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Preface

Performance engineering is a broad and elusive subject on which several books can be
written, and indeed, quite a few have been. Commonly, users do not give a lot of thought
to how fast their app runs before they intuitively sense it is slow. Many moving parts
contribute to how well an app performs: from the architecture of the CPU cores and the
hardware setup, through the optimization of the code, the underlying runtime environment,
efficiency of algorithms, data structures, databases, storages and strategies, all the way to
the broad worldwide deployment and scaling schemes of services, networking components
and security constraints. This renders performance and efficiency complex cross-cutting
concerns throughout the entire process of producing and running software in our
modern era.

Since ENIAC, the very first digital computer, was introduced just 80 years ago, in the
1940s, the performance and capabilities of computers have been evolving astronomically,
in the endless race to accommodate ever-heavier tasks. Unlike in the old times, software
today is expected to be operated by hundreds of millions of users, literally around the
world, to process vast amounts of data records, while remaining pleasing, easy, and
quick to use, all the way down to the single user’s experience. The evolution of big data,
with machine learning and artificial intelligence, keeps pushing even the most powerful
supercomputers to the edge of their abilities, while on the other hand, quantum computers
advance in lightning speed towards a completely new world of computing. We really are
living in the future that science fiction has charted for us.

As the topic is so broad and versatile, this book covers some of the practical aspects of
developing and delivering performant software in the modern world of technology, while
mentioning other areas as knowledge pointers, in order to help direct the curious readers
to acquire more knowledge, with the intention to provide a wholistic understanding of
performance engineering, right from the standard processes of inception, production,
testing and delivery, to the high level runtime view and analysis. This book is current.
It talks about the past, but looks into the future, demonstrating current trends, tools,
programming languages, frameworks, and platforms, to provide a strong base for people
who are interested in learning the basics of performance engineering.

Chapter 1: Introduction to Performance Engineering- This chapter presents some
of the aspects of performance engineering to understand its broad meaning in today’s
world, in order to acquaint the readers with the concept itself, which not many are aware
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of, at least not in depth. We look at how it is integrated in our modern-day software
development lifecycle processes, we discuss principles of modern software delivery, in
light of the evolution of computers, and some of the performance concerns software must
accommodate nowadays, and why they count.

Chapter 2: Performance Driven Development- In many ways, performance-oriented
development is baked into the software delivery methodology itself. In this chapter, we
get into more refined details of the current-day processes of software delivery. We look
at the evolution of various methodologies, each with its advantages and flaws, and learn
how applications are being planned, built, provisioned, and delivered with modern tools,
in order to get the most out of them. We also mention different types of tests that help
us evaluate the quality of our software and to understand how well it is performing in
comparison to our expectations and requirements.

Chapter 3: Non-functional Requirements Definition and Tracking- Performance planning
is a first-class citizen in the functionality of our application, how it is perceived, how it
functions, how it reacts, and responds. However, it comes with a detailed underlying,
well-defined set of requirements that we need to plan and take into account, attributes
such as security, maintainability, and compliance, as well as considerations related directly
to runtime performance features. This chapter looks at ways we can structure our non-
functional requirements’ definitions as part of our product plan.

Chapter 4: Workload Modeling and Projection- Continuing the analysis and breakdown
of the features in our software, in this chapter, we look at how we identify and map
use cases, usage flows, and workloads, in order to understand how and by whom our
application is expected to be used. We discuss future load projection methods and
performance measurements.

Chapter 5: High Performance Design Patterns- In this detailed technical chapter, we
take a closer look at software and system design. We review the evolution of software
architecture and approaches throughout the decades and how modern architectural design
accommodates modern requirements. We discuss and review in detail several software
design principles, which are directly related to scalability and performance enhancements.

Chapter 6: Performance Antipatterns- In continuation of the discussion of useful design
patterns, in this chapter, we look at potential pitfalls of common design, which are
sometimes overlooked by software architects and developers. Accompanied by concrete
code examples, we take a deep technical look at a number of antipatterns, discuss their
flaws, and why and how to avoid and mitigate them, in order to improve the performance
and overall quality of our application.
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Chapter 7: Performance in the Clouds- Cloud platforms are all the rage in modern
software development and delivery. We discuss advancements in high-power computing,
which is made accessible to all through the cloud, as well as a look into the future of
quantum computing, which is, in fact, already the present, and becoming available as we
speak. We discuss the advantages of running our microservice applications in the cloud,
we look at scalability, elasticity, and large data management.

Chapter 8: Designing Performance Monitoring- Once we have our application running,
we want to make sure it runs smoothly. Monitoring its performance metrics and telemetry,
following detailed logs and runtime traces, gives us real-time insights into issues and
helps us design and plan for improvements. This chapter explains the concepts, tools, and
methodologies to monitor our app, to ensure it lives up to the promises we had made for
it.

Chapter 9: Tools and Techniques for Code Profiling- Looking deeper into the code of our
application, in this practical chapter, we take a technical dive into the analysis of our code,
in development as well as during execution. We discuss static vs. dynamic profiling, we
look at code profiling tools such as cProfile, pyinstrument, line profiler, VisualVM, pprof,
and eBPF, by going through detailed code examples and walkthroughs, to understand
how to put them to use in the real world.

Chapter 10: Performance Testing, Checklist to Best Practices- After learning about tools
for optimizing our code, in this chapter, we look at what we can do once it’s already built.
Testing is a crucial pillar of software development and improvement, and performance
counts for quality. In this chapter, we look at different types of performance tests, how they
are executed, and the importance of test environments, conditions, and practices.

Chapter 11: Test Data Management- Still in the realm of testing, data is at the heart of any
modern-day application. Providing proper quality data for testing is just as important
as the test itself, and the area of test data management (TDM) has been marked as a core
emerging technology by Gartner’s hype cycle for Agile and DevOps. This chapter explains
test data management, strategies for good quality test data, as well as practical demos for
automated test data production, in order to achieve the most from our tests.

Chapter 12: Performance Benchmarking- Another aspect of understanding how well
our application runs is benchmarking and execution analysis over time. In this chapter,
we revisit the different types of performance tests while practically looking at runtime
test tools, such as Locust and JMeter. We differentiate benchmarking from baselining and
discuss the important aspect of continuous performance monitoring and validation, using
an automation server (Jenkins) and containers (Docker).
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Chapter 13: Golden Signals, KPI, Metrics, and Tools- As we run tests and benchmarks to
monitor and get acquainted with our application’s performance, we also want to refer to a
well-defined set of measurable metrics, in order to actually know how well we are doing.
In this chapter, we understand key performance indicators (KPIs). We map different types
of metrics to different levels of roles; we discuss monitoring tools and take a practical
example with the ELK stack and the Elastic Application Performance Monitoring suite.

Chapter 14: Performance Behavioral Correlation- Continuing the discussion on metrics
and runtime monitoring, in this chapter, we look further into how to better understand
the reports of our monitoring tools. While discussing practical examples, we investigate
root cause analysis, data correlations, behavioral analytics, as well as strategies for future
predictions, and practical code examples of mapping and charting them. We also talk
about how to follow up on issues and the process of closing and completing them.

Chapter 15: Post-Production Management- As the previous chapters focused on delivering
the software, making sure it complies with our requirements, code quality, performance
definitions, test requirements, and runtime measurements, this chapter looks at the next
day: once we have our app up and running in a live production environment. We look at
managing dashboards and alerts, about the endless, continuous journey of improvement,
we discuss the different stakeholders and different levels of ownership and responsibility,
and briefly look at predictive analytics for the future.
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CHAPTER 1

Introduction to
Performance
Engineering

Introduction

Many people in the IT world know about software engineering and the practices and roles
that take part in building a software project. Many also know about performance and why
it is important, although this aspect often gets sidelined and not properly addressed.

However, not many know about performance engineering as a thing, all the more so as a
field with specialized professionals and structured methodologies.

Performance engineering, nevertheless, is a wide field with many faces, which touches
on many aspects and concepts. Some of which are project management, system design,
software engineering practices, hardware architecture, testing and automation, and others.
This chapter introduces the tip of the iceberg of performance engineering before going
deeper into explanations.

Structure

This chapter will cover the following topics:
e The story of performance engineering

e Modern principles of software engineering
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Objectives

In this chapter, we will get acquainted with the concept of performance engineering in the
light of software engineering. We will briefly review modern concepts and practices of
software development and project management. We will understand what performance
engineering is, why it is important, what its challenges, objectives, and risks (as well as the
risks of neglecting it) are, and what we can benefit from it.

The story of performance engineering

Putting first things first, let us first understand what exactly we are talking about here,
what performance engineering is.

About performance engineering

Intuitively speaking, proper engineering (i.e., designing, outlining, implementing, testing,
and delivering) of software, considering its performance. That is, how well it executes
under various conditions, mostly in terms of (but not limited to) speed and efficiency.

In contrast to classic methodologies of software engineering, with their patterns and rules,
where it is clear who (the developer) does what (writes the code), performance engineering
is a broad set of processes and techniques that are to be applied during the entire software
development lifecycle. It is rooted in processes, people, and technologies, and has an
impact on the optimization of an application’s performance prior to product deployment,
as well as following up on it afterwards.

Alongside a software’s feasible, operational, user-facing interactive functional features,
its buttons, menus, and interactive and responsive behavior, there is often a list of non-
functional requirements: supporting features that are transparent to the user but are
required to keep the app and its data stable, reliable, durable, and secure.

Performance is a non-functional feature, which is sometimes included in the list of
requirements, and sometimes omitted. Concerns such as how much time a page should
take to load, how quickly data should be retrieved, what should be the throughput of
records per second, how it should handle multiple users and heavy load, etc.

As a small side note from my own personal experience on industrial software projects
over more than 27 years, some software applications, like those that deal with finance and
regulations, come with hard, specific performance requirements, as processed data needs
to be delivered at a specific rate, at specific times. Some systems require the data delivery
to be instantaneous (or at least pseudo-instantaneous). Those are intrinsic performance
features that come pre-baked in the product’s list of requirements, as the integrity and
regulatory nature of the system rely on it. Of course, in many cases, performance is not the
most important aspect of the software. Other properties, such as compatibility, functionality,
maintainability, modularity, profitability, and usability, are at the base of any application,
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as they are its selling points. But performance is sometimes compared to a currency, with
which we can trade other properties of the application. For example, we can sacrifice
performance in favor of making the code more readable, or sacrifice performance in order
to make sure our program is secure, etc.

Speaking of currencies, putting efforts into improving performance does translate directly
to money, as it may take more time and manpower to build highly performant code, as
well as compatible tests and monitoring, and integrate the whole chunk of work into the
development process.

On the flip side, in many cases, a software project is born from a functional idea, and not
a regulatory need. Thus, the focus of the development process is to make the dream and
vision come to life. This leans mostly on what we want the app to do, rather than how, how
well, or how fast. Building software in this mindset is incredibly common, and performance
comes last on the list of features, if at all. Considering performance as a feature means
utilizing efforts and resources, which, in many cases, is transparent to the developers, too.
They would rather put their work into tangible, functional fruits, and sometimes think of
performance as an extra that may not be worth their time, or do not think about it at all.
Project managers await visible features they can show and talk about, and many people
in the development circle would consider working on performance features a needless
hassle, until they have to.

Life is short; time is money. On the other side of the application sits a user, staring at progress
bars (which are made to comfort them that everything is fine: things are happening, work
is being done), waiting for data to be submitted or retrieved, or worse: staring at a blank,
unresponsive page. While performance is not at the top of the list of many application
developers, it is right in front of the users’ eyes, and, depending on the complexity of the
application, it is very noticeable.

Given this common progression, it is not uncommon practice to start noticing and
considering performance when the project already stands, and not while planning and
designing it. This can be metaphorically compared to making fundamental construction
changes to a house while planning and building it, vs. a renovation, after it is already built
and standing. Doing this in advance can save a lot of trouble and extra work and produce
a smoother, holistically better-integrated result.

Hence, considering performance engineering as part of the initial requirements and
integrating performance practices and relevant quality tests into the software development
lifecycle may be beneficial, even if performance is not one of the topmost considered
priorities for the project, especially if future scale and growth are desired.

There are a few (albeit not too many) books, tutorials, and courses discussing the topic of
performance engineering out there, and it is indeed a wide topic, to say the least. Spanning
from hardware and processor architecture and utilization, through coding principles,
patterns, and antipatterns, programming language-specific tricks and pitfalls, design of
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services and cloud integration, various types of tests and benchmarks, tools for analysis
and monitoring, and more.

This book will provide a modern view of performance engineering aimed at the current
day’s developers in mind. It will discuss common patterns, solutions, and methodologies.
Performance is a theory with many faces, and hopefully, this book will put the perplexed
software engineer in the right mindset, using simple, down-to-earth words.

Modern principles of software engineering

Software has existed since the beginning of digital computers. In the beginning (the
1940s), software was written with binary code, directly to the heart of the computer,
which was a room-sized mainframe (the term mainframe comes from the large cabinet
which was housing the computer, the main frame). Binary code is still used today, as this
is the only language computer processors can understand, but it is written indirectly.
Layers of compilation and interpretation separate the code the developer writes from
what the processor eventually reads. Those layers create much more sophisticated and
elegant ways to model our programs and build them in a more natural linguistic manner
(mixed with mathematical logic), and programming languages, much like natural human
languages, evolve and grow, become more elaborate, creating a universe of frameworks,
methodologies, and practices of design and implementation. The computer processors
have also grown immensely in capabilities, and smaller in size, to say the least.

In this segment, we will look a bit into this evolution and where it has brought us to today.

The modern era

The ever-evolving craft of software engineering has grown over the years into a wide
variety of programming languages, frameworks, development and runtime environments,
technologies, techniques, tools, and purposes.

Some languages are driven by object-oriented design; others are procedural. Some are
strongly typed, while others are completely fluid. Some are interpreted, making them
executable on multiple platforms, while others are compiled into binary executables for
a specific operating system on a specific processor. Some would argue that declarative
languages may not be programming languages at all, but in effect, they certainly are (just
to add to the mix).

While the Assembly programming language has always been (and will probably remain)
the closest wrapper representation to actual binary machine code, it too has evolved quite
a lot over the years, as computer processors and their respective architectures have. Going
through the specs of Assembly language keywords for x86 processors will reveal a long
list of added instructions on every consequent generation.



Introduction to Performance Engineering 5

Processors themselves have been keeping up nicely with Moore’s law in the past decades.
In 1965, Gordon Moore predicted that the number of transistors in an integrated circuit
would double every 18-24 months (thereby increasing processing power exponentially).
This prediction of growth, referred to as Moore’s law, has been consistently confirmed
over the years. If we compare the first microprocessor, Intel’s 4004 from 1971 with 2,300
transistors and a clock speed of 750KHz, to today’s latest technology of a TSMC’s N3
processor, with the modern advanced 3-nanometer technology, with more than 314 million
transistors, and clock speed of 3.16GHz, we see a growth of density of more than 136,000
times, and speed of more than 4,000 times. This rate of growth is incomparable to any
other technology in any field.

It is not uncommon to argue that Moore’s law has reached its end of potential, as modern
processors are already pushing the limits of physics itself. The density of transistors is
already literally bordering mere atomic scale, resulting in potential temperatures as hot as
the surface of the sun (or much worse: the temperature of a slice of tomato inside a pressed
grilled cheese sandwich!). In light of the physical limits of the processor itself, modern-day
computers’ CPUs are getting not only dense in themselves, but each modern CPU now
packs multiple processors (cores) at once and uses additional architectural tricks, such as
various data caches, in order to get as performant as possible.

Moore’s law is well known and mentioned everywhere. Let us look at yet another, less-
known law related to microprocessor’s evolution: Dennard scaling, established in 1974 by
Robert Dennard; in simple words, it states that as the transistors get smaller, their density
on the chip grows, but the power consumption per surface area remains the same. This
means that despite the greater (to say the least) processing horsepower, electric power
consumption does not grow remotely as much.

Alongside all those evolutions, other shifts have taken place. Software projects have grown
bigger in scale (with the potential to scale-grow indefinitely upon need). Data has grown
tremendously, and the collection of big data has allowed the creation of enormous data
models to be crunched by machine learning algorithms and artificial intelligence engines.
Software still runs on the user’s computer, but also inside their web browsers, on remote
servers, in large cloud clusters of computers around the globe, inside databases, on mobile
devices, on smart home appliances’ microcontrollers, and in IoT. Software is not just for
nerds who are hacking the local traffic lights system from their moms’ basements, but for
everyone, everywhere, all at once.

Interestingly enough, some companies, running large data centers, chose to place them in
naturally cold locations, such as Canada (CLUMEQ silo in Quebec), Scandinavia (Google’s
Hamina data center in Finland, Facebook’s data center near the Arctic Circle in Lulea,
Sweden), to help the hardware cool while lowering energy costs.

Amid the rapid and ongoing advancements in both software and hardware, we have yet
to even approach the early stages of quantum computing—an area that once seemed like
a distant vision but is now steadily becoming a reality.



