
 cmdlet podstawowa jednostka funkcjonalna w PowerShellu

 funkcja zestaw poleceń dla PowerShella

 skrypt plik tekstowy zawierający polecenia PS z rozszerzeniem .ps1

 parametr argument przekazywany do cmdletu/funkcji/skryptu

 alias skrót dla cmdletu/funkcji/skryptu

obiekt instancja klasy, zawiera właściwości oraz metody

 pipeline (potok) mechanizm przekazywania obiektów między cmdletami

Wersja Wraz z systemem Data wydania

1.0 Windows XP / Windows Server 2008 01.11.2006

2.0 Windows 7 / Windows Server 2008 R2 01.11.2009

3.0 Windows 8 / Windows Server 2012 01.08.2012

4.0 Windows 8.1 / Windows Server 2012 R2 01.11.2013

5.0 Windows 10 / Windows Server 2016 16.12.2015

5.1 Windows 10 Anniversary / Windows Server 2016 27.01.2017

 CTRL+C przerywa aktualnie wykonywane polecenie

 lewo/prawo nawigacja kursorem w linii poleceń

 CTRL+lewo/prawo przechodzi do poprzedniego/następnego słowa

 HOME/END przesuwa kursor na początek/koniec wiersza

 góra/dół poruszanie po historii poleceń

 SHIFT + TAB/TAB autouzupełnianie poleceń

 ESC czyści bieżącą linię poleceń

ALT + ENTER przełącza tryb pełnoekranowy

CTRL + SHIFT + plus/minus zwiększa / zmniejsza rozmiar czcionki

Wersja Wraz z systemem Data wydania

6.0 +
 Windows 7 SP1 / Windows Server 2008 R2
 Ubuntu 14.04 / Debian 8.7 / Red Hat 7 / OpenSUSE 42.2
 macOS 10.12

20.01.2018

7.0 +
 Windows 7 SP1 / Windows Server 2008 R2
 Ubuntu 16.04+ / Debian 9+ / Red Hat 7+ / OpenSUSE 15+
 macOS 10.13+

04.03.2020

Get-Command wyszukuje polecenia
Get-Help wyświetla plik pomocy dla danego polecenia

Get-Service wyświetla listę usług w systemie
Get-Process wyświetla listę uruchomionych procesów
Get-Content wyświetla zawartość pliku

Get-ChildItem wyświetla zawartość katalogu
Get-Date wyświetla aktualną datę

Set-Location zmienia bieżącą lokalizację w drzewie katalogów
Show-Command wyświetla graficzne okno do budowy poleceń

$PSVersionTable zmienna zawierająca dane dotyczące wersji PowerShella
rejestr HKLM:\SOFTWARE\Microsoft\PowerShell\3\PowerShellEngine

rejestr (PS 7) HKLM:\SOFTWARE\Microsoft\PowerShellCore\InstalledVersions
pwsh -version (PS 7) polecenie zwracające wersję PowerShella

Debug (db) informacje debugowania podczas wykonywania polecenia
ErrorAction (ea) określa, jak PS reaguje na błędy niekrytyczne

ErrorVariable (ev) zapisuje komunikaty o błędach do określonej zmiennej
InformationAction (infa) określa, jak PS reaguje na strumień informacyjny z polecenia
InformationVariable (iv) zapisuje komunikaty informacyjne do określonej zmiennej

OutVariable (ov) zapisuje obiekt wyjściowy do określonej zmiennej
OutBuffer (ob) liczba obiektów do buforowania przed wysłaniem do potoku

PipelineVariable (pv) zapisuje wartość wyjściową polecenia do określonej zmiennej
Verbose (vb) szczegółowe informacje o wykonywanych operacjach

WarningAction (wa) określa, jak PS reaguje na ostrzeżenia

WarningVariable (wv) zapisuje komunikaty ostrzeżeń do określonej zmiennej

 SKRÓTY KLAWISZOWE

 SPRAWDZANIE WERSJI

 WINDOWS POWERSHELL

 POWERSHELL CORE / POWERSHELL 7

WhatIf (wi) przewiduje co się stanie po wykonaniu akcji
Confirm (cf) wymaga dodatkowego potwierdzenia

 HISTORIA

 PODSTAWOWE DEFINICJE

 WPROWADZENIE CMDLETY I PARAMETRY

 POPULARNE CMDLETY

 CZYTANIE SKŁADNI

 PARAMETRY WSPÓLNE

Clear-Host (cls/clear) czyści ekran konsoli PowerShell

 CZYSZCZENIE OKNA KONSOLI

 PowerShellZone

Składnię dowolnego cmdletu można uzyskać, wykonując polecenie PowerShella:
Get-Command Get-EventLog -Syntax. W wyniku otrzymasz:

Przykład ilustruje dwa niezależne zestawy parametrów, z których można korzystać wyłącznie
rozdzielnie, użycie elementów z obu grup jednocześnie spowoduje błąd składni. Część
parametrów jest opcjonalna, co wskazują nawiasy kwadratowe []. Oznaczają one elementy,
które można pominąć bez wpływu na poprawność wywołania. Nawiasy klamrowe { } określają
z kolei zestaw wartości wzajemnie się wykluczających (należy wybrać dokładnie jedną z nich).
Nawiasy trójkątne < > definiują typ oczekiwanej wartości, np. ścieżkę, liczbę czy obiekt. Warto
również pamiętać, że nie wszystkie parametry wymagają podania wartości, wiele z nich to
przełączniki, które uaktywniają konkretną funkcję jedynie poprzez samo wystąpienie
w poleceniu, bez konieczności przypisywania im argumentów.

POWERSHELL
TABLICE INFORMATYCZNE ADAM PIETRZAK

PowerShell to zaawansowane narzędzie do automatyzacji i zarządzania konfiguracją, łączące
moc skryptów z interaktywnym środowiskiem wiersza poleceń. Bazuje na platformie .NET, co
umożliwia administratorom i programistom efektywne zarządzanie systemem oraz
automatyzację zadań za pomocą cmdletów i skryptów. Dzięki obsłudze obiektów PowerShell
pozwala na łatwe przetwarzanie danych oraz integrację z różnymi aplikacjami i usługami. Jest
to wszechstronne narzędzie, odpowiednie zarówno dla początkujących, jak i zaawansowanych
użytkowników.

W 2002 roku Microsoft rozpoczął prace nad nową powłoką systemową, początkowo nazwaną
Monad. Celem projektu było połączenie programowania, automatyzacji i zarządzania
systemem, umożliwiając administratorom efektywne wykonywanie zadań nawet bez
zaawansowanej znajomości programowania. Dziś PowerShell jest jednym z najważniejszych
narzędzi w nowoczesnych środowiskach IT. Wyróżniamy dwie główne wersje:

🔹 Windows PowerShell – dostępny natywnie w systemie Windows, oparty na .NET

🔹 PowerShell 7 – nowoczesna, wieloplatformowa wersja (Windows, Linux, macOS), oparta
 na .NET Core i rozwijana jako otwarte oprogramowanie

Parametry wspólne to specjalny zestaw parametrów, którego możesz używać dla dowolnego
cmdletu. Są implementowane przez PowerShella i automatycznie dostępne dla każdego
polecenia, choć istnieją pewne wyjątki. Przykładowo, jeżeli cmdlet nie generuje żadnych
szczegółowych informacji, użycie wspólnego parametru -Verbose nie będzie miało efektu.

Cmdlety (wymawiane 'command-lets') to specjalne polecenia w PowerShellu, które wykonują
określone zadania. Są podstawowymi elementami składowymi skryptów i funkcji PowerShell.
Zawsze składają się z czasownika (verb) i rzeczownika (noun), oddzielonych łącznikiem, np.
Get-Process, Set-Variable. Czasownik opisuje działanie, a rzeczownik określa obiekt, na
którym to działanie jest wykonywane. Cmdlety mogą przyjmować parametry, które modyfikują
ich zachowanie. Parametry poprzedzone są łącznikiem, który sygnalizuje konsoli, że słowo
następujące po łączniku jest parametrem, a nie wartością przekazywaną do polecenia
np. -Name, -Path.

Nie wszystkie parametry wymagają wartości i nie wszystkie nazwy parametrów muszą być
określone. W niektórych przypadkach nazwa parametru jest domyślna i nie musi być jawnie
podana. To znaczy, że niektóre polecenia będą działać doskonale bez podania parametru, inne
tego parametru do działania będą wymagały, ale nie zawsze występuje konieczność
podawania nazwy samego parametru.

< 1 >

Get-EventLog [-LogName] <string> [[-InstanceId] <long[]>] [-ComputerName
<string[]>] [-Newest <int>] [-After <datetime>] [-Before <datetime>] [-UserName
<string[]>] [-Index <int[]>] [-EntryType <string[]>] [-Source <string[]>]
[-Message <string>] [-AsBaseObject] [<CommonParameters>]

Get-EventLog [-ComputerName <string[]>] [-List] [-AsString] [<CommonParameters>]

POWERSHELL tablice informatyczne

 LOGIKA OBIEKTOWA
PowerShell opiera się na logice obiektowej, co oznacza, że wszystkie dane przetwarzane
w tym środowisku mają postać obiektów .NET. Każdy taki obiekt posiada właściwości
(properties), które przechowują dane, oraz metody (methods), czyli operacje, które można
na nim wykonać. W przeciwieństwie do tradycyjnych interpreterów poleceń, które operują
głównie na tekście, PowerShell umożliwia bezpośrednią pracę z obiektami. Dzięki temu jest
bardziej elastyczny i wydajny w zakresie zarządzania systemem.

 PRZETWARZANIE POTOKOWE
Przetwarzanie potokowe (pipeline) to mechanizm umożliwiający łączenie wielu poleceń
w jeden ciąg oraz przekazywanie danych pomiędzy nimi. Odbywa się to przy użyciu operatora
potoku | (pipeline operator), który pozwala przekazywać obiekty zwracane przez jeden cmdlet
bezpośrednio do kolejnego. Dzięki temu możliwe jest budowanie bardziej złożonych operacji
przy jednoczesnym zachowaniu czytelności i wysokiej wydajności przetwarzania danych.
PowerShell automatycznie mapuje obiekty przesyłane potokiem do parametrów następnego
polecenia, bazując na typach obiektów oraz nazwach ich właściwości.
Przykład:

Get-Service | Where-Object {$_.Status -eq "Running"} | Select-Object Name

Dzięki przetwarzaniu potokowemu ze wszystkich serwisów wybieramy tylko te, które są
uruchomione, dodatkowo ograniczamy się jedynie do wyświetlenia ich nazwy.

Get-Help <polecenie> wyświetla podstawowe informacje o poleceniu
<polecenie> -? skrót do podstawowej pomocy dla polecenia

Get-Help <polecenie> -Full pokazuje pełną dokumentację dla polecenia
Get-Help <polecenie> -Examples wyświetla tylko przykłady użycia dla polecenia

Get-Help <polecenie> -Online otwiera stronę Microsoft Docs z dokumentacją
Get-Help <polecenie> -ShowWindow otwiera pomoc w osobnym oknie

Get-Help -Category HelpFile wyświetla dostępne pliki pomocy dla PowerShella
Get-Help about_<temat> pokazuje dokumentację dotyczącą danego tematu

Update-Help aktualizuje pliki pomocy PowerShella
Save-Help pobiera pliki pomocy i zapisuje je lokalnie

 KORZYSTANIE Z POMOCY
PowerShell oferuje wbudowany system pomocy, który jest niezwykle przydatny dla
użytkowników na każdym poziomie zaawansowania. Szczegółowe opisy poleceń i ich
parametrów ułatwiają zrozumienie ich działania, a gotowe przykłady pomagają zastosować je
w praktyce. Pomoc dostępna jest bezpośrednio w konsoli, co znacznie zwiększa komfort
pracy. Podstawowym cmdletem używanym w tym celu jest Get-Help. Zastosowanie
parametrów pozwala na wyświetlenie różnych poziomów szczegółowości pliku pomocy,
a także na dostęp online. Możliwość aktualizacji umożliwia dostęp do najnowszych informacji.

Get-Command -CommandType wyświetla wszystkie polecenia danego typu
Get-Command -Noun wyszukuje polecenia zawierające dany rzeczownik

Get-Command -Verb wyszukuje polecenia zawierające dany czasownik
Get-Command -Name wyszukuje polecenia zawierające konkretną nazwę

Get-Command -Module wyszukuje polecenia w danym module
Get-Command -ParameterName wyszukuje polecenia z danym parametrem

Find-Command -Repository wyszukuje polecenia w danym repozytorium

 WYSZUKIWANIE POLECEŃ
PowerShell umożliwia łatwe wyszukiwanie poleceń, co jest kluczowe dla efektywnej pracy.
Podstawowym poleceniem do tego celu jest Get-Command, które pozwala przeszukiwać
dostępne cmdlety, funkcje i aliasy. Wyniki można filtrować według różnych kryteriów, np.
czasownika (verb) lub rzeczownika (noun) w nazwie polecenia, co ułatwia szybkie znalezienie
odpowiednich komend. Parametry takie jak -Name (wyszukiwanie po nazwie) czy -Module
(filtrowanie według modułu) zwiększają precyzję wyników. Aby znaleźć polecenia spoza
lokalnego repozytorium, można użyć cmdletu Find-Command, który umożliwia
przeszukiwanie zewnętrznych źródeł, takich jak przykładowo PowerShell Gallery.

gcm Get-Command mi /move / mv Move-Item
dir / gci / ls Get-ChildItem del / erase / rm Remove-Item
cd / chdir / sl Set-Location ren / rni Rename-Item

gl / pwd Get-Location % / foreach ForEach-Object
gm Get-Member select Select-Object

cat / gc / type Get-Content sort Sort-Object
ghy / h / history Get-History group Group-Object

copy / cp / cpi Copy-Item ? / where Where-Object

 ALIASY
Aliasy to skrócone nazwy poleceń lub parametrów, które ułatwiają i przyspieszają pracę. Są
one szczególnie przydatne podczas interaktywnej pracy w konsoli, gdzie szybkość wpisywania
poleceń ma duże znaczenie. PowerShell oferuje wiele wbudowanych aliasów dla często
używanych poleceń. Istnieje również możliwość tworzenia własnych. Trzeba jednak pamiętać,
że bez dodania ich do profilu będą istniały tylko w bieżącej sesji. Warto mieć na uwadze, że
choć skróty są wygodne w użyciu, to w skryptach zaleca się używanie pełnych nazw dla
zwiększenia czytelności i niezawodności kodu.

< 2 >

Get-Module wyświetla aktualnie zaimportowane moduły
Get-Module -ListAvailable wyświetla listę wszystkich dostępnych modułów

Import-Module importuje moduł do bieżącej sesji
Remove-Module usuwa moduł z bieżącej sesji
Install-Module instaluje moduł z zewnętrznego repozytorium

Get-InstalledModule wyświetla zainstalowane moduły
$PSModulePath domyślna ścieżka dla modułów

Get-Member wyświetla właściwości i metody obiektów
$data = Get-Date tworzenie obiektu typu DateTime

$data.Year dostęp do właściwości

$data.AddDays(1) dostęp do metod

Measure-Object oblicza sumę, średnią, min, max dla właściwości liczbowych

New-Object tworzy nowy obiekt określonego typu

Get-Alias wyświetla wszystkie aliasy dostępne w bieżącej sesji
 Get-Alias -Definition wyświetla alias dla konkretnego cmdletu

Set-Alias tworzy nowy alias lub zmienia istniejący
New-Alias tworzy nowy alias, ale nie modyfikuje istniejącego aliasu

Remove-Alias usuwa aliasy z bieżącej sesji
Export-Alias eksportuje aliasy do pliku CSV lub pliku tekstowego
Import-Alias importuje aliasy z pliku utworzonego przez Export-Alias

 POPULARNE ALIASY

 MODUŁY
Moduł to pakiet zawierający różne komponenty PowerShella, takie jak cmdlety, aliasy,
funkcje, zmienne, pliki pomocy oraz skrypty, które stosowane są do rozszerzenia możliwości.
Moduły są podzielone według tematyki lub zastosowania, co umożliwia łatwe zarządzanie.
Koncepcja ta pojawiła się w PowerShellu w wersji 2.0 (wcześniej realizowane to było przez
tzw. PSSnapins i wymagało niemałej wiedzy programistycznej). Obecnie moduły ładowane są
automatycznie przy wykonywaniu polecenia z danego modułu. W zależności od lokalizacji
wyróżniamy trzy zakresy dostępności: CurrentUser, AllUsers, System.

 PROVIDERS
W przypadku PowerShella terminem dostawcy (ang. Providers) określa się specjalne
moduły, które umożliwiają nawigację i zarządzanie różnymi typami danych w sposób podobny
do systemu plików. Dzięki nim można używać standardowych poleceń do pracy z rejestrem,
certyfikatami, zmiennymi środowiskowymi, aliasami i innymi zasobami systemu. Działają jak
wirtualne dyski, pozwalając na przeglądanie i manipulowanie danymi w ich strukturach. Do
wylistowania dostępnych dostawców użyj cmdletu: Get-PSProvider.

Provider Opis Windows
PowerShell PowerShell 7

Alias aliasy
Environment zmienne środowiskowe
FileSystem pliki i katalogi

Function funkcje zdefiniowane w sesji
 Registry rejestr Windows *

Variable zmienne PowerShell
Certificate magazynu certyfikatów **

WSMan konfiguracja zdalna (WinRM) *

 * Wspierane tylko na Windows
 ** Ograniczone wsparcie dla Linux/macOS, może wymagać dodatkowych modułów

 SORTOWANIE

Sortowanie obiektów to proces porządkowania danych na podstawie określonych
właściwości, co ułatwia ich analizę i prezentację. W PowerShellu najczęściej wykorzystuje się
do tego celu cmdlet Sort-Object, który pozwala na sortowanie wyników w kolejności rosnącej
(Ascending), jak i malejącej (Descending). Możliwe jest również sortowanie według wielu
właściwości jednocześnie, co bywa przydatne przy pracy ze złożonymi strukturami danych.
Dzięki obsłudze wyrażeń oraz bloków skryptowych Sort-Object pozwala na bardziej
zaawansowane i elastyczne podejście do sortowania.

Przykład: Sortowanie według jednej wartości, malejąco

Get-ChildItem | Sort-Object -Property Length -Descending

Przykład: Sortowanie według kilku właściwości

Get-Service | Sort-Object -Property Status, DisplayName

 PowerShellZone

