

• Kup książkę
• Poleć książkę
• Oceń książkę

• Księgarnia internetowa
• Lubię to! » Nasza społeczność

https://helion.pl/rt/refdom
https://helion.pl/rf/refdom
https://helion.pl/ro/refdom
https://helion.pl
https://helion.pl/r/4CAKF

Spis treści 5

Spis treści

O autorach .. 10

O recenzentach .. 11

Przedmowa .. 12

Wprowadzenie ... 13

CZĘŚĆ 1. Dlaczego warto stosować DDD,
by stawić czoła złożoności?

ROZDZIAŁ 1
Ewolucja projektowania zorientowanego na domenę 19

Ewolucja podejść do tworzenia oprogramowania 19
Dotychczasowa historia DDD ... 21
Czym jest projektowanie zorientowane na domenę (DDD)? 23
Jak DDD zmienia podejście do problemu? ... 25
Podsumowanie .. 27

ROZDZIAŁ 2
Kwestia złożoności — przestrzeń problemów i rozwiązań 28

Radzenie sobie ze złożonością ... 28
Framework Cynefin ... 30
Teoria pozostałości ... 32
EventStorming .. 34

Przestrzeń problemów i przestrzeń rozwiązań .. 36
Celowe odkrywanie .. 39
Pięć poziomów niewiedzy ... 40
Przezwyciężanie luk w wiedzy ... 40
Spacer deleuzjański ... 41

Podejmowanie decyzji i błędy poznawcze .. 42
Zrozumienie systemu 1 i systemu 2 .. 42
Znaczenie systemu 1 i systemu 2 w refaktoryzacji 43
Typowe błędy poznawcze w refaktoryzacji ... 43
Przykład praktyczny — refaktoryzacja odziedziczonego systemu 45

Podsumowanie .. 46

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

6 Refaktoryzacja domenowa

ROZDZIAŁ 3
Wzorce strategiczne .. 47

Zrozumiała definicja terminów rozwiązuje połowę problemu 47
Czym jest kontekst ograniczony? .. 50

Podział domeny na sensowne granice ... 51
Mapowanie kontekstu .. 53

Zarządzanie komunikacją między kontekstami ograniczonymi 57
Znaczenie prawidłowej komunikacji ... 57
Wzorce komunikacji .. 57
Końcowa mapa kontekstu .. 62

Podsumowanie .. 63

ROZDZIAŁ 4
Wzorce taktyczne ... 64

Wymagania techniczne .. 64
Zrozumienie wzorców taktycznych w DDD .. 65

Encje ... 65
Obiekty wartości ... 67
Agregaty ... 68
Repozytoria ... 70
Fabryki .. 71

Usługi i moduły ... 72
Usługi domenowe ... 73
Usługi aplikacji .. 74
Kluczowe różnice między usługami domenowymi a usługami aplikacji 75
Moduły ... 76
Moduły w refaktoryzacji złożonych systemów .. 77

Zdarzenia domenowe i integracyjne .. 78
Znaczenie zdarzeń we współczesnych aplikacjach 79
Zdarzenia domenowe ... 79
Zdarzenia integracyjne .. 80
Przypadki użycia w naszej aplikacji browarniczej 80
Przepływ zdarzeń i przepływ informacji .. 81

Podsumowanie .. 82

CZĘŚĆ 2. Refaktoryzacja
odziedziczonych systemów

ROZDZIAŁ 5
Wprowadzenie do zasad refaktoryzacji ... 87

Teoria przed praktyką .. 88
Wyzwania ścisłego powiązania usług sprzedaży i magazynowania 88
Wdrażanie CI/CD i obserwowalności w procesie refaktoryzacji 91

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

Spis treści 7

Filary bezpiecznych zmian .. 92
Analiza struktury rozwiązania ... 93
Zrozumienie testów i ich roli w refaktoryzacji ... 94
Zastosowanie piramidy testów — cały przykład 96

W kierunku przejrzystszego i łatwiejszego w utrzymaniu kodu 98
Zasada pojedynczej odpowiedzialności ... 100
Zasada otwarte-zamknięte .. 101
Zasada odwrócenia zależności .. 102
Wzorzec strategii .. 103

Podsumowanie .. 105

ROZDZIAŁ 6
Wyjście z chaosu .. 106

Identyfikacja kluczowych domen ... 107
Zrozumienie otoczenia biznesowego ... 107

Mapowanie obecnej bazy kodu .. 109
Identyfikacja kontekstów ograniczonych .. 110

Definiowanie przejrzystych interfejsów .. 110
Budowa modularnego monolitu .. 116

Mediator kontra Fasada .. 117
Testowanie i stabilizacja .. 121
Podsumowanie .. 124

ROZDZIAŁ 7
Integracja zdarzeń z CQRS .. 125

Rozumienie roli komunikatów w monolicie modularnym 126
Polecenia a zdarzenia .. 127
Zdarzenia domenowe i integracyjne ... 129

Rozdzielenie odpowiedzialności poleceń i zapytań 130
Bezpośrednia synchronizacja baz danych .. 131
Odpytywanie bazy danych .. 132
Widoki zmaterializowane .. 132
Współdzielona baza danych ... 133
Wyzwalacze bazodanowe ... 133

Rejestrowanie zmian stanu za pomocą zdarzeń .. 136
Integracja wzorca Event Sourcing w architekturze CQRS 138
Dodawanie zdarzeń do naszego systemu ERP 142

Testowanie modularnego monolitu sterowanego zdarzeniami 146
Testy specyfikacji .. 147
Przykład 1. Tworzenie zamówienia sprzedaży 147
Przykład 2. Aktualizacja dostępności ... 151

Podsumowanie .. 152

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

8 Refaktoryzacja domenowa

ROZDZIAŁ 8
Refaktoryzacja bazy danych ... 154

Usługi modułowe i potrzeba refaktoryzacji baz danych 155
Zasady refaktoryzacji baz danych i wyznaczania granic domen 158

Ewolucyjne projektowanie baz danych ... 158
Wzorce refaktoryzacji baz danych ... 161

Wyodrębnianie usług i zarządzanie spójnością danych 165
Przejście na nową architekturę i zapewnienie wydajności 169

Wzorce dostępu do danych rozproszonych ... 170
Optymalizacja wydajności zapytań poprzez buforowanie

i indeksowanie ... 172
Testowanie i wdrażanie ... 172

Strategie testowania ... 172
Strategie wdrażania modularnych baz danych 173

Podsumowanie .. 176

ROZDZIAŁ 9
Wzorce DDD do ciągłej integracji i ciągłej refaktoryzacji 177

Integracja DDD z CI/CD .. 177
Dlaczego CI/CD korzysta z DDD? ... 178
Łączenie biznesu i technologii ... 179
Tworzenie pętli informacji zwrotnych ... 179

Wzorce i techniki skutecznego refaktoryzowania zgodnie z DDD 180
Podział kontekstów ograniczonych ... 180
Łączenie kontekstów ograniczonych ... 182

Ciągła refaktoryzacja w kontekście DDD .. 184
Automatyzacja i narzędzia ... 186

SonarQube i GitLab — przykład .. 188
Przykład GitHub Actions ... 190

Podsumowanie .. 192

CZĘŚĆ 3. Przejście od monolitu do mikrousług

ROZDZIAŁ 10
Kiedy i dlaczego warto przejść na architekturę mikrousług? 195

Odkrywanie architektury mikrousług ... 196
Przejście z monolitu modularnego na mikrousługi 196
Monolit kontra mikrousługi .. 197

Uzasadnienie stosowania mikrousług .. 200
Wyzwania i aspekty do rozważenia ... 202

Błędne założenia w obliczeniach rozproszonych 202
Korzyści i kompromisy związane z przejściem na mikrousługi 205

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

Spis treści 9

Ocena gotowości do wdrożenia mikrousług .. 206
Oznaki gotowości do mikrousług .. 207
Rola monolitu modułowego jako fundamentu 207
Dlaczego wzorzec mediatora nie wystarcza do pełnego

rozdzielenia komponentów? .. 208
Przejście na komunikację sterowaną zdarzeniami 208
Przygotowanie do mikrousług .. 208

Strategie przechodzenia na mikrousługi .. 209
Podsumowanie .. 213

ROZDZIAŁ 11
Obsługa zdarzeń i ich ewolucji ... 215

CQRS, Event Sourcing i błędne pojęcie o strumieniowaniu zdarzeń 215
Cykl życia zdarzeń — dlaczego rozwój ma znaczenie? 218
Wdrażanie CQRS+ES — pokonywanie wyzwań technicznych

i kulturowych .. 219
Strategie wersjonowania zdarzeń .. 221

Proste wersjonowanie zdarzeń ... 221
Jak zarządzać ewolucją zdarzeń poza agregatem? 224

Podsumowanie .. 230

ROZDZIAŁ 12
Zarządzanie złożonością — zaawansowane podejścia
do procesów biznesowych .. 231

Złożoność zawsze była obecna .. 232
Protokół zatwierdzania dwufazowego .. 232
Wzorzec Saga ... 234

Choreografia a orkiestracja .. 235
Choreografia ... 236
Orkiestracja ... 237
Wybór między choreografią a orkiestracją .. 240

Zrozumienie różnicy między menedżerami procesów a sagami 241
Dlaczego wzorce Saga i Menedżer procesu nie są zamienne? 242
Jak protokół 2PC odnosi się do wzorców Saga i Menedżer procesu? 243

Obsługa błędów i odzyskiwanie transakcji w sagach 244
Transakcje kompensujące i strategie odzyskiwania 244
Nieprzerwane wykonywanie — zapewnienie niezawodności

w sagach .. 245
Sagi oparte na zdarzeniach ... 246

Podsumowanie .. 246

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

Rozdział 3  Wzorce strategiczne 47

Wzorce strategiczne
Rozdział
3

Jak dowiedziałeś się w poprzednich rozdziałach, największym wyzwaniem na początku każdego projektu — czy to nowego, czy refaktoryzacji — jest język. Do tej pory po-winna być już oczywista waga zrozumienia domeny i zdefiniowania wspólnego języka do budowania wiedzy. Jednak tworzenie języka wszechobecnego wiąże się z ukrytymi wyzwaniami, często wynikającymi z ludzkich sposobów zachowania. Teraz, gdy wiesz już, jak unikać tych błędów, jesteś gotowy odkryć wzorce, które daje nam projektowanie zorientowane na domenę, i nauczyć się, jak je wykorzystać podczas refaktoryzacji systemu. Dlatego w tym rozdziale omówimy następujące główne tematy:
 jasne definiowanie pojęć,
 podział domeny,
 radzenie sobie z komunikacją między kontekstami ograniczonymi. Po przeczytaniu tego rozdziału będziesz wiedział, jak strategicznie podzielić domenę na poddomeny, zrozumieć ich role w Twojej domenie i określić optymalne wzorce ko-munikacji. Ta operacja refaktoryzacji zaowocuje modułowym rozwiązaniem, które jest skalowalne i łatwe w utrzymaniu.

Zrozumiała definicja terminów rozwiązuje
połowę problemu W swojej książce Evans podkreśla znaczenie używania języka wszechobecnego w roz-mowach z ekspertami dziedzinowymi i wszystkimi członkami zespołu. Aby zapewnić jasne zrozumienie problemu i uniknąć niejednoznaczności wynikających z nieprawi-dłowego tłumaczenia z języka domeny na język techniczny, ważne jest, aby język uży-wany w naszej bazie kodu był jak najbardziej zbliżony do modelu domeny. Wynika to z faktu, że produkt, który wdrażamy na produkcji, wykorzystuje język techniczny, a nie biznesowy. Aby to osiągnąć, podczas rozmów między członkami zespołu nikt nie musi tłumaczyć terminów z jednego języka na drugi. Ponieważ oprogramowanie nie radzi sobie z nie-jednoznacznością, powinniśmy opierać rozmowę na modelu domeny. Koncepcję mo-delu domeny dokładniej wyjaśnimy później w tym rozdziale, w punkcie „Czym jest kon-tekst ograniczony?”.

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

48 Refaktoryzacja domenowa

Evans jest w tej kwestii bezkompromisowy:
Dzięki wszechobecnemu stosowaniu języka opartego na modelu i jego ciągłemu udosko-
nalaniu dojdziemy do kompletnego i wyczerpującego modelu, stworzonego z prostych
elementów, które w połączeniu ze sobą wyrażać będą złożone pojęcia. (…)

(…) Eksperci dziedzinowi powinni sprzeciwiać się pojęciom lub strukturom brzmiącym
dziwnie lub nieadekwatnie do opisu znaczenia dziedziny. Natomiast programiści powinni
doszukiwać się niejasności i niespójności, które mogłyby wypaczyć projekt. Język wszechobecny to nie tylko słownictwo; to rygorystyczny język używany przez wszystkich członków zespołu, mający na celu usunięcie wszelkich niejednoznaczności i stworzenie podstawy do identyfikacji granic wokół problemu biznesowego, który ten zespół ma rozwiązać. Podczas refaktoryzacji ważne jest zrozumienie modelu leżącego u podstaw oprogramo-wania, nad którym pracujemy, zanim zaczniemy modyfikować kod. Posiadanie wspól-nego modelu biznesowego, który każdy członek zespołu może zrozumieć, jest kluczem do uzyskania przejrzystej architektury rozwiązania. Pomaga to jasno określić granice wokół problemu biznesowego, a posiadanie wspólnego języka jest pierwszym krokiem. Spróbuj pomyśleć o modelu klienta. Wydaje się, że stworzenie modelu naszego klienta, uwzględniającego wszystkie właściwości, takie jak dane do fakturowania, dane osobowe, adresy dostawy, adresy siedziby itp., jest łatwe. W ten sposób mielibyśmy kompletny model naszego klienta. Większość oprogramowania, nad którym pracujesz, prawdopo-dobnie ma podobny model i to stanowi główny problem, gdy musisz zmodyfikować zachowanie programu lub zaimplementować nową funkcję. Jeśli musisz zaimplementować nową funkcję, na przykład w obszarze logistyki Twojej aplikacji, prawdopodobnie będziesz musiał zmodyfikować model klienta. Do tej pory zwykle byłeś zmuszony do zmiany modelu w obszarze sprzedaży i zakupów. Jak już wiesz, zmiana kodu w wielu obszarach jest jedną z głównych obaw programisty, po-nieważ niemożliwe jest przewidzenie, co stanie się w systemie, gdy zmodyfikujesz wiele komponentów w swojej bazie kodu. Teraz powinno stawać się jasne, jak ważne jest posiadanie modelu dostosowanego do Twojego problemu biznesowego. Model, który jest zbyt duży, zmusza Cię do zmieniania go za każdym razem, gdy musisz zmo-dyfikować swój kod. Model, który jest zbyt mały, nie wystarczy do opisania samego problemu. Jak zaprojektować odpowiedni model? Gdy byłeś dzieckiem, prawdopodob-nie bawiłeś się w głuchy telefon. Zabawne było odkrycie, że zdanie na końcu było zu-pełnie inne niż to na początku. Na każdym etapie, gdy dziecko szeptało zdanie do ucha następnej osoby w rzędzie, zdanie to nieuchronnie się zmieniało, co prowadziło do za-bawnych rezultatów. Rysunek 3.1 pokazuje wzorzec gry w głuchy telefon w rzeczywistej sytuacji biznesowej. Ekspert domenowy wyjaśnia swój problem analitykowi, który wyjaśnia ten sam (czy na pewno?) problem architektowi i tak dalej, aż to wyjaśnienie dociera do zespołu pro-gramistów. Oni tworzą rozwiązanie, które zostanie wdrożone. Czy widzisz problem? Każda osoba zaangażowana w ten wzorzec ma własną interpretację problemu, która różni się od interpretacji poprzedniej osoby w łańcuchu komunikacji.

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

Rozdział 3  Wzorce strategiczne 49

Rysunek 3.1. Głuchy telefon w sytuacji biznesowej Choć podczas zabawy efekt końcowy może być zabawny, w świecie biznesu to nie jest już tak śmieszne. Za każdym razem, gdy osoby ze strony biznesu próbują wyjaśnić pro-blem specjalistom technicznym, używają własnego języka. Dla ludzi biznesu ich język jest jednoznaczny. Ponieważ znają problem i codziennie rozmawiają o nim z kolegami lub klientami, zakładają, że takie samo wzajemne zrozumienie istnieje również z innymi. Doprowadziło to do stworzenia solidnego języka do komunikowania potrzeb i rozwią-zań między tymi dwiema grupami. Specjaliści techniczni również mają swój własny język, który jest zupełnie inny od języka biznesu. Kiedy więc ci ludzie muszą stworzyć model rozwiązujący problem biznesowy opisany przez ludzi biznesu, muszą przetłumaczyć jeden język na drugi. Za każdym razem, gdy coś tłumaczysz, możesz stracić ważne in-formacje lub, co gorsza, możesz być zmuszony użyć własnych słów do opisania tego, co zrozumiałeś. Ten proces powtarza się na każdym etapie, od klienta przez analityka po programistę. Pamiętasz, co mówiliśmy o złożoności, uprzedzeniach i tak dalej w poprzednim rozdziale? Jak można uniknąć tego błędu? Pierwszym i najprostszym rozwiązaniem mogłoby być usunięcie granicy między ekspertami biznesowymi a programistami i doprowadzenie do bezpośredniej komunikacji między tymi ludźmi. Niestety, używają oni różnych ję-zyków i taki rodzaj komunikacji jest niemożliwy. Rysunek 3.2 ilustruje to rozwiązanie. Eksperci domenowi i zespół programistów roz-mawiają ze sobą bez pośrednika. W tym przypadku problemem nie jest utrata infor-macji, ale język. Każda z tych grup używa innego języka i nie może zrozumieć, co mówi druga strona. Mam nadzieję, że dostrzegasz już znaczenie języka wszechobecnego w zespole. Gwaran-tuje on brak niejednoznaczności w komunikacji i stanowi pierwszy krok do stworzenia modelu domeny, który jest naprawdę przydatny dla wszystkich. Wreszcie na rysunku 3.3 możesz zobaczyć rozwiązanie problemu. Dzięki zastosowaniu języka wszechobecnego każdy członek zespołu rozumie pozostałych, a wspólnie mogą stworzyć model domeny pomocny dla wszystkich.

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

50 Refaktoryzacja domenowa

Rysunek 3.2. Bezpośrednia komunikacja między zespołem biznesowym a technicznym

Rysunek 3.3. Wspólny model domeny Posiadanie modelu zgodnego z biznesem znacznie ułatwia refaktoryzację, ponieważ Ty i eksperci biznesowi możecie się wzajemnie zrozumieć bez potrzeby tłumaczeń czy po-średników. Każde nowe wymaganie będzie idealnie dopasowane do Twojego modelu. Co więcej, jeśli nowe wymaganie wiąże się ze zmianą w modelu, możesz być spokojny, że nie wpłynie ona na pozostałe funkcjonalności systemu. Dlaczego jednak potrzebujemy wielu modeli, a nie tylko jednego dla całej firmy? Jeśli naszym celem jest tworzenie oprogramowania, które może się rozwijać, musimy stwo-rzyć wiele małych modeli, z których każdy jest odizolowany od pozostałych. To właśnie jest zadaniem kontekstów ograniczonych.

Czym jest kontekst ograniczony? Kontekst ograniczony jest podstawowym wzorcem w projektowaniu domenowym. Jest on kluczowy dla wzorców strategicznych i stanowi centralną koncepcję przy pracy z du-żymi modelami, ponieważ pozwala podzielić duży problem na mniejsze problemy lub duży model na mniejsze modele.
Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

Rozdział 3  Wzorce strategiczne 51

Posiadanie małych modeli pomaga nam rozwiązywać problemy biznesowe i utrzymywać nasz kod w przyszłości. Aby zidentyfikować granice wokół tego szczegółowego modelu, należy wykorzystać wcześniej odkryty język wszechobecny do identyfikacji kluczowych zdarzeń, które przenoszą dyskusję wokół problemu biznesowego z jednego kontekstu do drugiego. W naszej podróży odkrywania wzorców w projektowaniu domenowym i ich implemen-tacji wykorzystamy system ERP do zarządzania browarem. W tym przykładzie, jak zo-baczysz, zaczniemy od warsztatu EventStormingu. Spotkasz się ze zdarzeniem dome-
nowym, wzorcem, który omówimy w rozdziale 4., „Wzorce taktyczne”. Na razie musisz wiedzieć, że istnieją specjalne zdarzenia, tzw. zdarzenia kluczowe, mające szczególne właściwości, które pomagają nam zidentyfikować te granice. Jednym z takich zdarzeń jest utworzenie zamówienia sprzedaży — SalesOrderCreated. Jest to zdarzenie, które zmienia przebieg procesu. Na przykład po utworzeniu zamówie-nia sprzedaży musisz zweryfikować limit kredytowy klienta, dostępność piwa w maga-zynie oraz warunki wysyłki w obszarze logistyki. Reguły gry się zmieniły! Po tym zdarzeniu prawdopodobnie potrzebujesz nowych zasad do obsługi wszystkich tych przypadków. Te zasady mogą znajdować się w innym modelu, który może być również w różnych kontekstach ograniczonych. Należy pamiętać, że istotą DDD jest tworzenie oprogramowania w oparciu o model, który jest zrozumiały dla wszystkich członków zespołu. Gdy ten model przestanie odzwier-ciedlać przepływ biznesowy ze względu na zwiększoną złożoność i zaangażowane w niego komponenty, zdecydowanie wykraczasz poza granice modelu. Przy refaktoryzacji sta-rego projektu ważne jest zidentyfikowanie tych granic, ponieważ pierwszą rzeczą, którą musisz zrobić po ich odkryciu, jest usunięcie powiązań między obiektami należącymi do różnych kontekstów ograniczonych. Usunięcie tych powiązań umożliwia modyfikację części systemu bez obawy o uszkodzenie innych, co jest fundamentalnym krokiem! Innym elementem, który możesz wykorzystać do wyznaczenia granic między kontek-stami, są ludzkie zachowania. Wróćmy do przykładu utworzonego zamówienia sprze-daży: zachowanie osób zaangażowanych w system płatności będzie inne niż osób za-angażowanych w logistykę, ponieważ będą miały do wykonania różne zadania. Musisz uchwycić te różnice i wykorzystać je do identyfikacji granic swoich kontekstów. Po podzieleniu całej domeny na wiele różnych kontekstów ograniczonych musisz zna-leźć sposób, w jaki te konteksty komunikują się ze sobą. Podobnie jak w rzeczywistym świecie, każda część systemu przyczynia się do końcowego sukcesu, a jedynym sposo-bem na osiągnięcie celu jest współpraca.
Podział domeny na sensowne granice Najbardziej oczywistą zaletą posiadania języka wszechobecnego jest możliwość łatwego identyfikowania granic wokół problemu biznesowego i podziału domeny na wiele pod-domen. Domena biznesowa to główny obszar działalności firmy. W przykładzie, którego użyjemy w tej książce, domeną biznesową jest zarządzanie browarem. Usługa, którą świadczy nasza hipotetyczna firma, to produkcja i sprzedaż najlepszego piwa na świecie! Proste.

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

52 Refaktoryzacja domenowa

Ważne jest, aby zrozumieć, że domena biznesowa nie jest aplikacją komputerową. Opro-gramowanie dostarcza rozwiązanie, które tworzysz, aby pomóc klientowi w zarządzaniu jego biznesem. Domena biznesowa jest zazwyczaj duża i złożona. Jak już wiesz, stwo-rzenie jednego modelu opisującego cały biznes jest niemożliwe i prawdopodobnie jest to sytuacja, w której się znajdziesz, podchodząc do refaktoryzacji. Możesz zauważyć problem z posiadaniem „uniwersalnego” modelu. Jest to ograniczenie dla każdego no-wego wymagania i tworzy obawę przed zmianą czegokolwiek w kodzie ze względu na silne powiązania między komponentami Twojej starej aplikacji. Podobnie jak w rzeczywistości, firma osiąga swoje cele w domenie biznesowej, dzieląc sam biznes na wiele obszarów. DDD robi to samo, dzieląc domenę na wiele poddomen. Poddomena to mała część całej domeny, skupiająca się na konkretnym aspekcie biznesu. Jest to ważny wzorzec strategiczny w ramach DDD. Dlatego jedna poddomena nie wy-starczy, aby zagwarantować sukces firmy. Jest to trybik w bardziej złożonym systemie — domenie. W złożonym systemie każde koło zębate jest zamontowane tak, aby cały system mógł spełnić swoje zadanie. Nie każde koło zębate jest równie ważne. Jeśli złamiesz szprychę w rowerze, możesz kontynuować pedałowanie i dojechać do celu. Jeżeli jednak przebi-jesz oponę, musisz przerwać jazdę, naprawić oponę i dopiero wtedy możesz dokończyć trasę. Zarówno opona, jak i szprycha są częściami koła, ale opona jest ważniejsza. Podob-nie jeśli celem Twojej firmy jest produkcja najlepszego piwa, posiadanie dobrego systemu magazynowego będzie ważne, by przechowywać piwa przed sprzedażą, ale mniej istotne niż posiadanie doskonałego działu produkcji. Żaden z tych działów sam w sobie nie sprawi, że Twój browar będzie dochodowy. Wszystkie te działy, i prawdopodobnie inne, są niezbędne do osiągnięcia celu, ale kluczowe jest zidentyfikowanie, za co każdy z nich jest odpowiedzialny. Aby zidentyfikować granice wokół tych poddomen, musisz użyć języka wszechobecnego odkrytego w fazie eksploracji z ekspertami domenowymi i interesariuszami. Każda nie-spójność w języku wszechobecnym jest ostrzeżeniem, że coś wymaga dokładniejszego zbadania. Dzieje się tak, ponieważ możemy mówić o tych samych rzeczach, ale używając różnych nazw, lub możemy patrzeć na zupełnie inną rzecz, która może należeć do in-nego kontekstu ograniczonego. Musisz się nauczyć, jak zmuszać swoich ekspertów bizne-sowych do pozostawania w przestrzeni problemów, ponieważ wiesz, jak to jest ważne. Musisz określić, czy mówisz o kliencie w kontekście zamówienia sprzedaży, czy w kon-tekście dostawy. Z pewnością w obu przypadkach mówisz o kliencie, ale na dwa różne sposoby. Oznacza to posiadanie dwóch różnych modeli, a w tym przypadku dwóch róż-nych poddomen. Już wiesz, że poddomena to mniejszy obszar wiedzy lub działalności w ramach większej domeny. Teraz odkryłeś również, że — podobnie jak w przypadku zębatki lub koła — niektóre poddomeny są ważniejsze od innych i istnieją różne ich typy. Podział całej domeny na wiele poddomen oznacza, że możesz stworzyć mniejszy model i rozmawiać z konkretnymi ekspertami domenowymi, aby głębiej wejść w mo-delowanie. Podczas pierwszej części refaktoryzacji niezwykle ważne jest wydzielenie domeny, aby rozpocząć od dobrego projektu strategicznego. Proces refaktoryzacji ma na celu poprawę projektu, struktury i implementacji oprogramowania, a także jego nie-
funkcjonalnych cech bez zmiany funkcjonalności.

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

Rozdział 3  Wzorce strategiczne 53

Twoim celem jest zmniejszenie złożoności przypadkowej i poprawa czytelności kodu bez efektów ubocznych. Pamiętaj, że nie możesz przekształcić dużej, skomplikowanej aplikacji w rozwiązanie oparte na mikrousługach w jednym kroku. Zawsze miej na uwadze prawo Galla:
Złożony system, który działa, to system, który rozwinął się z prostego systemu. I na odwrót:
złożony system zaprojektowany od samego początku jako złożony i stworzony od razu
w całości nigdy nie będzie działał i poprawianie go nic nie da. Trzeba go stworzyć ponow-
nie jako system początkowo prosty. Ogólnie rzecz biorąc, refaktoryzacja polega na wdrażaniu zestawu znormalizowanych modyfikacji na małą skalę, gdzie każda zmiana jest drobną korektą kodu źródłowego programu komputerowego. Te poprawki zazwyczaj zachowują istniejącą funkcjonalność oprogramowania, a przynajmniej nie zmieniają jego zgodności ze specyfikacjami funk-cjonalnymi. Autor książki Refaktoryzacja do wzorców projektowych, Joshua Kerievsky, napisał:
Ciągłe udoskonalanie struktury kodu sprawia, że praca z nim staje się coraz łatwiejsza.
Jest to zupełne przeciwieństwo typowego podejścia, w którym przeprowadza się niewiele
refaktoryzacji, a skupia się głównie na szybkim dodawaniu nowych funkcji. Jeśli wyrobisz
w sobie nawyk ciągłej refaktoryzacji, przekonasz się, że rozbudowa i utrzymanie kodu
stają się znacznie prostsze. Pierwszym krokiem tego procesu jest podział całej domeny na wiele poddomen, co na-zywamy mapowaniem kontekstu. Należy podkreślić, że podział domeny na wiele poddomen niekoniecznie wymaga two-rzenia wielu autonomicznych usług. Implementacja może przybrać formę modularnego monolitu lub rozwiązania opartego na mikrousługach. Kluczowe jest to, by kontekst ograniczony pozostawał samodzielny i nie rozciągał się na wiele usług lub modułów.
Mapowanie kontekstu Mapowanie kontekstu to technika umożliwiająca zwizualizowanie i zrozumienie relacji oraz interakcji między kontekstami ograniczonymi w systemie. Polega na stworzeniu mapy, która pokazuje, jak konteksty są ze sobą powiązane, identyfikuje punkty integracji i ujawnia potencjalne problemy. Taka mapa staje się kluczowym narzędziem w zarzą-dzaniu złożonością dużych systemów. Stworzenie takiej mapy nie jest jednak łatwym zadaniem. Należy wykonać szereg kroków w pętli, aż Ty i Twój zespół osiągniecie porozumienie w kwestii wyniku. Pierwszym krokiem jest zidentyfikowanie kontekstów ograniczonych w swoim systemie. Każdy kontekst powinien mieć wyraźne granice i model domeny. Gdy już określisz gra-nice, możesz przejść do następnego kroku, który początkowo może wydawać się trudny. Polega on na zdefiniowaniu, jak te konteksty oddziałują na siebie. Czy są od siebie za-leżne? Czy dzielą dane lub usługi? Gdy uporasz się z tym zadaniem i stworzysz zrozumiałą sieć połączeń, powinieneś spró-bować wyróżnić punkty, w których konteksty integrują się lub muszą się komunikować.

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

54 Refaktoryzacja domenowa

Na koniec powinieneś być w stanie narysować wizualną reprezentację kontekstów i ich relacji. Pod koniec tego rozdziału otrzymasz kompletny schemat ilustrujący przepływ informacji i zależności, jak pokazano na rysunku 3.12. Zanim jednak do tego przejdziemy, rozłóżmy to na mniejsze kroki, aby w pełni zrozumieć mapowanie kontekstu. Na początek, rysunek 3.4 pokazuje, jak moglibyśmy narysować mapę kontekstu naszego systemu ERP, używając kontekstów ograniczonych dla klienta, sprzedaży, magazynu i wysyłki.

Rysunek 3.4. Fragment mapy kontekstów naszego browaru

Rodzaje poddomen W naszej liście zadań mających na celu stworzenie dobrego mapowania pierwszym krokiem jest zdefiniowanie konkretnych modeli domenowych. Co to jednak oznacza w praktyce? Oznacza to, że w architekturze systemu każdy kontekst ograniczony pełni określoną rolę, a Twoim zadaniem jest określenie wagi każdego z nich. Wiąże się to z identyfikacją, które konteksty ograniczone reprezentują główną logikę biznesową, które ją wspie-rają, a które mają bardziej ogólny charakter. Dzięki temu możesz nadawać odpowiedni priorytet swoim wysiłkom i zasobom. W tym celu musisz przeanalizować każdy kontekst ograniczony i przypisać go do jednego z typów poddomen. Ta klasyfikacja pomaga zrozumieć strategiczne znaczenie każdej części systemu. Poddomeny reprezentują konkretne obszary w ramach domeny. Odpo-wiadają one poszczególnym kontekstom ograniczonym, z własnymi zestawami reguł i logiki.
Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

Rozdział 3  Wzorce strategiczne 55

W mapowaniu kontekstów możesz wybrać spośród kilku typów poddziedzin, w zależ-ności od ich roli w systemie:
 poddomena główna,
 poddomena pomocnicza,
 poddomena ogólna. Poprzez identyfikację typu każdego z Twoich kontekstów ograniczonych możesz po-dejmować świadome decyzje dotyczące podejścia do ich rozwoju, integracji i utrzymania. Na przykład prawdopodobnie zainwestujesz więcej zasobów i innowacji w domenę główną, natomiast dla domen ogólnych możesz rozważyć zastosowanie gotowych roz-wiązań. Ten proces identyfikacji i kategoryzacji jest kluczowy, ponieważ stanowi fundament mapy kontekstów, kierując ogólną strategią architektoniczną i pomagając dostosować wysiłki ze strony zespołu technicznego do priorytetów biznesowych. Ma to również silny wpływ na strukturę i skład zespołów. Na przykład zespół pracujący nad domeną główną będzie prawdopodobnie początkowo składał się z bardziej doświadczonych programistów, a później niektórzy z nich mogą zostać przeniesieni do innych zespołów w celu dziele-nia się wiedzą. Teraz, gdy rozumiesz już mapy kontekstów, przyjrzyjmy się dokładnie, czym one są i ja-kim celom służą.

Poddomena główna Poddomena główna stanowi serce biznesu. To właśnie tutaj znajduje się unikalna pro-pozycja wartości Twojej firmy i tu masz przewagę konkurencyjną. Jest to najbardziej kluczowa i złożona część Twojego systemu, wymagająca największej uwagi i zasobów. W przypadku naszego systemu ERP domena główna to system sprzedaży, ponieważ jest kluczowy dla działalności i sukcesu firmy.
Poddomena pomocnicza Poddomeny pomocnicze, choć ważne, nie są głównym obszarem zainteresowania firmy. Uzupełniają poddomenę główną i umożliwiają jej działanie, ale nie zapewniają przewagi konkurencyjnej. Te poddomeny są niezbędne do sprawnego funkcjonowania firmy, ale nie są tym, co wyróżnia ją na tle konkurencji. W naszym przykładzie ERP poddomeną pomocniczą byłby moduł obsługi klienta — jest kluczowy dla zadowolenia klientów, ale nie stanowi głównego motora biznesu.
Poddomena ogólna Poddomeny ogólne są powszechne w wielu firmach i nie są charakterystyczne dla kon-kretnego przedsiębiorstwa. Często są to obszary, w których nie ma potrzeby wymyśla-nia koła na nowo i można skorzystać z istniejących rozwiązań lub zlecić je na zewnątrz. Dobrym przykładem poddomeny ogólnej jest system fakturowania — jest niezbędny do monitorowania finansów, ale nie jest obszarem, na którym browar skupiałby swoje innowacyjne wysiłki. Rysunek 3.5 przedstawia mapę kontekstów z definicją każdej poddomeny.

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

56 Refaktoryzacja domenowa

Rysunek 3.5. Rodzaje poddomen Zrozumienie różnych typów poddomen jest kluczowe dla efektywnego mapowania kon-tekstu i ogólnego projektowania systemu. Pomaga w ustalaniu priorytetów prac rozwo-jowych, efektywnym przydzielaniu zasobów oraz podejmowaniu strategicznych decyzji dotyczących integracji i rozwoju systemu. Dzięki rozpoznaniu, które części systemu należą do poszczególnych kategorii poddomen, można skupić wysiłki innowacyjne tam, gdzie mają one największe znaczenie, jednocześnie znajdując wydajne rozwiązania dla mniej krytycznych obszarów.

Poddziedziny zmieniają się w czasie

To, co zaprojektowaliśmy w tym rozdziale, to pierwsza mapa kontekstów, oparta
na wiedzy zdobytej podczas rozmów z ekspertami biznesowymi browaru. Staraliśmy
się zaspokoić rzeczywiste potrzeby biznesowe. Z czasem nasza wiedza o domenie
będzie się pogłębiać, a procesy biznesowe będą się zmieniać — z inicjatywy eks-
pertów biznesowych lub bez niej. W związku z tym nasze konteksty ograniczone
lub ich znaczenie w domenie mogą ulec zmianie. Co jest równie ważne, jeśli była
rotacja zespołu, każdy członek powinien być w stanie zająć się prawie każdą pod-
domeną.

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

Rozdział 3  Wzorce strategiczne 57

Zarządzanie komunikacją między
kontekstami ograniczonymi Teraz, gdy już dobrze rozumiesz znaczenie odpowiednio zdefiniowanych granic, mo-żemy przejść do ostatniego aspektu kontekstów ograniczonych — komunikacji. Aby zbudować spójny system, te konteksty ograniczone muszą skutecznie ze sobą współ-działać. Dlatego właśnie kluczowa jest odpowiednia komunikacja między kontekstami ograniczonymi. Projektowanie strategiczne oferuje pewne wzorce, które pomogą Ci zi-dentyfikować najlepsze rozwiązania w oparciu o kontekst działania. Twoim celem jest uzyskanie jasnego obrazu tego, jak różne części systemu współdziałają i odnoszą się do siebie nawzajem.
Znaczenie prawidłowej komunikacji Skuteczna komunikacja między kontekstami ograniczonymi sprawia, że system działa jako spójna całość. Gdy konteksty ograniczone nie komunikują się prawidłowo, pojawiają się niespójności i problemy z integracją, prowadząc do fragmentacji systemu. Odpowied-nie mechanizmy komunikacji pomagają w następujący sposób:

 Utrzymanie spójności sprawia, że dane i zachowania są spójne w całym systemie.
 Zwiększenie elastyczności umożliwia niezależny rozwój kontekstów ograniczonych bez naruszania integralności systemu.
 Zmniejszenie powiązań minimalizuje zależności między różnymi częściami systemu, ułatwiając zarządzanie i refaktoryzację.
 Poprawa przejrzystości zapewnia jasne wzorce interakcji, co pomaga w rozumieniu i utrzymywaniu systemu.

Wzorce komunikacji Te wzorce strategiczne to wysokopoziomowe strategie projektowe stosowane do za-rządzania relacjami między kontekstami ograniczonymi. Zapewniają one schemat po-stępowania w kwestii integracji, współpracy i zarządzania pomiędzy kontekstami. Do najważniejszych wzorców można zaliczyć między innymi następujące:
 Wspólne jądro,
 Klient-dostawca,
 Konformista,
 Warstwa zapobiegająca uszkodzeniu,
 Usługa otwartego hosta,
 Język opublikowany,
 Oddzielne drogi.

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

58 Refaktoryzacja domenowa

Wspólne jądro We wzorcu wspólnego jądra dwa lub więcej kontekstów ograniczonych dzielą część tego samego modelu domeny. Ta współdzielona część jest zarządzana wspólnie przez ze-społy odpowiedzialne za każdy kontekst. Ten wzorzec jest przydatny, gdy konteksty są silnie współzależne i wymagają spójnego zrozumienia określonych aspektów modelu. Używając naszego systemu ERP jako przykładu, przyjrzyjmy się kontekstom magazynu i sprzedaży, które dzielą informacje o piwie i poziomach zapasów. Dzięki temu wspólnemu jądru oba konteksty mają takie samo zrozumienie danych o produktach, co zmniejsza ryzyko rozbieżności. Kontekst magazynu zarządza poziomami zapasów, szczegółami dotyczącymi piwa i miejscem składowania w magazynie, natomiast kontekst sprzedaży obsługuje zamówienia klientów, przetwarzanie zamówień i realizację. Wspólne jądro w tym scenariuszu obejmuje szczegóły dotyczące piwa (patrz rysunek 3.6), takie jak jednostka magazynowa (SKU, ang. stock keeping unit), opis i cena, które są klu-czowe dla prawidłowego funkcjonowania obu kontekstów.

Rysunek 3.6. Przykład wspólnego jądra

Klient-dostawca Wzorzec Klient-dostawca ustanawia wyraźną relację góra – dół między kontekstami. Kontekst znajdujący się wyżej w hierarchii dostarcza usługi lub dane, a kontekst niżej w hierarchii jest od nich zależny. Dostawca (wyżej) musi sprawić, by klient (niżej) mógł polegać na jego usługach, co sprzyja współpracy. Na przykład kontekst klienta (dostawca) dostarcza informacje o klientach do kontekstu sprzedaży (klient), jak widać na rysunku 3.7. Kontekst sprzedaży polega na dokładnych danych klientów, aby skutecznie zarządzać zamówieniami. Kontekst sprzedaży zajmuje się obsługą zamówień i przetwarzaniem płatności, a kontekst klienta zarządza limitami
Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

Rozdział 3  Wzorce strategiczne 59

kredytowymi i specjalnymi kategoriami. Kontekst klienta musi sprawić, by informacje o klientach były dokładne i dostępne na czas, aby kontekst sprzedaży mógł działać pra-widłowo.

Rysunek 3.7. Przykład wzorca Klient-dostawca

Konformista W modelu konformistycznym kontekst działający w dole strumienia przetwarzania (konformista) przyjmuje model i protokoły komunikacyjne kontekstu z góry strumienia bez wpływania na niego. Ten wzorzec jest stosowany, gdy kontekst z dołu strumienia ma niewielką kontrolę nad kontekstem z góry i musi dostosować się do jego sposobu działania. Na przykład zewnętrzna usługa przetwarzania płatności narzuca format danych i proto-koły interakcji, a wewnętrzny kontekst płatności musi się do tych wymagań dostosować (patrz rysunek 3.8). Usługa przetwarzania płatności (zewnętrzna) zapewnia bramki płat-nicze, przetwarzanie transakcji i wykrywanie oszustw, natomiast wewnętrzny kontekst płatności zarządza wewnętrznymi przepływami płatności, danymi płatniczymi użyt-kowników i rejestrami transakcji. Wewnętrzny kontekst płatności musi dostosować się do protokołów i formatów danych określonych przez zewnętrzną usługę przetwarzania płatności, aby zapewnić płynną integrację.

Rysunek 3.8. Przykład wzorca Konformista

Warstwa zapobiegająca uszkodzeniu Wzorzec warstwy zapobiegającej uszkodzeniu (ACL, ang. anti-corruption layer) wpro-wadza warstwę, która tłumaczy i dostosowuje modele dwóch kontekstów ograniczonych. Warstwa ta zapobiega zanieczyszczeniu kontekstu docelowego przez model kontekstu źródłowego, pozwalając każdemu z nich zachować integralność.
Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

60 Refaktoryzacja domenowa

W naszej platformie ERP kontekst sprzedaży może wykorzystywać warstwę zapobie-gającą uszkodzeniu do tłumaczenia danych z przestarzałego systemu CRM na swój własny model. Dzięki temu kontekst sprzedaży nie jest zanieczyszczony przez przestarzały model CRM. Stary system CRM zarządza relacjami z klientami, danymi historycznymi i inte-rakcjami sprzedażowymi, a kontekst sprzedaży obsługuje bieżące procesy sprzedażowe, interakcje z klientami i zarządzanie zamówieniami. Warstwa zapobiegająca uszkodze-niu tłumaczy dane CRM na format i strukturę wymagane przez kontekst sprzedaży, za-pewniając integralność i spójność danych (patrz rysunek 3.9).

Rysunek 3.9. Przykład warstwy zapobiegającej uszkodzeniu

Usługa otwartego hosta Wzorzec usługi otwartego hosta (OHS, ang. open host service) polega na udostępnianiu możliwości kontekstu ograniczonego poprzez dobrze zdefiniowany interfejs usługi, czy-niąc go otwartym hostem dla interakcji z innymi kontekstami. Wzorzec ten promuje luźne powiązania i jasne kontrakty między kontekstami. Na przykład kontekst dostawy może udostępniać wzorzec usługi otwartego hosta, który pozwala innym kontekstom, takim jak sprzedaż i magazyn, na żądanie usług wysyłko-wych poprzez standardowe API. Kontekst dostawy zarządza stawkami wysyłkowymi, przewoźnikami i informacjami o śledzeniu przesyłek. Kontekst sprzedaży żąda usług dostawy do realizacji zamówień, a kontekst magazynu żąda informacji o wysyłce do prze-wozów i uzupełnień zapasów. Kontekst dostawy udostępnia swoje usługi poprzez API, umożliwiając innym kontekstom interakcję bez ścisłego powiązania (patrz rysunek 3.10).

Rysunek 3.10. Przykład usługi otwartego hosta

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

Rozdział 3  Wzorce strategiczne 61

Język opublikowany Wzorzec języka opublikowanego polega na zdefiniowaniu wspólnego języka (zestawu wspólnych terminów i struktur danych), którego wiele kontekstów ograniczonych używa do komunikacji. Ten wspólny język zmniejsza prawdopodobieństwo wystąpienia nie-porozumień i upraszcza integrację. W architekturze mikrousług do komunikacji między usługami często stosuje się wspólny schemat zdarzeń. Dzięki temu wszystkie usługi spójnie interpretują dane zdarzeń. Na przykład kontekst sprzedaży publikuje zdarzenia zamówień, gdy składane są nowe za-mówienia. Kontekst magazynu odbiera zdarzenia zamówień, aby aktualizować stany magazynowe, a kontekst fakturowania odbiera zdarzenia zamówień, aby generować faktury. Język opublikowany definiuje wspólny schemat dla zdarzeń zamówień, co gwa-rantuje, że wszystkie usługi mogą poprawnie interpretować dane (patrz rysunek 3.11).

Rysunek 3.11. Przykład opublikowanego języka

Oddzielne drogi Wzorzec oddzielnych dróg rozwiązuje problem złożoności, która pojawia się, gdy dwie odrębne części systemu muszą się rozwijać niezależnie. Wzorzec ten polega na identy-fikacji w ramach domeny kontekstów ograniczonych, które mają minimalną interakcję i mogą być rozwijane oraz utrzymywane oddzielnie. Poprzez wyraźne rozdzielenie tych kontekstów, zespoły mogą skupić się na konkretnych potrzebach i regułach każdego obszaru domeny, nie będąc hamowanymi przez zawiłości innych obszarów. To rozdzie-lenie zmniejsza sprzężenie i umożliwia bardziej elastyczne i responsywne cykle rozwoju, pozwalając każdemu kontekstowi ewoluować we własnym tempie i w swoim kierunku.

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

62 Refaktoryzacja domenowa

Końcowa mapa kontekstu Na rysunku 3.12 możesz zobaczyć pełną mapę kontekstów naszego systemu ERP, przed-stawiającą wzorce komunikacji między poszczególnymi kontekstami ograniczonymi. Możesz zacząć od jednego wzorca, na przykład konformistycznego, a następnie przejść do usługi otwartego hosta, jeśli konteksty ograniczone muszą pozostać rozdzielone. Gdy musisz komunikować się z systemami zewnętrznymi, możesz zdecydować się na po-dejście konformistyczne lub użyć warstwy zapobiegającej uszkodzeniu, aby zachować swój język wewnątrz modelu domeny. Nie jesteś zmuszony do korzystania tylko z jednego rozwiązania — powinieneś używać odpowiedniego narzędzia w odpowiednim miejscu.

Rysunek 3.12. Pełna mapa kontekstu Refaktoryzacja złożonych systemów z wykorzystaniem zasad DDD wymaga starannego przemyślenia sposobu komunikacji między kontekstami ograniczonymi. Odpowiednia komunikacja zapewnia spójność, elastyczność i przejrzystość, umożliwiając systemowi spójne funkcjonowanie. Dzięki wzorcom strategicznym, takim jak Wspólne jądro, Klient-dostawca, Konformista, Warstwa zapobiegająca uszkodzeniu, Usługa otwartego hosta czy Język opublikowany, zespoły mogą skutecznie zarządzać relacjami i interak-cjami między kontekstami ograniczonymi.

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

Rozdział 3  Wzorce strategiczne 63

Podsumowanie W tym rozdziale zagłębiłeś się w strategiczne wzorce DDD, odkrywając, jak istotne jest ustanowienie języka wszechobecnego w celu wyeliminowania niejednoznaczności i za-pewnienia zrozumiałej komunikacji między wszystkimi członkami zespołu. Dowiedziałeś się, że dostosowanie języka używanego w kodzie do modeli domeny po-maga stworzyć przejrzystą i zrozumiałą architekturę, upraszczając przyszłe zmiany i zmniejszając liczbę błędów. Dowiedziałeś się, jak ważne jest dzielenie dużych modeli na mniejsze, łatwiejsze w zarządzaniu konteksty ograniczone, co jest kluczowe dla utrzy-mania systemu, który może rozwijać się bez obaw o nieprzewidziane konsekwencje. Takie podejście pozwala na izolację różnych obszarów biznesowych, ułatwiając mody-fikację części systemu bez zakłócania innych. Na koniec poznałeś kilka strategicznych wzorców, które pomagają zarządzać relacjami i interakcjami między tymi kontekstami. Należą do nich wzorce: Wspólne jądro, Klient-dostawca, Konformista, Warstwa zapo-biegająca uszkodzeniu, Usługa otwartego hosta i Język opublikowany. Każdy z tych wzorców oferuje schemat utrzymania spójności, elastyczności i przejrzy-stości w całym systemie, zapewniając jego funkcjonowanie jako spójnej całości. Jeśli będziesz rozumiał te wzorce, to będziesz potrafił identyfikować granice w swojej do-menie i skutecznie zarządzać złożonością dużych systemów. W następnym rozdziale zagłębisz się w taktyczne wzorce projektowe, które dostarczą Ci praktycznych narzędzi i technik do wdrożenia poznanych dotąd koncepcji.

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

Poleć książkęKup książkę

https://helion.pl/rf/refdom
https://helion.pl/rt/refdom

https://program-partnerski.helion.pl

	!5-10_spis
	03
	Blank Page
	Blank Page

