ .“ .“ .“ ceesneneaeneanseanes 245
INtrOdUCHON. ..o 245

o] 84§ Lot 4 1 L TR TSSO SUR TSRS 246

xxii

ODJECHIVES. ...ttt 246
Test data requirement definitionccoceueieiiiiiiiiinininiicccceeces 246
Test data characteristics classificationc.cvecueurieeeriniierninierceeeee e 248
Garbage in, garbage out: About data qUAlTtY............cccovevenniiiiiciiiiiccceeee 248
Additional data characteristicscocevvviviieeieieieieiiiiicccee e 248
Strategy to setup test data.........ccccovvviiiiiiiiiiiiii 249
Test Aata MANAZEINENEcovveveveveveiiiiicicieee e 250
Relying on production Aata.............cccecvivviiinnininiciciiiiiniicicisscces 252

Test data WATEHOUSE............c.cvvviiiiiiiiiiiciciiiicii s 252
SYNthesized AAt..........ccucvevvvvviviiiiiiicieecc s 253

Test data clean-up and TEUSE.........cccuvuiiviriciniiiiiniccc e 253
Service Virtualization ... 255
PHIRCIPIE ..o s 255
BEMESIES ..ottt s 256
AULOMALION vt 256
Large-5cale t00lINgccuvueueveieiiiiiiiiicicicteie et s 257
OPCIL OPHIONS ..ttt 257
Self developed SCTIPES.........ccviviviiiiiiiciciciciicici 258

Data SECUTILY ooueeeiieee 261
CONCIUSION. ...ttt 263
Key 1earnings ... 263
12. Performance Benchmarking..... . . . crereesnesenneneanenes 265
INErOAUCHON. ..ot 265
SEUCHUTE ..ottt 265
ODJECHIVES. ...ttt 266
Types of performance testing.............ccccveiviviiiiiniiiiiiii s 266
SMOKE tESHING ...t 266
Different types of initial validation testsc.cccovvvvvvicieesieiciciiiceeee e 266
ASPECES Of STHOKE FESES ...ttt 267
EXATPIES ..ottt s 268
Single-user i50lation teStINGccceviiiiiiiiiici e 268
L0ad teStINGciiiiiiiiiiicicc e 270
SHETESS FESHITIG ocvivicviviicieriicicti e 275
VOIUME tESHING ..ottt s 277

Endurance testing.........cccocveiviviiiniiiiniiiiicccc s 278

ReAdINESS CHECKIISE......cuvvuieerieiciriiicieecie ettt 279
SCENATIO SELUP ..vviiiiiiciiiece et 282
Performance baselining and benchmarking...........cccococcvccnnicnicnncnncceee 283
Benchmarks: Someone already did it!..............cccoovvvvvviiiininiiiiiccce, 283
Baselines: Someone already did it! That was You!cccccecvcvvvivinvinncinincnenn, 285
Continuous performance validation using Jenkins and JMeterccccceuvununnnee. 285
CONtINUOUS ACITVLTIES ...ttt 285
JENKins FTWoovviieiiiieieieieii e 286
CONtinUOUS PETFOYMUATICEoviviiiiiiciciciiitc e 286
Pre-setup of [Meter and @ wWeb SETVEYcocovvvirurueieeieiiiiiicceiesssescsaenens 287
JETIKITIS oottt ettt ettt et e et e st e st e e et e et e s te e teeateeanenraens 289
Creating and running a performance pipeline...............cccoccvvvcvviiiiiviiinnccncnn, 291
CONCIUSION ... 295
Key 1earnings ... 295
13. Golden Signals, KPI, Metrics, and Tools . . cereeesreesareesaressanes 297
INErOAUCHON. ...t 297
SHUCKUTE. ...ttt 298
ODJECHIVES.....eiiiiiiiicc 298
Key performance indicators.............coouviriiiiiniiiiiiicccc e 298
Different metrics for different participants............cccoevveeciicinnnniccccciereees 300
ENQINEETS .ot s 301
AFCHIEECES ..o 301
BUSINESS ANALYSES ..ottt 301
EXCCULIVES. c..covivcviiiiciiiiciciicc s 302
Infrastructure components and usage management............ccococeueueenininiiccccenenennn 302
Application runtime vs. behavior MetriCsccereeeeuricecinineeniceeecrcecreeeaeeeene 303
APPLICALION TUNEIIE ...t 303
BERAVIOT TEETICS «.evvvvviiiiiiciee et 304
Key differencescccvcvvvioiiiciiiiiiciiiiiiiiiciciciicit st 304
White box and black boX MONItOTINGccoveuevieiieiriieiricceeereeeee e 305
Black box MONIEOTIIGccvveiuiucreieieieieiiiisccicece e 305
WHhite boX TONIEOTING ...c.vvveviiiiiiiiiiciiiiiiiiiccisi ettt 306
Good to know statistics for third-party hosted content...........cccccvveceuvinicirnicrnnnnee. 306
Performance monitoring with the open Elastic APMccccccvuiinicininincnicinicnnne. 307

ELK SEACK c.cvvveeeeieeeeeeeee ettt ettt e et e et eeaat e et e et e s enaae s 308

xXxiv

Additional 1otable t00ls ... 309
ELStic APM ..ottt 309
Making it All WOTKccoovviviiiiiiiiiiiiiicicicccccc 310
CONCIUSION ... 315
Key 1earnings ... 315
14. Performance Behavioral Correlation........ cererenenenesereaeaeanas 317
INErOAUCHON. ...t 317
SHUCKUTE. ...t 317
ODJECHIVES.....viiiiiiiicic 318
Common scenarios and rO0t CAUSES.........cccuiiiriririiiiiiiiiiiiii e 318
Root cause and root cause AnAlYSis..........ccvvcvvviviniviccineiiiiiiniiciiice 318
Digging into common root cases with the fishbone diagram..............ccccoevvvvivucucnnen. 319
ANALYSTS SEEPS .ttt 321
Common scenarios And 100t CAUSESc.cvvveueueiereiiiiriiiisiieieieie et 322
False positives and false negativesccccevvviiniiiiiiiiiiicccce 323
The CONfUSION TATFIX c....vuveivivevereieieieiiiccicee e 323
FAlSE POSTEIVC ...ttt 325

False NEQALIVEocvviiiiiiiiiiiiiicicccc 325
Correlation and suspect 1ankingccococeeeiniiiiiiiiicic e 325
Correlation US. CAUSALIONcvveveveveviieiiiiiiiieieie et 325
SUSPECE TANKITLG ..ot 327
Example 1 Web application performance degradation.................ccoovvvvvueuereininnnn. 328
Example 2 High error rates in APl ...t 328
Example 3 Database performance iSSUES............ccvviviiiiiiininieiciiiiiiiiicieseencians 329
Behavioral pattern analysis..........cccociiniiniiiiice s 329
ANAIYHICS FYPES vttt 329
User behavior ANALYSISccueuciiiiiiiiiiiieiccciici s 330
User and entity behavior nalyticsceveviviiiccccicsiciiiciicccee s 331
Concluding actionable OUtCOMESc.ccoviiiiiniiiiiniiiiiic e 332
Actionable ANALYEICS...........cccvvvviiiiiiiiiiiiiicicccc 332
Example flow, from definitions t0 ACHONS..........ccccuevevevviircicicieisieiciiiicciciee e 332
Trending analySis.......cccveiviniiininiiiicic e 335
Statistical MEINOASocvovvviiiiiiiiiiiiiicic s 335
Machine [earning Models.............ccveuevviiieiiiiiiiciciieieicicc e 336

EXAMPIE FlOTW.....coviiiiiiiiiiiiciiiiciicicte s 337

Defect tracking and ClOSUTe............cvruiiiiiiiiiiiiicccc s 344
THACKITIG ottt 344
Resolution and cloSUTE. ...t 345
The definition Of AONEccueveveievciiiiiiicceee e 345

CONCIUSION. ..ottt 346

Key 1earningscccovviviiiiiiiiiiiiiicc s 346

15. Post-Production Management... veereesnesenneseannes 347

INErOAUCHON. ..ottt 347

SEUCTUTE ..ottt 347

ODJECHIVES. ...ttt 348

Alerting and dashbOarding............ceeueireireiniceinieenceee e 348
Dashboarding best practices and key featuresccocovvvivivivvccciiiiiiiniciiecncnn, 349
Alerting best practices and Key featuresccccvevviioiieiieieseiiiiiiincceeein, 350

Learn from inCidents..........ccooviiiiiiiiiniiiiiiccc s 352
Fail fast, [earm fastccccovviviiiiiiiiiiiiicccc 352
Learning from Incidents MoUEmMent............cccccovvvvvvemeieisisiniiiiiicceessseesccsvnns 353
LFI vs. the traditional APPIOACH.ccoveivivciiiiiiiiiciciicitsc s 354

Continuous iIMProvement JOUINEYccovveiriiiininiiiniirieseeeresseseeesesessenns 355
The Deming CYCLeccvvurummeueieieiciiiiiicicicicis et 356
KAIZON oo 356

Identifying key stakeholderscocceuicieiniiicinicieiriccrcceeece s 357

Defining and agreeing the level of ownership.........ccccccocccviciniiininiciniciniciccce, 359
RACTKCY TOIES ...ttt 359
OUWNETSHIP vttt sttt sttt 360

Performance engineering culture across teamsccoeeueveieivininccccenencccnes 361
Embracing the CUTBUTEoovevivivieiiiiiiiiiiiiiiiiict ettt 363

Predictive analytics and projections ..o 364

Reporting progress to key stakeholders.............ccccviciniiriiinicininininicicicccces 366

CONCIUSION. ...ttt 367

Points t0 T€MEMDETcooviiiiiiiiiiiic s 367

Index ..369-382

CHAPTER 1

Introduction to
Performance
Engineering

Introduction

Many people in the IT world know about software engineering and the practices and roles
that take part in building a software project. Many also know about performance and why
it is important, although this aspect often gets sidelined and not properly addressed.

However, not many know about performance engineering as a thing, all the more so as a
field with specialized professionals and structured methodologies.

Performance engineering, nevertheless, is a wide field with many faces, which touches
on many aspects and concepts. Some of which are project management, system design,
software engineering practices, hardware architecture, testing and automation, and others.
This chapter introduces the tip of the iceberg of performance engineering before going
deeper into explanations.

Structure

This chapter will cover the following topics:
e The story of performance engineering

e Modern principles of software engineering

2 Software Performance Engineering

Objectives

In this chapter, we will get acquainted with the concept of performance engineering in the
light of software engineering. We will briefly review modern concepts and practices of
software development and project management. We will understand what performance
engineering is, why it is important, what its challenges, objectives, and risks (as well as the
risks of neglecting it) are, and what we can benefit from it.

The story of performance engineering

Putting first things first, let us first understand what exactly we are talking about here,
what performance engineering is.

About performance engineering

Intuitively speaking, proper engineering (i.e., designing, outlining, implementing, testing,
and delivering) of software, considering its performance. That is, how well it executes
under various conditions, mostly in terms of (but not limited to) speed and efficiency.

In contrast to classic methodologies of software engineering, with their patterns and rules,
where it is clear who (the developer) does what (writes the code), performance engineering
is a broad set of processes and techniques that are to be applied during the entire software
development lifecycle. It is rooted in processes, people, and technologies, and has an
impact on the optimization of an application’s performance prior to product deployment,
as well as following up on it afterwards.

Alongside a software’s feasible, operational, user-facing interactive functional features,
its buttons, menus, and interactive and responsive behavior, there is often a list of non-
functional requirements: supporting features that are transparent to the user but are
required to keep the app and its data stable, reliable, durable, and secure.

Performance is a non-functional feature, which is sometimes included in the list of
requirements, and sometimes omitted. Concerns such as how much time a page should
take to load, how quickly data should be retrieved, what should be the throughput of
records per second, how it should handle multiple users and heavy load, etc.

As a small side note from my own personal experience on industrial software projects
over more than 27 years, some software applications, like those that deal with finance and
regulations, come with hard, specific performance requirements, as processed data needs
to be delivered at a specific rate, at specific times. Some systems require the data delivery
to be instantaneous (or at least pseudo-instantaneous). Those are intrinsic performance
features that come pre-baked in the product’s list of requirements, as the integrity and
regulatory nature of the system rely on it. Of course, in many cases, performance is not the
most important aspect of the software. Other properties, such as compatibility, functionality,
maintainability, modularity, profitability, and usability, are at the base of any application,

Introduction to Performance Engineering 3

as they are its selling points. But performance is sometimes compared to a currency, with
which we can trade other properties of the application. For example, we can sacrifice
performance in favor of making the code more readable, or sacrifice performance in order
to make sure our program is secure, etc.

Speaking of currencies, putting efforts into improving performance does translate directly
to money, as it may take more time and manpower to build highly performant code, as
well as compatible tests and monitoring, and integrate the whole chunk of work into the
development process.

On the flip side, in many cases, a software project is born from a functional idea, and not
a regulatory need. Thus, the focus of the development process is to make the dream and
vision come to life. This leans mostly on what we want the app to do, rather than how, how
well, or how fast. Building software in this mindset is incredibly common, and performance
comes last on the list of features, if at all. Considering performance as a feature means
utilizing efforts and resources, which, in many cases, is transparent to the developers, too.
They would rather put their work into tangible, functional fruits, and sometimes think of
performance as an extra that may not be worth their time, or do not think about it at all.
Project managers await visible features they can show and talk about, and many people
in the development circle would consider working on performance features a needless
hassle, until they have to.

Life is short; time is money. On the other side of the application sits a user, staring at progress
bars (which are made to comfort them that everything is fine: things are happening, work
is being done), waiting for data to be submitted or retrieved, or worse: staring at a blank,
unresponsive page. While performance is not at the top of the list of many application
developers, it is right in front of the users’ eyes, and, depending on the complexity of the
application, it is very noticeable.

Given this common progression, it is not uncommon practice to start noticing and
considering performance when the project already stands, and not while planning and
designing it. This can be metaphorically compared to making fundamental construction
changes to a house while planning and building it, vs. a renovation, after it is already built
and standing. Doing this in advance can save a lot of trouble and extra work and produce
a smoother, holistically better-integrated result.

Hence, considering performance engineering as part of the initial requirements and
integrating performance practices and relevant quality tests into the software development
lifecycle may be beneficial, even if performance is not one of the topmost considered
priorities for the project, especially if future scale and growth are desired.

There are a few (albeit not too many) books, tutorials, and courses discussing the topic of
performance engineering out there, and it is indeed a wide topic, to say the least. Spanning
from hardware and processor architecture and utilization, through coding principles,
patterns, and antipatterns, programming language-specific tricks and pitfalls, design of

4 Software Performance Engineering

services and cloud integration, various types of tests and benchmarks, tools for analysis
and monitoring, and more.

This book will provide a modern view of performance engineering aimed at the current
day’s developers in mind. It will discuss common patterns, solutions, and methodologies.
Performance is a theory with many faces, and hopefully, this book will put the perplexed
software engineer in the right mindset, using simple, down-to-earth words.

Modern principles of software engineering

Software has existed since the beginning of digital computers. In the beginning (the
1940s), software was written with binary code, directly to the heart of the computer,
which was a room-sized mainframe (the term mainframe comes from the large cabinet
which was housing the computer, the main frame). Binary code is still used today, as this
is the only language computer processors can understand, but it is written indirectly.
Layers of compilation and interpretation separate the code the developer writes from
what the processor eventually reads. Those layers create much more sophisticated and
elegant ways to model our programs and build them in a more natural linguistic manner
(mixed with mathematical logic), and programming languages, much like natural human
languages, evolve and grow, become more elaborate, creating a universe of frameworks,
methodologies, and practices of design and implementation. The computer processors
have also grown immensely in capabilities, and smaller in size, to say the least.

In this segment, we will look a bit into this evolution and where it has brought us to today.

The modern era

The ever-evolving craft of software engineering has grown over the years into a wide
variety of programming languages, frameworks, development and runtime environments,
technologies, techniques, tools, and purposes.

Some languages are driven by object-oriented design; others are procedural. Some are
strongly typed, while others are completely fluid. Some are interpreted, making them
executable on multiple platforms, while others are compiled into binary executables for
a specific operating system on a specific processor. Some would argue that declarative
languages may not be programming languages at all, but in effect, they certainly are (just
to add to the mix).

While the Assembly programming language has always been (and will probably remain)
the closest wrapper representation to actual binary machine code, it too has evolved quite
a lot over the years, as computer processors and their respective architectures have. Going
through the specs of Assembly language keywords for x86 processors will reveal a long
list of added instructions on every consequent generation.

Introduction to Performance Engineering 5

Processors themselves have been keeping up nicely with Moore’s law in the past decades.
In 1965, Gordon Moore predicted that the number of transistors in an integrated circuit
would double every 18-24 months (thereby increasing processing power exponentially).
This prediction of growth, referred to as Moore’s law, has been consistently confirmed
over the years. If we compare the first microprocessor, Intel’s 4004 from 1971 with 2,300
transistors and a clock speed of 750KHz, to today’s latest technology of a TSMC’s N3
processor, with the modern advanced 3-nanometer technology, with more than 314 million
transistors, and clock speed of 3.16GHz, we see a growth of density of more than 136,000
times, and speed of more than 4,000 times. This rate of growth is incomparable to any
other technology in any field.

It is not uncommon to argue that Moore’s law has reached its end of potential, as modern
processors are already pushing the limits of physics itself. The density of transistors is
already literally bordering mere atomic scale, resulting in potential temperatures as hot as
the surface of the sun (or much worse: the temperature of a slice of tomato inside a pressed
grilled cheese sandwich!). In light of the physical limits of the processor itself, modern-day
computers’ CPUs are getting not only dense in themselves, but each modern CPU now
packs multiple processors (cores) at once and uses additional architectural tricks, such as
various data caches, in order to get as performant as possible.

Moore’s law is well known and mentioned everywhere. Let us look at yet another, less-
known law related to microprocessor’s evolution: Dennard scaling, established in 1974 by
Robert Dennard; in simple words, it states that as the transistors get smaller, their density
on the chip grows, but the power consumption per surface area remains the same. This
means that despite the greater (to say the least) processing horsepower, electric power
consumption does not grow remotely as much.

Alongside all those evolutions, other shifts have taken place. Software projects have grown
bigger in scale (with the potential to scale-grow indefinitely upon need). Data has grown
tremendously, and the collection of big data has allowed the creation of enormous data
models to be crunched by machine learning algorithms and artificial intelligence engines.
Software still runs on the user’s computer, but also inside their web browsers, on remote
servers, in large cloud clusters of computers around the globe, inside databases, on mobile
devices, on smart home appliances’ microcontrollers, and in IoT. Software is not just for
nerds who are hacking the local traffic lights system from their moms’ basements, but for
everyone, everywhere, all at once.

Interestingly enough, some companies, running large data centers, chose to place them in
naturally cold locations, such as Canada (CLUMEQ silo in Quebec), Scandinavia (Google’s
Hamina data center in Finland, Facebook’s data center near the Arctic Circle in Lulea,
Sweden), to help the hardware cool while lowering energy costs.

Amid the rapid and ongoing advancements in both software and hardware, we have yet
to even approach the early stages of quantum computing—an area that once seemed like
a distant vision but is now steadily becoming a reality.

