OKIEM EKSPERTA

Linux

Zostan mistrzem
skryptow powitoKki

Najlepszy przewodnik, z ktérym zoptymalizujesz,
zautomatyzujesz i usprawnisz kazde zadanie

-:—'—:i;'-#.‘iii:"llc’
3502501
SERTALAALT
SRS
<7 ""

<packt

Tytut oryginatu: The Ultimate Linux Shell Scripting Guide: Automate, Optimize,
and Empower tasks with Linux Shell Scripting

Ttumaczenie: Robert Gérczynski
ISBN: 978-83-289-3175-6

Copyright ©Packt Publishing 2024. First published in the English language
under the title “The Ultimate Linux Shell Scripting Guide - (9781835463574)

Polish edition copyright © 2026 by Helion S.A.

All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording
or by any information storage retrieval system, without permission from the Publisher.

Wszelkie prawa zastrzezone. Nieautoryzowane rozpowszechnianie catosci
lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest zabronione.
Wykonywanie kopii metodg kserograficzng, fotograficzng, a takze kopiowanie
ksigzki na no$niku filmowym, magnetycznym lub innym powoduje naruszenie
praw autorskich niniejszej publikacji.

Wszystkie znaki wystepujace w tekScie sg zastrzezonymi znakami firmowymi
badz towarowymi ich wtascicieli.

Autor oraz wydawca dotozyli wszelkich staran, by zawarte w tej ksigzce informacje
byty kompletne i rzetelne. Nie biorg jednak zadnej odpowiedzialno$ci ani za ich
wykorzystanie, ani za zwigzane z tym ewentualne naruszenie praw patentowych
lub autorskich. Autor oraz wydawca nie ponoszg réwniez zadnej odpowiedzialnosci
za ewentualne szkody wynikte z wykorzystania informacji zawartych w ksiazce.

Drogi Czytelniku!

Jezeli chcesz oceni¢ te ksigzke, zajrzyj pod adres
helion.pl/user/opinie/lizomi

Mozesz tam wpisaé swoje uwagi, spostrzezenia, recenzje.

Helion S.A.

ul. Kosciuszki 1c, 44-100 Gliwice

tel. 32 230 98 63

e-mail: helion@helion.pl

WWW: helion.pl (ksiegarnia internetowa, katalog ksigzek)

Printed in Poland.

« Kup ksigzke « Ksiegarnia internetowa
« Pole¢ ksigzke « Lubie to! » Nasza spotecznos¢
+ Ocen ksigzke

https://helion.pl/rt/lizomi
https://helion.pl/rf/lizomi
https://helion.pl/ro/lizomi
https://helion.pl
https://helion.pl/r/4CAKF

Spis tresci I

L0 B8 111 17
O korektorze merytorycznymcccoccmnimmssmnsesmsssssssssnsssssssssssssssasmsssnns 18
Przedmowaccccierimminmninmsesnsss s s s s nan 19
ROZDZIAL 1
Rozpoczecie pracy z POWIOKcccccervemmssemmsnsssemssassssssssasssnssssssssssssasssaneas 25
Czym jest powloka systemowa?ccccceiiiiiiiiiiiiiee e 25
Jak znalez¢ pomoc dotyczaca polecen powtoki?ceeiiiiiiiiiiiiiiiiiiiie, 28
Jak korzysta¢ ze stron podrecznika systemowego?ccccceeeeeiiiiiiiinnnnn. 28
Jak korzystac z systemu stron info? ... 31
Projekt dokumentacji LinuKSacoovviviiiiiiiiiiie 31
Korzystanie z ulubionej wyszukiwarki internetowejcccccccceeeevrnnnnee. 32
Tworzenie skryptéw powtoki za pomocg edytora tekstuccccceevvinnnnee. 32
Edytory tekstowecovvviiiiiiii 32
Edytory tekstu wyposazone w interfejs graficznycccooeiiiiiininnne, 35
Kompilowane i interpretowane jezyki programowaniacocccuveeeeeennnne 36
Uprawnienia administratora i mechanizm sudoccccoeeeiii, 37
POASUMOWANIE ...ciiiiiiiiie ittt e e aee e 37
P L ANIA e 37
Lektura Uzupetni@ajacacoeeeei i 38
L0 o[To YV T=T e b I 39
ROZDZIAL 2
Interpretowanie Polecenccccuvrmrmssmmnsmsmssnnmssnnsssnssssnsssssnssssanssssasssssnns 40
Struktura poleceniaccccccciii 40
Korzystanie z opcji POIECENcooiiiiiiiiiiiee e 41
Korzystanie z argumentdw powtokiccccccei 43
Jednoczesne wykonywanie wielu polecenccccvvvevvieiiiiicciiie e, 44
Interaktywne wykonywanie polecencoocuiiiiiiiiiiiiiiiiee 44
Korzystanie z sekwencji polecencccccceeviiiciiiiiiiiee e 45

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

6 Linux. Zostan mistrzem skryptéw powtoki

Uzywanie narzedzia findcccooiiiiiiiiii e 47
Wykonywanie wielu operacji za pomocg polecenia findcccvveeee. 53
Rekurencyjne wykonywanie polecencccooviiiiiiiiiiiiiii e 56
Cwiczenie praktyczne — rekurencyjne wykonywanie polecen 57
Korzystanie z historii POIECENuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieeeee e 59
Znaki sterujgce i znaki CytoWaniaccevvvieeeeeiiiiiieee e 61
Uzywanie znakOw sterujacych ... 62
Uzywanie ZnakOw CytOWaNIaoceeeviiiiieeee e e e e 63
POASUMOWANIE ...t e e e e e e e e e e e 64
PYEANIA ..t 65
Lektura Uzupetniajgauueeueereuiriiiiiiiiiiiiiiiiiiieiiieie e 66
OdPOWIZI oo 66
ROZDZIAL 3
Zmienne i POLOKIcccccevrrimrismnnssrsn s 67
Zmienne SrOdOWISKOWEeiiiiiiiiiiiiiiie e 67
ZMienne ProgramiStyCZNeccevviieiiiiiiiiiiiiiiiiiiieiieeeeee ettt eaaaaaaaaaaaaaaaaas 70
POTOKI ..ttt 71
POASUMOWANIE ...t e e e e e e e e e e s nneeees 73
PYEANIA .. 74
Lektura UzZUpetniajgauuuuuuueuuiieriiiiiiiiiiiiiiiiiieeeeeeeererereeeneeeeenrrereeererrrrrrnenne 74
(0o oo 11V T=To b 75
ROZDZIAL 4
Przekierowanie wejScia-WyjJSCiaccueerimrismmssnnsssnmssmssssnsssmsssmssssnsssnsssansans 76
Wprowadzenie do przekierowania wejscia-wWyjsciacceevvvvveeviiiiiiiiiieeneennn. 76
Standardowy StrUMIEN WYJSCIuvvviieeeiiiiiiiiieee e e e e e e s s ssirrare e e e e e s e 78
Zapobieganie nadpisywaniu pliku ... 78
Uzywanie deskryptora plikucccovviiiiiii 79
Standardowy StruMIEN WEJSCIAevvieeeiiiiiiiiiiiiee et e e e e e 79
Standardowy strumien bledOwcccoiiiiiiii 81
POIECENIE tEE .o 84
Cwiczenie praktyczne — potoki, przekierowania i wyszukiwanie plikéw 85
POASUMOWANIE ...eiiiiiiiiieiiiit ettt e e e s anraee e 87
PYRANIA . ————— 87
Lektura Uzupetniajacaooooiiiiiiiiiei e 88
L0 o T oo V1V T=Y e b 88

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Spis tresci 7

ROZDZIAL 5
Dostosowywanie srodowiska do wtasnych potrzebcccccvrumrnneenn. 89
Wymagania teChNICZNEecooiiiiiiiiiiii e 89
Przeglad zmiennych srodowiskowychccccc 89
SE5J8 POWIOKI ..vvveiiiie e it 91
Pliki konfiguracyjne powWtoKieoiiiiiiiiiiii e 92
Globalne pliki konfiguracyjne w Fedorzeccccvvveeiveeiiiiicciiiiieee e 93
Pliki konfiguracyjne uzytkownikow w systemie Fedorac...ceeueeee 94
Globalne pliki konfiguracyjne w systemie Debianccccoocciiiieennennn. 96
Pliki konfiguracyjne uzytkownikow w systemie Debian 97
Okreslanie edytora domysinego w systemie Debiancccccveeeeeennnn. 97
Ustawianie opcji powtoki z poziomu wiersza polecencccceeeeiiiinnnnn, 98
LT TSRS 102
POASUMOWANIE .o 105
P EaNIA 106
Lektura Uzupetniajacaccooeeiiiiiiiiiieee e 106
OAPOWIEHZI .ttt e e e e e e e e e as 10

ROZDZIAL 6
Filtry strumieni tekstowych — €z@SC€ 1orcericrricirismnrs e 107
Wymagania teChniCZNeccuuiiiiiiiii e 107
Wprowadzenie do filtréw strumieni tekstowychcccccceeiiiiiiii s 108
Uzywanie polecenia catcoccuviieiiiiiiiic e 109
Uzywanie polecenia tac ... 114
Uzywanie polecenia CULcooicciiiiiiiie e 115
Uzywanie polecenia Pasteoccuuviiiiiiieiiiiiiiecee e 117
Uzywanie polecenia JOIN ..o 119
Uzywanie polecenia SOtooccuuiiiiiiie e 122
POASUMOWANIE .iiiiiiiiiieiei et 133
PYEANIA 133
Lektura Uzupetniajacacooiiiiiiiiiiiii e 134
10 J oo V7= b 134

ROZDZIAL 7
Filtry strumieni tekstowych — cz@S€ 2 ... 135
Wymagania teChNICZNEeuuuuiiiiiiiiiiiiiiiiiiiiiiiiie e 136
Uzywanie polecenia eXpandeeevveeiiiiiiiiiiiiiie e 136
Uzywanie polecenia unexpandccccoooiiiiiiiiiiiieinniiiieeee e 138
Uzywanie polecenia Nl ..., 139
Uzywanie polecenia headccccoiiiiiiiiiiiiiii e 146
Uzywanie polecenia tailcccoeiiiiii 148

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

8 Linux. Zostan mistrzem skryptéw powtoki

Uzywanie polecen head i tail razemccoceiiiiiiiiiii e, 149
Uzywanie polecenia od ..o 150
UzZywanie Polecenia UNiQooecevereiieeeeeiiiiiiieeeeee e s ssseereeeeeeee e e s snennneeeeeeas 155
UZywanie POIECENIA WCcciiiiiiiiiiiiiieiee ettt 159
Uzywanie polecenia fmtcoocoiiiiiiiii e 160
Uzywanie polecenia splitooocuiiiiiiiieoiiie e 163
Uzywanie polecenia tr ... 165
UZywanie POleCeNia Xargsoccvrrreriieeeiiiiiiiieiieeeeesesserenneeeeeessssnennnneeeeeas 172
UZYWanie POIECENIA PIeeiiiiiiiiiiiiiiie ettt a s 175
Drukowanie z poziomu POWIOKIuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiie, 181
POASUMOWANIE ... e e e e e e e e e e e e e e anes 183
PYEANIA .t a e e e 183
Lektura UzZUpPeNiajaca ..oooeeei oo 184
OAPOWIEHZI ..ttt e s 185
ROZDZIAL 8

Podstawowa konstrukcja skryptu powtokicccoucceriiniinnicnnisennsenninnn 186
Wymagania teChNICZNEuueviveeiiiiiiiicce e 186
Podstawy konstrukcji skryptdw powtokiccccceviiiiiiiii 187
Cwiczenie praktyczne — zliczanie zalogowanych uzytkownikéw 189
WYKONYyWanie teStOWccoiiiiiiiiiiiiie e 191
Uzywanie stowa kluczowego testccccccevvvciiiiiiiiei e 191
Umieszczanie warunku testowego w nawiasie kwadratowym 192
Uzywanie konstrukcji warunkowej if-thenccccoceiiiiiiiiiiine i, 193
Uzywanie innych rodzajow testOwccooiiiiiiiiiiiiiiiiiieeecee e 194
aoTe [oYe1NiYi (o] - TP PPPPPPPPPPPPR 195
Cwiczenie praktyczne — testowanie warunkOwcccceeveveueuennnee. 196
Zmienne W SKryptach ...t 197
Tworzenie i usuwanie zmiennychoccoien 197
Zmienne i POZioMY POWIOKIuvvviiiiieeiiiiiiieecie e 197
Rozréznianie wielkosci [Iteroooeviiiiiiiiii 198
Zmienne tylko do 0dCzytuoeeeiiiiiiiiiiie e 199
TADIICE e 200
Cwiczenia praktyczne — praca z tablicamic.ccoveveveeeveeerieeenae 201
Rozwijanie ZmiennyCh ... 203
Przypisywanie wartosci do niezainicjalizowanej zmienngj 203
Przypisywanie wartosci do zmiennej zbiorucccccevviiiienieeeniicnnnen, 204
Przypisywanie warto$ci Zmiennejcccccovviiiiiiieiiininiiiieee e 205
Wyswietlanie komunikatu bfeduccccoiiieii 206
Uzywanie przesunied zmiennychcccccooiiiiiiiiiiianiniiiiiee e 207
DOPASOWANIE WZOICA .evvvuiiieeeieeiiiiiiieeeeeeeeetiinsaeeeeeeeeaannaaeeeaeeeennnnnaaeees 209
Podstawianie PoleCEN ... 210

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Spis tresci 9

Konstrukcje warunkowe i petleccoooooiiiiiiii e 213
Konstrukcja warunkowa if-thenccccceeiiiiiiii 213
Konstrukcja do-while ... 215
Konstrukcja for-in ... 217
KONStrUKGCja fOr .ooiiiiiie e 218
Polecenie break ... 218
Polecenie coNtINUEeviiiiiiiii e 219
Konstrukcja Untilooooeeiieiie e 220
KONSErUKCJa CASE ovvviiiiiiiiiiiieeee e 221
Uzywanie parametrow pozycyjnych ... 223

KOAY WYJSCIA i 226
Standardowe kody wyjscia powWtoKiccooeeiiiiiiiiiii 226
Kody wyjscia zdefiniowane przez uzytkownikaccccoviiviieeiiiinnnnee. 229

Wiecej informacji o poleceniu echo ... 230

Kilka rzeczywistych przyktadéw omoéwionych technikcccoooiiiiinn. 232
Cwiczenie praktyczne — stosowanie konstrukgji if-then 232
Cwiczenie praktyczne — analiza dziennika dostepu serwera Apache 233
Cwiczenie praktyczne — testy beta nowego dysku twardego 236

POASUMOWANIEoiiiiiiiiiiiiiiie ettt 237

PYEANIA s 237

Lektura Uzupetniajacacooooeviiiiiiiiiiiee e 238

(0o o To)Y VIT=Yo b R 239

ROZDZIAL 9
Filtrowanie tekstu za pomocq grep, sed i wyrazen regularnych 240

Wymagania teChNICZNEec.vviiiiiie e e e e 240

WYrazenia reguUIAINE ... 240
Literaty i metaznakicccvvveviieie i 241

NArzedzie SEA ...ooooi i 243
Problemy z przenosnoscig narzedzia sedcccccceeeiiiiiiiiiinie e, 244
Zastepowanie tekstu za pomocg narzedzia sedcccceiiiiiiiiiiiennn. 246
Usuwanie tekstu za pomocg narzedzia sedcccccceevviiiviiieneeeeiiinnne, 255
Dodawanie i wstawianie tekstu za pomocg narzedzia sed 258
Modyfikowanie tekstu za pomoca narzedzia sedcccceeeeeeeiinnnnne. 261
Inne przydatne sztuczki z narzedziem sedcccccvvviiiiiiiiii 263
Uzywanie plikdw programu narzedzia sedcccccoiiiiiiiiiiniiiinininne, 265
Ztozone skrypty w plikach programéw narzedzia sedccccvvveeeeen. 268
Uzywanie narzedzia sed w skryptach powtokiccoocciiiiiiiiiiinnnnn 270

N T d=Te b4 1o =Y o PP 272
Podstawowe wyszukiwanie za pomoca polecenia grepccccccvvvveveeennn. 272
Zaawansowane wyszukiwanie za pomocg narzedzia grepccce..... 274
Jeszcze bardziej zaawansowane wyszukiwanie

pZ- W oleTaalele W aE17d=Te AT e [=] o TN 277

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

10 Linux. Zostan mistrzem skryptéow powtoki

Zaawansowane wyrazenia regularne w narzedziu grepcccceeenn.. 280
Uzywanie wyrazen regularnych ze statymi ciggami tekstowymi
W NAIZEAZIU GIEP weeeiiieiiiiiitiiiie e e e e e e ettt et e e e e e ettt e e e e e e e s s snneeeeeaeaeeeanns 283
Uzywanie narzedzi wspomagajacych prace z wyrazeniami regularnymi 284
RegexBuddy i REGEXIMAGICceviiiiiiiiiiiieee ettt 284
REGEXTOT it a e 285
Wybrane przyktady ze Swiata rzeczywistegocccccceveeeiiiiciiiieiie e 285
Jednoczesna modyfikacja wielu plikOwWcccoooiiiiiiiiiiiiiee 286
Analiza dziennikéw zdarzen serwera Apache pod katem atakow
tYPU Cross-site SCrPtiNg ..occvviviiiiiiiiiiiiiiiie 286
Automatyzacja instalacji repozytoriéw zewnetrznych 288
Uzupetnianie pustych pdl w pliku CSVooovvvviiiiiiiii 289
POASUMOWANIE ...oiiiiiiiiiiiiiiie ettt 291
PYRANIA . 291
Lektura Uzupetni@jacaoooiiiiiiiiiiiie e 292
L0 oo 11V IT=Yo b 293

ROZDZIAL 10

T 294
Wymagania teChNICZNEuuiviiieiiiiiiiiiece e e e e 294
Wprowadzenie do funKGiceeeviiiiiiiiiii 294
Definiowanie fUNKC)icciiiciiiiiies e 296
Uzywanie funkcji w skryptach powtokicccccceveeiiiiiiiii e, 298

Tworzenie i wywotywanie funkcji ..., 298
Przekazywanie parametréw pozycyjnych do funkgjicccvveveeeeinnnnnnnne. 299
Przekazywanie wartosci z funkgjiccoceviiiiiiii 300
Tworzenie bibliotek FuNKCjiovvviiiiiii e 304
Rzeczywiste przyktady zastosowania funkgjicccccvvveeeeeeiiiicciinnnneeenns 306
Sprawdzanie potgczenia SIECIOWEGOccevvvvvviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 306
Korzystanie z APl COINGECKOoeeviiiiiiiiiee e 307
POOSUMOWANIE ... e e e e e e e e e 311
a2 1 T 311
Lektura UzUpetNiajaca ..o..eeevi e 312
0o [oYo 111V 1T b4 1R 312

ROZDZIAL 11

Wykonywanie operacji matematycznychccvemrieriinnicnisnninniennns 313
Wymagania teChNICZNeooiiiiiiii e 313
Wykonywanie obliczen na liczbach catkowitych za pomocg wyrazen 313

UzZywanie polecenia EXPrceoiiicurieieieeeeseeeeiiiiee e e e e s s e e e e e e e e s aeneeeees 314
Uzywanie polecenia echo z wyrazeniami matematycznymi 316

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Spis tresci 11

Wykonywanie obliczen na liczbach catkowitych przy uzyciu zmiennych318
Wykonywanie operacji matematycznych na liczbach

zmiennoprzecinkowych za pomocg narzedzia bc ... 319
Uzywanie programu bc w trybie interaktywnymccccccvvvvviiiiiinnnnnnn. 320
Uzywanie plikOw programu bccceiiiiiiiiiiiee e 324
Uzywanie programu bc w skryptach powtokicccccccvvviiiiiiiiiinnnnnnnn. 327

POASUMOWANIE oottt a e e 331
PYEANIA s 331
Lektura Uzupetniajacacoeeeiiiiiiiiiiiie e 332
(0o [oTo 1TV =T b4 IR RR T 332

ROZDZIAL 12

Automatyzacja skryptéw za pomocq sktadni here document

i NArzedzia eXPectcccvvccirrrinrisnrir e ———————————————— 333
Wymagania teChniCZNeoccuuuiiiiiiiii e 333
Uzywanie skfadni here documentcccoooeiii 334

Uzywanie sktadni here document w potaczeniu z danymi statycznymi ... 335
Uzywanie sktadni here document w potaczeniu

z danymi dynamiCZNyMicceeeeiiiieieiiiiieee e 340
Wykorzystanie funkcji w skfadni here documentccccceeviiiiinennnn. 343
Automatyzacja odpowiedzi za pomoca narzedzia expectcccccevveeennnne 348
Kwestie bezpieczenstwa zwigzane z narzedziem expectc...ccovuueee. 351
POASUMOWANIE oot 351
P EaNIA e 352
Lektura Uzupetniajacacooveeiiiiciiiiiiie e 353
10 o o 0111V = b 353
ROZDZIAL 13
Uzywanie ImageMagick w skryptachccccoiiemiiscnnnnsnnnssnnnsssnssnsnns 354
Wymagania teChNICZNEecuvuiiiiiie e e e 354
Konwersja niestandardowych rozszerzeh plikOwccccocovivciiiiicninnene 355
Instalacja IMageMagickooouiiiiiiiiiii e 356
Wyswietlanie 0brazow ... 357
Przegladanie wtasciwosci obrazucccccovviiiiiiiiiiie 359
Zmiana wielkosci obrazu i dostosowywanie go do wlasnych potrzeb 359
Przetwarzanie wsadowe plikow graficznychcccooviiieneiien, 363
Korzystanie ze skryptow Freda przeznaczonych
dla programu ImageMagickcc.eeeiiiiiiiiiiiiii e 364
POASUMOWAENIE ..ot e e e e e e 365
P EaNIA 366

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

12 Linux. Zostan mistrzem skryptéow powtoki

Lektura uzupetniajacaoooiiiiiiiii e 366
OdPOWIEHZI ..eeiiieiiee ettt 367

ROZDZIAL 14

Uzywanie jezyka AWK — €Z@S€ 1cccvvrrimmssmmssansssmmssnssssnsssmssssnsssnsssnssnsns 368
Whprowadzenie do jezyka AWK ... 368
Omoéwienie WzorcOw i dziatancevvieiiiiiiiiiiiiee e 370
Pobieranie danych wejsciowych z plikow tekstowychcccccvvevinnennnns 371

Wyszukiwanie uzytkownikKOW ... 372
Analiza dziennikéw dostepu do serwera WWWccoeeiiiiiinnnn, 374
Uzywanie wyrazen regularnychcoccoiiiiiiiie e 385
Pobieranie danych wejsciowych z polecenooccviiieiiiiiiiiiiiiiies 387
POASUMOWANIE ...t e e 392
g2 1 1 T 393
Lektura Uzupetniajacaooovi i 394
100 [oTo 11V =T -4 [U RT TR 394

ROZDZIAL 15

Uzywanie jezyka AWK — €Z@SC€ 2cccevremmmienmmssmsmsssnsmsssnssssanssssssssssnsnnsans 395
Wymagania teChNICZNEuuiviieeiiiiiiiiicie e e e e 395
Podstawowa struktura skryptu AWK ... 395
Uzywanie konstrukcji warunkowych ... 397
Uzywanie petli while i deklarowanie zmiennychoc, 398

Sumowanie liczb W WIISZUcccoiiiiiiiiiiiiei e 399

Okreslanie generacji ProCeSOraueveeeeeeeeeeeeeeeeeeeeereeeeeeeeeereeeeeereeeeen 401
Uzywanie petli for i tablic ..., 405
Wykorzystanie arytmetyki zmiennoprzecinkowej i funkgcji printf 407
Praca z rekordami wielowierszowymicccocceeeiiiiiieeiiiiiee e 410
POOSUMOWANIE ...ttt e e e e e e 412
g 1 TP PPPPPPPPIR 412
Lektura UZUPeNiajgca ..ooveeeii i 413
10 o [oo 111Y7 =T b 414

ROZDZIAL 16
Tworzenie interfejsow uzytkownika za pomoca narzedzi yad,

dialog i Xdialogccccmiimnimmimn e —————— 415
Wymagania teChniCZNecueiiiiiiiii e 415
Tworzenie graficznego interfejsu uzytkownika za pomoca narzedzia yad 416

Podstawy pracy z narzedziem yadccccccceviiiiiiiiiiie e 416
Tworzenie formularzy do wprowadzania danychcccccooiiiiieeen. 417

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Spis tresci 13

Tworzenie rozwijane] listycccuueeiiiiiiiiie e 419
Uzywanie menedzera plikdw narzedzia yadccccccoevviviiieneeeeiicninnen, 421
Programowanie przyciskdw formularzacccccceeiiiiiii 426
Kilka kocowych przemyslen na temat narzedzia yadccccoevvvveeeennn. 427
Tworzenie interfejséw uzytkownika za pomocg narzedzi dialog i xdialog 428
Podstawy pracy z narzedziem dialogcoooiiiiiiiiiiiiii 428
Podstawy pracy z narzedziem xdialogoooccviieieieiiiiicieee e 430
Automatyczny wybér miedzy narzedziami dialog i xdialog 431
Dodawanie WIdZETOWccoeooiiiiiiiiiiiiiei e 433
Tworzenie interfejsu logowania poprzez SSH ..., 435
POASUMOWANIE oo 438
P NI e ———————————— 439
Lektura Uzupetniajgca ...ooooooeeeiiiii e 439
(0o To), VIT=o b R 440
ROZDZIAL 17
Uzywanie opcji skryptow powtoki za pomoca getoptsccccceervueenes 441
Wymagania teChNICZNEeuuuuiiiiiiiiiiiiiiiiiiiiiiiiiie e 441
Wyjasnienie potrzeby uzycia polecenia getoptsccccceveerviiiiiiiinieeennnnnns 441
Poréwnanie polecen getopt i getoptsoovecvvieiiiieeiiiiee e 442
UZywWanie getopts ...oouuiiiiiiiiee i 443
Analiza rzeczywistych przykfadOwccccccvvviiiiiiiiiiiiiiiiiiiiiieens 447
Zmodyfikowana wersja skryptu dla APl Coingeckoccccvevniierennane. 447
Skrypt monitorujgcy TECMINtcoovvviiiiiiiiiiiiiiiieeeeeeeeeeeee e 448
POASUMOWANIE .ot e e e a e e 451
PYEANIA 451
Lektura Uzupetniajacacoeeeeeiiiciiieee e 452
(0o [oY o1 V1V =T b4 [U RTPTT 452
ROZDZIAL 18
Skrypty powtoki dla specjalistow ds. bezpieczenstwacocccuvirennnns 453
Wymagania teChNICZNEecooviiiiiiiiiie e 453
Proste skrypty do przeprowadzania audytuccccccooiiiiiiiiiiiiiniiiiiiiennnn. 454
Identyfikacja systemu operacyjnegoccccccvvierieeeiiiiiiiiiieee e 454
Prosty skrypt do skanowania portOwccccceerriieeiiiiiieeciiieee e 456
Kontrola konta uzytkownika rootcccccccvvviiiiiiiiiiiiieeeee 461
Tworzenie skryptu monitorujacego aktywnos¢ uzytkownika 469
Tworzenie prostych skryptdw zapory sieCiowe]c.eveeeveeeeiiiiciiiieneeeennne 471
Tworzenie skryptu blokujgcego adresy IP w dystrybucji Red Hat 471
Wyszukiwanie istniejacych skryptéw zwigzanych z bezpieczenstwem 476

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

14 Linux. Zostan mistrzem skryptéow powtoki

POASUMOWANIEoueieiiiiiiieeee e e 477
Y= 1 TP PPPPPPPPIR 478
Lektura UzZUpeNiajgca ..ooveeeii e 478
L@ o Yo 1V T=Y b 479

ROZDZIAL 19

Przenosne skrypty powlokicccvicmmismmnisnmnssnnnsssnnsmsnssssssssssnsnnnes 480
Wymagania teChNICZNEuuiviieeiiiiiiiiicie e e e e 480
Uruchamianie powtoki bash w systemach innych niz Linuxcccoceeee. 481

Konfiguracja srodowiska powtoki bash za pomocg env 482
Tworzenie dowigzania symbolicznego do powtoki bash 483
Zgodnos¢ ze standardem POSIXooiiiiiiiiiiiiiiie e 483
Réznice miedzy powtokamic.eviiiiiiiiiii 485
Specyficzne cechy powtoki bashcccccoiiiiiiiii e, 486
Korzystanie z testow przenosnychccoooiiiiiiiiiii e 486
Tworzenie przenos$nych tablic ..., 488
Problemy z przenosnoscig polecenia echocccccccvviiiiiiiiic e, 491
Testowanie skryptow pod katem zgodnosci ze standardem POSIX 493
Tworzenie skryptow w powtoce zgodnej z POSIX ..., 493
Uzywanie narzedzia checkbashismscccooiiiiiiiiiiiii 494
Uzywanie narzedzia shellcheckcccooiii 498
Uzywanie narzedzia shallccooociiiiiiiiiiii e 504
POdSUMOWANIE ..o 506
PYTANIA e 507
Lektura Uzupetniajacacceee i 507
OdPOWIEZI .cceeiiiiiiiieieeeeeeee e 508

ROZDZIAL 20

Bezpieczenstwo skryptow powlokicccuccmmnicnnnsnnmnssnnssnssssansnssnsnnans 509
Wymagania teChNICZNeooiiiiiiiiiii e 509
Zarzadzanie dostepem do skryptOWccccceevviiiiiiieiie e 510

Nadawanie uprawnien administratoracccccceeiiiiiiiiiic e 510
Uzywanie listy kontroli dostepucccvvveeiiiiciiiiiiiie e 513
Zaciemnianie skryptéw zapisanych w postaci zwyktego tekstu 520
Deszyfrowanie plikow binarnych utworzonych
za pomocag NArzedzia ShC ... 527
Kwestie zwigzane z SUID i SGIDccoviiiiiiiieiiee e e e 530
Unikanie wyciekéw danych wrazliwychccccoooiiiiiiii e, 534
Zabezpieczanie plikdw tymczasowychccccceiiiiiiiiiiieeen 534
Uzywanie haset w skryptach powtokicccoociiiiiiiiiii 539

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Spis tresci 15

Wstrzykiwanie polecen przy uzyciu funkcji evalccccooiiiiiiiiiiine 546
Uzywanie funkgcji eval w wierszu polecencccccceevviiciivennieee e s, 546
Bezpieczny sposéb uzywania funkgcji evalcccoooiiiiiii 547
Niebezpieczny sposdb uzywania funkcji evalcccccoovviciiiieieeiiiinnnen, 548
Alternatywy dla funkcji @valcoeiiiiiiiii e 551

Kwestie zwigzane z bezpieczenstwem Sciezek dostepuceeeeeeeeeennn. 553
Scenariusz ataku 1. Przejecie konta uzytkownikacccciiieiiiinnne 555
Scenariusz ataku 2. Inzynieria SPoteCczNaccccvvvveerieeeiiiiiiieiee e 555

POASUMOWANIE ..ciiiiiiiiieiei et 556

P NI e 557

Lektura Uzupetniajacaooeeeei oo 558

(00 [oTo)TV <o b4 [PPSR 559

ROZDZIAL 21
Debugowanie skryptow powloKicccccrirmmmismmmissnmmnsnnnssnssnsnnannnnes 560

Wymagania teChNIiCZNecooviiiiiiiiie e 560

Typowe btedy popetniane w skryptachcccccooiiiiie 561
Za mato znakOw cUdZYSIOWUcoccvviiiiiiiiiieiic e 561
Tworzenie petli dziatajacej w nieskonczonos$e ..., 565

Korzystanie z technik i narzedzi przeznaczonych

do debugowania skryptdw powtokicccoeeeiiiiii, 568
Uzywanie polecenia Chocooiiiiiiiiiiiiiii e 568
Wykorzystanie narzedzia xtrace podczas debugowaniaceee.... 571
Sprawdzanie pod katem niezdefiniowanych zmiennych 574
Sprawdzanie btedow za pomocg OPCji =€ ..ovveeeviiciiiiiiiee e 576
Korzystanie z debuggera powtoki bash ... 579
Debugowanie skryptu za pomocg bashdbccccccoiiii 580
Uzyskiwanie pomocy w narzedziu bashdbcccoociiiinn, 582

POOSUMOWANIE ...oiiiiiiiiieiitiee ettt 583

PYEANIA e a e e 584

Lektura UZupetNiajacaeeeeee i 584

(0o o011V = b4 1R P 585

ROZDZIAL 22
Wprowadzenie do skryptow powtoki Zccccccniimrimmnsnninnisennsnsisen 587

Wymagania teChNICZNEeuuuuiiiiiiiiiiiiiiiiiiiiiiiiiie e 587

Wprowadzenie do powtoki zshcoooiiiiiiiiiiiii e 588

INstalacja Zsh ...coooii i 588

Unikalne cechy skryptow powtoki zshccccvevieeiiiiiiiiiie e, 590
RézZnice w rozwijaniu zmiennych ..o 590
Tablice W ZSH oo 601
Rozszerzone mozliwosci matematyczneccccccvviiii 603

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

16 Linux. Zostan mistrzem skryptéow powtoki

Korzystanie z modutdw zsh ... 604
Uzywanie modutu mathfunccccccciiveiiicc e, 605
Modut datetimeoooiiii e 606

POdSUMOWANIE ...ccoeiiiiii 608

PYIANIA s 609

Lektura Uzupetniajacacoeeev i 610

L0 o [oo 111Y7 =T b S 610

ROZDZIAL 23
Uzywanie powtoki PowerShell w Linuksieccccocommismmnssnnssnsmssnsnsans 611

Wymagania teChNICZNEuueviieeiiiiiiiiiiece e e e 611

Instalacja powtoki PowerShell w systemach Linux i macOScccccceeeene 612
Instalacja powtoki PowerShell w Linuksie za pomoca pakietu snap 612
Instalacja powtoki PowerShell w Fedorzecccccveiiiiiiiiiinieeei 613
Instalacja powtoki PowerShell w macOS-ieccccceviiiiiiiiiiiiinie 613
Uruchamianie powtoki PowerShellcccccoviiiiiiiiiiiiiieeeeeee 613

Powody, dla ktérych administratorzy systeméw Linux i macOS

powinni poznac powtoke PowerShellcovviiiiiiiiiiiiiiiiiiiiiiiiiieiee, 613
Praca w srodowiskach z réznymi systemami operacyjnymi 614
Polecenia powtoki PowerShell moga by¢ prostszeccccccvvvvvvvinnnnnn. 614
Rozszerzone wbudowane funkcje matematycznecccccceevveeernnnnnee. 616

Réznice miedzy skryptami PowerShell a tradycyjnymi skryptami

W systemach LiNUX 0raz UNiXcueviiiiiiiioiiiiee e 619
Korzystanie z rozszerzen plikéw i uprawnien do wykonywania 619
Powtfoka PowerShell jest zorientowana obiektowocccccceeevinnnnen. 619
PowerShell korzysta z polecert cmdletoccuvviiiiiiiiiiiii 620
Korzystanie z aliasow powtoki PowerShellccccoiiiiiiiiniiin, 620

Przeglad dostepnych polecen PowerShellcccccooviiiiiiiiiieiiiieeee, 623

Uzyskiwanie pomocy dotyczacej polecen powtoki PowerShell 624

Przyktady praktyczne skryptéw powtoki PowerShell, ktére dziatajg

na réznych platformachcccooiiiiii 625
Skrypt Write-marqueE.PSTeeiiiiie et 626
SKrypt check-CPU.PST oo e e 627

POASUMOWANIE .o e e e e e e eeeaeeeas 631

Lektura Uzupetniajacacooeoeiiieiiiiiieee e 632

SKOFrOWIHZocceeemrrenrimnimnnn s s s snsm s an s s e mnnnns 633

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

roziziat | POAStavwowa
8 | konstrukcja
skryptu powtoki

Tak, wiem. Pewnie nie mozesz sie doczeka¢, aby rozpocza¢ tworzenie skryptéw po-
wtoki, ale jeszcze nie miate$ okazji tego zrobi¢. W tym rozdziale omdéwie podstawy tego
zagadnienia. Na koniec zaprezentuje kilka praktycznych i uzytecznych przyktadowych
skryptow.

Wprawdzie wiele technik przedstawionych w tym rozdziale dziata w kazdej powtoce,
ale niektére mogga by¢ przeznaczone wytacznie dla powtoki bash. I to na niej sie teraz
dla uproszczenia skoncentruje. Z kolei w rozdziale 22. pokaze techniki stosowane
w powtoce zsh. Natomiast w rozdziale 19. przedstawie metody, ktére dziatajg w réz-
nych powtokach.

W tym rozdziale oméwie nastepujace zagadnienia:
B podstawy konstrukcji skryptéw powtoki,

wykonywanie testow,

podpowtoki,

zmienne w skryptach,

tablice,

rozwijanie zmiennych,

podstawianie polecen,

konstrukcje warunkowe i petle,

parametry pozycyjne,

kody wyjscia,

wiecej informacji o poleceniu echo,

przyktady z zycia wziete.

Jesli jestes gotowy, zaczynajmy!

Wymagania techniczne

Uzyj dowolnej dystrybucji Linuksa z zainstalowang powtoka bash. Jesli korzystasz
z systemu macOS, uzyj jednej z dostepnych maszyn wirtualnych z Linuksem, poniewaz
cze$¢ skryptéw wymaga polecen, ktore nie beda dziata¢ w macOS-ie. Wprawdzie
omowione w tekscie przyktady mozesz wykonywa¢ w swoim lokalnym systemie macOS,
ale pamietaj, ze zaprezentuje tez ¢wiczenia praktyczne.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 187

Dotaczytem réwniez jedno ¢wiczenie praktyczne, ktére wykorzystuje maszyne wirtu-
alng z dystrybucjg FreeBSD. Zatem utwdrz maszyne wirtualng z tym systemem, a na-
stepnie zainstaluj w nim pakiety sudo oraz bash, jak pokazatem we ,Wprowadzeniu” do
ksigzki.

Ponadto, jak rowniez wyjasnitem we ,Wprowadzeniu”, gotowe skrypty mozesz pobrac
z repozytorium, ktére zamieScitem w serwisie GitHub. W tym celu wystarczy wydac¢
nastepujgce polecenie:

$ git clone https://github.com/PacktPublishing/The-Ultimate-Linux-Shell-Scripting-
>Guide.git

Podstawy konstrukcji skryptow powtoki

Podczas tworzenia skryptu powtoki pierwszym zadaniem jest okreslenie powtoki, za
pomoca ktérej bedzie interpretowany kod danego skryptu.

Mozesz miec¢ konkretny powdd, dla ktérego wybierzesz dang powtoke zamiast innej.
Doktadniejsze omoéwienie tego zagadnienia znajdziesz w rozdziatach 19. i 22.

W pierwszym wierszu skryptu zdefiniujesz powtoke, ktora ma by¢ uzyta jako interpreter.
Jest to tzw. wiersz shebang. Bedzie miat posta¢ podobng do tutaj pokazane;j:

#1/bin/bash

Zazwyczaj wiersz, ktdry rozpoczyna sie od znaku #, oznacza komentarz i jest ignoro-
wany przez powtoke. Wiersz shebang (i prosze nie pyta¢, skad wzieta sie ta nazwa) jest
wyjatkiem od tej reguty. Oprocz okreslenia konkretnej powtoki przeznaczonej do uzy-
cia, takiej jak /bin/bash czy /bin/zsh, mozna tez zdefiniowac ogdlng /bin/sh, aby two-
rzone skrypty byty bardziej przenosne i dziataty w wiekszej liczbie powtok i systeméw
operacyjnych. Oto jak to wyglada wiersz shebang, ktéry wskazuje ogdlng powtoke sh:

#1/bin/sh

Ta ogdlna powtoka sh ma na celu umozliwienie uruchamiania skryptéw w réznych sys-
temach, ktére moga (ale nie muszg) mie¢ zainstalowang powtoke bash. Jednak takie
podejscie prowadzi rowniez do problemdéw, poniewaz rézne powtoki reprezentowane
przez sh nie s3 w petni ze soba zgodne. Zobacz, jak to dziata w praktyce:

B W systemie FreeBSD oraz prawdopodobnie w innych systemach typu BSD
(Berkeley Software Distribution) plik wykonywalny sh to klasyczna powtoka
Bourne’a, ktéra jest przodkiem powtoki bash (Bourne Again Shell).

B W systemach z rodziny Red Hat, sh jest dowigzaniem symbolicznym, ktére
wskazuje plik wykonywalny bash. Warto pamieta¢, ze powtoka bash moze
korzystaé z pewnych funkcji programistycznych niedostepnych w innych
powtokach, ktére wymienitem na tej liScie. (Wiecej informacji na ten temat
przedstawie w rozdziale 19., poS§wieconym przenosnoSci skryptéw powtoki).

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

188 Linux. Zostan mistrzem skryptow powtoki

B W dystrybucjach typu Debian/Ubuntu sh jest dowigzaniem symbolicznym
do pliku wykonywalnego dash. Ta nazwa oznacza Debian Almquist Shell,
czyli szybsza i 1zejsza implementacje powtoki bash.

B W systemie Alpine Linux sh wskazuje na ash, czyli lekka powtoke, ktora
jest czeScig programu busybox. (W systemie Alpine powtoka bash nie jest
domy$lnie zainstalowana).

B W systemie Openlndiana, ktéry jest bezplatnie dostepna wersja systemu
operacyjnego Oracle Solaris, sh jest dowigzaniem symbolicznym do powtoki
ksh93. Znana réwniez jako Korn shell, jest ona w pewnym stopniu, cho¢
nie catkowicie, zgodna z powtoka bash. (Powtoka ksh zostata opracowana
przez Davida Korna).

B W systemie macOS sh jest dowigzaniem symbolicznym do powtoki bash.
(Co ciekawe, wprawdzie zsh jest domys$lng powtoka logowania w macOS-ie,
ale powtoka bash jest nadal instalowana domys$lnie i pozostaje dostepna
do uzycia).

Pamietaj, ze uzywanie w skryptach wiersza shebang w postaci #!/bin/sh moze by¢
problematyczne. Wynika to z faktu, ze reprezentowane przez #!/bin/sh poszcze-
golne powtoki w réznych systemach operacyjnych nie sg ze soba w petni zgodne.
Zatézmy, ze tworzysz skrypt w systemie z rodziny Red Hat, w ktérym to sh wskazuje
powtoke bash. Istnieje duze ryzyko, ze ten skrypt nie zadziata w systemach Debian
i FreeBSD, w ktoérych sh wskazuje odpowiednio dash i powtoke Bourne’a. Z tego
powodu skoncentruje sie na razie na powtoce bash, zas w prezentowanych przy-
ktadach bede uzywac wiersza shebang w postaci #! /bin/bash. Jak wspomniatem juz
wczesniej, dokfadniejsze omoéwienie zwigzanych z tym kwestii znajdzie sie w roz-
dziale 19., poswieconym przenosnosci skryptow powtoki.

W zaleznosci od Twoich potrzeb i wymagan skrypt powtoki moze by¢ bardzo prosty
lub ztozony. Moze sktadac¢ sie z jednego standardowego polecenia lub kilku takich po-
lecen systemu Linux/Unix, ktére beda wykonywane po kolei. Z drugiej strony, skrypty
moga osiagac ztozono$¢ zblizong do programéw napisanych w jezykach wyzszego po-
ziomu, takich jak C.

Na poczatek spéjrz na bardzo prosty skrypt, ktory sktada sie z tylko jednego polecenia.

#1/bin/bash
rsync -avhe ssh /var/www/html/course/images/
root@192.168.0.22: /var/www/html /course/images/

To prosty jednowierszowy skrypt powtoki, ktdrego uzywatem do tworzenia kopii za-
pasowej katalogu images w jednym komputerze i przesytania jej do katalogu kopii za-
pasowych w innym komputerze, dziatajgcym pod kontrola systemu Debian. Ten skrypt
wykorzystuje program rsync z odpowiednimi opcjami do synchronizacji obu katalo-
gow poprzez sesje bezpiecznej powtoki (ang. secure shell, SSH). (Chociaz zazwyczaj nie
pozwalam uzytkownikowi root na logowanie przez ssh, w tym przypadku jest to ko-
nieczne. Oczywiscie takie rozwigzanie stosowatbym tylko w sieci lokalnej i nigdy przez
internet). Zgodnie z przeznaczeniem ten skrypt nosi nazwe rsync_with_debian. Zanim

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 189

bedzie mozna go uruchomi¢, najpierw trzeba nada¢ mu uprawnienia do wykonywania.
Stuzy do tego nastepujace polecenie:

$ chmod u+x rsync_with_debian

W drugim wierszu omawianego skryptu rsync_with_debian, zaraz po wierszu shebang,
znajduje sie doktadnie to samo polecenie, ktére musiatbym wpisa¢ w powtoce, gdybym
nie miat tego skryptu. Jak wida¢, dzieki utworzeniu takiego skryptu znacznie uprosci-
tem sobie prace.

Aby udostepni¢ ten skrypt wszystkim uzytkownikom systemu, umie$¢ go w katalogu
/usr/local/bin, ktéry powinien znajdowac sie w zmiennej PATH kazdego uzytkownika.

Zanim przejdziesz dalej, utrwal sobie to, czego sie wtasnie nauczytes. W tym celu wy-
konaj zamieszczone tutaj ¢wiczenie praktyczne.

Cwiczenie praktyczne — zliczanie zalogowanych
uzytkownikow

To ¢wiczenie pomoze utworzy¢ skrypt powtoki, ktory pokaze liczbe zalogowanych
uzytkownikéw. Nastepnie zmodyfikujesz go w taki sposéb, aby wyswietlat tylko uni-
kalnych uzytkownikéw. (W skrypcie wykorzystasz wybrane z filtréw strumieni teksto-
wych, o ktérych dowiedziates sie w poprzednich dwdéch rozdziatach).

1. W dowolnej z maszyn wirtualnych, ktére dziatajg pod kontrolg systemu Linux,
utworz trzy dodatkowe konta uzytkownikéw. W systemie Fedora mozesz uzy¢
wymienionych tutaj polecen, przy czym wybierz wtasne nazwy uzytkownikow:
$ sudo useradd vicky
$ sudo passwd vicky
Z kolei w Debianie wydaj nastepujgce polecenie:
$ sudo adduser vicky

2. W lokalnym terminalu maszyny wirtualnej sprawdz jej adres IP za pomoca
wymienionego polecenia:
$ ip a

3. W komputerze gospodarza otwoérz cztery okna terminala. Korzystajac z adresu
IP maszyny wirtualnej, w pierwszym oknie zaloguj sie do wtasnego konta
uzytkownika, za$§ w innych oknach zaloguj sie do pozostatych kont. Polecenia
beda wyglada¢ mniej wiecej tak:
$ ssh vicky@192.168.0.9

4. W oknie terminala, w ktérym jestes$ zalogowany, wyswietl liste wszystkich
aktualnie zalogowanych uzytkownikdw:
$ who

Powiniene$ zobaczy¢ pieciu uzytkownikéw, poniewaz Twoje konto pojawi sie
raz dla lokalnego logowania w terminalu i raz dla zdalnego logowania poprzez
SSH.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

190 Linux. Zostan mistrzem skryptow powtoki

5. Utworz skrypt o nazwie logged-in.sh i nastepujgcej zawartosci:
#1/bin/bash
users="$(who | wc -1)"
echo "There are currently $users users Togged in."

Uzywasz w nim koncepcji podstawienia polecenia, aby wynik wykonania
polecenia who | wc -1 przypisa¢ do zmiennej skryptowej users. (Wiecej
informacji na temat tej koncepcji przedstawie w dalszej czesci ksigzki, wiec
na razie sie tym nie przejmuj).

6. Za pomocg nastepujacego polecenia nadaj skryptowi uprawnienia
do wykonywania:
$ chmod u+x logged-in.sh

7. Teraz uruchom skrypt w ten sposéb:
$./logged-in.sh

Wynik jego uruchomienia powinien wyglada¢ nastepujaco:
There are currently 5 users logged in.

Problem polega na tym, ze w rzeczywisto$ci mamy tylko czterech uzytkownikow.
Liczba podana przez skrypt jest niepoprawna, poniewaz Twoja nazwa
uzytkownika jest liczona dwukrotnie. Teraz naprawisz ten btad.

8. Zmodyfikuj kod skryptu logged-in.sh do nastepujacej postaci:
#1/bin/bash
users="$(who | wc -1)"
echo "There are currently $users users Togged in."
echo
uniqusers="$(who | cut -d" " -f1 | sort | uniq | wc -1)"
echo "There are currently $uniqusers unique users logged in."

Zmienna uniqusers jest tworzona przez wszystkie polecenia potaczone ze soba
za pomocg potoku i umieszczone w nawiasie. Polecenie cut uzywa spacji jako
separatora (-d" ") i wyodrebnia pierwsze pole (-f1) z wyniku dziatania
polecenia who. Te dane wyjsciowe sg nastepnie przekazywane do polecenia
sort, a p6zniej do uniq, ktdére z kolei przekazuje do polecenia wc -1 tylko
unikalne nazwy uzytkownikéw.

9. Po ponownym uruchomieniu skryptu dane wyjsciowe powinny wygladac
nastepujgco:
There are currently 5 users logged in.
There are currently 4 unique users logged in.

10. Dokonaj ostatniej modyfikacji skryptu, aby wyswietli¢ nazwy unikalnych
zalogowanych uzytkownikéw. Gotowy skrypt bedzie przedstawiat sie
nastepujaco:

#1/bin/bash
users="$(who | wc -1)"
echo "There are currently $users users Togged in."

echo

uniqusers="$(who | cut -d" " -f1 | sort | uniq | wc -1)"

echo "There are currently $uniqusers unique users logged in."
echo

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 191

Tistusers="$(who | cut -d" " -f1 | sort | unig)"
echo "These users are currently logged in: \n$listusers

Raz jeszcze uruchom skrypt. Powiniene$ otrzymac dane wyjsciowe podobne do tutaj
przedstawionych:

There are currently 5 users logged in.

There are currently 4 unique users Togged in.

These users are currently Togged in:

cleopatra

donnie

frank

vicky

Gratulacje! Wtasnie utworzytes$ swoj pierwszy skrypt powtoki. Teraz czas na jego prze-
testowanie.

Wykonywanie testow

W trakcie tworzenia skryptéw czesto pojawia sie potrzeba sprawdzenia okre§lonych
warunkéw przed podjeciem decyzji o dalszym dziataniu. MozZe to by¢ na przyktad we-
ryfikacja istnienia konkretnego pliku lub katalogu, sprawdzenie uprawnien do pliku
lub katalogu badz wiele innych operacji. Istnieja trzy gtéwne sposoby przeprowadza-
nia takich testow:

B Uzycie stowa kluczowego test wraz z warunkiem testowym, potaczone
z innym poleceniem za pomocg konstrukcji && lub | |.

B Umieszczenie warunku testowego w nawiasie kwadratowym.

B Zastosowanie konstrukcji i f-then.

Najpierw przyjrzysz sie stowu kluczowemu test.

Uzywanie stowa kluczowego test

W pierwszym przyktadzie sprawdzisz, czy okreslony katalog istnieje, a jesli nie — utwo-
rzysz go. Oto jak to dziata w praktyce:

[donnie@fedora ~]$ test -d graphics || mkdir graphics
[donnie@fedora ~]$ 1s -1d graphics/

drwxr-xr-x. 1 donnie donnie 0 Sep 26 15:41 graphics/
[donnie@fedora ~]$

Teraz dodaj ten kod do skryptu test_graphics.sh:
#1/bin/bash
cd
pwd
test -d graphics || mkdir graphics
cd graphics
pwd

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

192 Linux. Zostan mistrzem skryptéow powtoki

Uruchom skrypt i zobacz, jakie otrzymasz dane wyjsciowe:

[donnie@fedora ~]$./test_graphics.sh
/home/donnie

/home/donnie/graphics

[donnie@fedora ~]$

Jak zapewne sie domyslasz, operator -d oznacza katalog (ang. directory). Konstrukcja
| | powoduje, Ze polecenie mkdir zostanie wykonane tylko wtedy, gdy podany katalog
nie istnieje. Oczywiscie jesli katalog juz istnieje, nie zostanie utworzony ponownie. Jest
to dobry $rodek ostroznosci, ktéry moze zapobiec przypadkowemu nadpisaniu istnie-
jacych plikéw lub katalogéw. (Nieco dalej w rozdziale zamieszcze tabele z wieksza
liczba operatoréw testowych).

Teraz przyjrzysz sie drugiej metodzie przeprowadzania testu.

Umieszczanie warunku testowego
w nawiasie kwadratowym

Drugi sposob przeprowadzenia testu polega na umieszczeniu warunku testowego
w nawiasie kwadratowym, jak pokazuje w kolejnym przyktadzie:

[-d graphics]

Przede wszystkim zwr6¢ uwage na konieczno$¢ umieszczenia spacji po otwierajagcym
nawiasie kwadratowym i przed zamykajacym. Przedstawiona konstrukcja sprawdza
istnienie katalogu graphics, podobnie jak w przypadku polecenia test -d. Teraz oma-
wiang konstrukcje umiesé w skrypcie test_graphics_2.sh w nastepujacy sposob:

#1/bin/bash

cd

pwd

[-d graphics] || mkdir graphics

cd graphics

pwd

Uruchomienie tego skryptu spowoduje wygenerowanie doktadnie takiego samego wy-
niku jak w przypadku poprzedniego skryptu. Teraz wprowadzisz pewnga modyfikacje.
Kod skryptu test_graphics_2.sh zmien w taki sposéb, aby przedstawiat sie nastepujaco:

#1/bin/bash

cd

pwd

[! -d graphics] && mkdir graphics

cd graphics

pwd

Uzyty tutaj operator negacji (!) oznacza, ze dany operator wykonuje dziatanie prze-
ciwne do zamierzonego. W tym przypadku ! powoduje, Ze operator -d sprawdza brak
katalogu graphics zamiast jego obecnosci. Aby takie rozwigzanie zadziatato poprawnie,
musisz réwniez zmienic operator | | na &&. (Zwrd¢ uwage na konieczno$¢ umieszczenia
spacji operatorem ! i przed opcja -d).

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 193

Istnieje mozliwo$¢ przetestowania wartosci liczbowych, na przyktad w ten sposéb:
[$var -eq 0]

W tym poleceniu znajduje sie odwotanie do wartosci zmiennej var. Polecenie spraw-
dza, czy jest ona réwna (-eq) 0. Zamiast uzywac negacji (!) do sprawdzenia, czy wartos$¢
zmiennej nie wynosi 0, uzyj operatora -ne. Zobacz, jak to bedzie wyglada¢ w skrypcie
test_var.sh:

#1/bin/bash

varl=0

var2=1

[$varl -eq 0] && echo "$varl is equal to zero."

[$var2 -ne 0] && echo "$var2 is not equal to zero."

Teraz uruchom wymieniony skrypt:

[donnie@fedora ~]$./test_var.sh
0 is equal to zero.

1 is not equal to zero.
[donnie@fedora ~]$

Trzeci sposéb przeprowadzenia testu polega na uzyciu konstrukcji if-then, na temat
ktorej wiecej dowiesz sie w kolejnym punkcie.

Uzywanie konstrukcji warunkowej if-then

Konstrukcja i f-then okazuje sie przydatna, gdy masz do czynienia z bardziej ztozonymi
warunkami. Oto najprostszy przyktad zdefiniowany w skrypcie test_graphics_3.sh:

#1/bin/bash

cd

pwd

if [! -d graphics]; then

mkdir graphics

fi

cd graphics

pwd

Omawiana konstrukcja rozpoczyna sie od polecenia if, a konczy poleceniem fi (kto-
rego nazwa to odwrocony zapis stowa kluczowego if). Po warunku testowym nalezy
umies$ci¢ srednik, a nastepnie stowo kluczowe then. Nastepny element to akcja, ktora
chcesz wykona¢ — w tym przypadku bedzie nig polecenie mkdir graphics. Wprawdzie
w przeciwienstwie do innych jezykéw programowania wciecie bloku akcji w skryptach
powtoki nie jest konieczne, ale pomaga zapewni¢ wiekszg czytelnos¢ skryptu.

Oczywiscie mozliwosci konstrukcji if-then sg znacznie szersze, niz tutaj przedstawi-
tem. Jednak teraz nie mysl o tym, poniewaz wiecej informacji na ich temat znajdziesz
w dalszej cze$ci rozdziatu. Jednak zanim tam dotrzesz, chce oméwic kilka dodatkowych
koncepcji, ktdre mozesz stosowac, aby urozmaici¢ tworzone konstrukcje if-then.

W nastepnym punkcie przyjrzysz sie r6znym rodzajom testow.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

194 Linux. Zostan mistrzem skryptéow powtoki

Uzywanie innych rodzajow testow

Istnieje znacznie wiecej rodzajow testow, ktére mozna przeprowadzi¢, m.in.: poréw-
nanie ciggéw tekstowych, poréwnania liczbowe, sprawdzanie istnienia plikéw lub ka-
talogéw oraz ich uprawnien. W tabeli 8.1 znajduje sie zestawienie najpopularniejszych
testoOw wraz z ich operatorami.

Tabela 8.1. Zestawienie najpopularniejszych testow wraz z ich operatorami

Operator Opis

-b nazwa_pliku Prawda, jesli istnieje plik urzadzenia blokowego o podane;j
nazwie.

-C nazwa_pliku Prawda, jesli istnieje plik urzadzenia znakowego o podanej
nazwie.

-d nazwa_katalogu Prawda, jesli istnieje katalog o podanej nazwie.

-e nazwa_pliku Prawda, jesli istnieje jakikolwiek plik o podanej nazwie.

- nazwa_pliku Prawda, jesli istnieje zwykly plik o podanej nazwie.

-9 nazwa_pliku Prawda, jesli plik lub katalog majq zdefiniowane
uprawnienie SGID.

-G nazwa_pliku Prawda, jesli plik istnieje i nalezy do efektywnego
identyfikatora grupy.

-h nazwa_pliku Prawda, jesli plik istnieje i jest dowigzaniem symbolicznym.

-k nazwa_pliku Prawda, jesli plik lub katalog istnieja i majg ustawiony tzw.
bit lepkosci (ang. sticky bit).

-L nazwa_pliku Prawda, jesli plik istnieje i jest dowigzaniem symbolicznym.
(Tak samo jak -h).

-p nazwa_pliku Prawda, jesli plik istnieje i jest nazwanym potokiem.

-0 nazwa_pliku Prawda, jesli plik istnieje i nalezy do efektywnego
identyfikatora uzytkownika.

-r nazwa_pliku Prawda, jesli plik istnieje i jest mozliwy do odczytu.

-S nazwa_pliku Prawda, jesli plik istnieje i jest gniazdem.

-s nazwa_pliku Prawda, jesli plik istnieje i ma niezerowy rozmiar.

-u nazwa_pliku Prawda, jesli plik istnieje i ma ustawiony bit SUID.

-w nazwa_pliku Prawda, jesli plik istnieje i jest mozliwy do zapisu.

-Xx nazwa_pliku Prawda, jesli plik istnieje i jest wykonywalny.

plikl -nt plikz Prawda, jesli plik1 jest nowszy niz plik2.

plikl -ot plikz Prawda, jesli plik1 jest starszy niz plik2.

-z ciqg_znakow Prawda, jesli dtugos¢ ciggu znakéw wynosi 0.

-n ciqg_znakow Prawda, jesli dtugos¢ ciggu znakdw jest rézna od 0.

ciggl == ciqg? Prawda, jesli dwa ciggi znakow sa identyczne.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 195

Tabela 8.1. Zestawienie najpopularniejszych testow wraz z ich operatorami - ciag dalszy

Operator Opis

ciggl != ciqg? Prawda, jesli dwa ciagi znakéw nie s identyczne.

ciggl < ciggz Prawda, jesli ciggl wystepuje przed cigg? w porzadku
alfabetycznym.

ciggl > cigg2 Prawda, jesli ciggl wystepuje po cigg2 w porzadku
alfabetycznym.

liczbal -eq liczbaz Prawda, jesli dwie liczby catkowite sg réwne.

liczbal -ne liczbaz Prawda, jesli dwie liczby catkowite nie sg réwne.

liczbal -1t liczbaz Prawda, jesli liczbal jest mniejsza od liczba2.

liczbal -gt liczbaz Prawda, jesli liczbal jest wigksza od liczba2.

liczbal -le liczbaz Prawda, jesli 1iczbal jest mniejsza od liczba? lub jej rowna.

liczbal -ge liczbaz Prawda, jesli liczbal jest wieksza od liczba2 lub jej rowna.

-0 nazwa_opcji Prawda, jesli opcja powtoki jest wiaczona.

Wiem, ze w tabeli 8.1 znajduje sie catkiem sporo informacji. Nie przejmuj sie tym. Jesli
nie chcesz tego wszystkiego zapamietywac, po prostu trzymaj te tabele pod reka, aby
moc tatwo po nia siegnac.

W nastepnym podrozdziale przedstawie podpowtoke.

Podpowtoka

Gdy wykonujesz test przy uzyciu konstrukcji [$var -ne 0], uruchamia ona tzw. pod-
powloke. Aby temu zapobiec, uzyj zamiast tego nastepujacej konstrukeji:

[$var -ne 0 1]

Moze to sprawic, ze skrypt bedzie dziatat nieco wydajniej, co w zaleznosci od konkret-
nego przypadku bedzie miato wieksze lub mniejsze znaczenie.

Tego typu konstrukcja, [[. . .1], jest rbwniez niezbedna podczas wykonywania
testow, ktére wymagaja dopasowania wzorca do wyrazenia regularnego. (Dopa-
sowywanie wyrazen regularnych nie dziata w konstrukgji [. . .]1).

Wada konstrukgeji [[. . .]] jest to, ze nie mozna jej uzywac w niektérych powto-
kach innych niz bash, na przyktad dash, ash czy Bourne’a. (Wiecej informacji na ten
temat przedstawie w rozdziale 19., poswieconym przenosnosci skryptow powtoki).

Oczywiscie na tym etapie poznawania powtoki nie musisz jeszcze wiedzie¢, czym
sg wyrazenia regularne. Doktadnie o nich opowiem w rozdziale 9., ktéry dotyczy
filtrowania tekstu za pomoca narzedzi grep, sed i wtasnie wyrazen regularnych.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

196 Linux. Zostan mistrzem skryptéow powtoki

W kazdym razie zawsze mozesz wyprobowac swoje skrypty zaréwno z uzyciem pod-
powtok, jak i bez nich, aby sprawdzi¢, ktére rozwigzanie sprawdza sie lepiej w danej
sytuacji.

Omoéwitem juz wszystkie trzy metody testowania. Nadszedt wiec czas na troche ekspe-
rymentéw w ramach ¢wiczenia praktycznego.

Cwiczenie praktyczne — testowanie warunkéw

Do tego ¢wiczenia pobierz skrypt tests-test.sh z repozytorium GitHuba. (Jest to do$¢
dtugi skrypt, ktorego kodu zrédtowego nie moge tutaj zamiesci¢ ze wzgledu na ograni-
czenia dotyczace formatowania ksigzki). Otworz skrypt w ulubionym edytorze tekstu
i przyjrzyj sie strukturze. Zwr6¢ uwage na operacje, ktéra sprawdza istnienie pliku
myfile.txt. Odpowiedni fragment kodu wyglada mniej wiecej tak:

#1/bin/bash

[-f myfile.txt] && echo "This file exists." || echo "This file does not exist."

Nastepnie zobaczysz polecenie utworzenia pliku, jesli jeszcze nie istnieje:

echo "We will now create myfile.txt if it does not exist, and make it with only
read permissions for $USER."
[-f myfile.txt] || touch myfile.txt

Dalej znajduje sie polecenie, ktore plikowi myfile.txt nadaje uprawnienia w postaci 400.
Zgodnie z nimi uzytkownik ma mozliwo$¢ odczytywania pliku, ale nikt nie ma prawa
do jego zapisu. Potem chcesz zweryfikowa¢, czy wszystkie uprawnienia do zapisu zo-
staly usuniete. Oto jak przedstawia sie odpowiedzialny za to fragment kodu:

chmod 400 myfile.txt
1s -1 myfile.txt

echo

echo "We will now see if myfile.txt is writable."

[-wmyfile.txt] && echo "This file is writable." || echo "This file is not
writable."

Po kilku kolejnych modyfikacjach ustawien uprawnien i testach z nimi zwigzanych zo-
baczysz fragment kodu, ktory sprawdza istnienie katalogu i tworzy go, jesli jeszcze nie
istnieje:

[-d somedir] || echo "somedir does not exist."

[-d somedir] || mkdir somedir && echo "somedir has just been created."
1s -1d somedir

Pod koniec skryptu zobaczysz fragment kodu, ktdry testuje stan opcji noclobber, wtgcza
ja, a nastepnie ponownie sprawdza jej stan.

Po przejrzeniu skryptu uruchom go, aby zobaczyy¢, jaki bedzie wynik jego dziatania.

Zadanie dla ambitnych: przepisz ten skrypt do wtasnego pliku. Dlaczego? C6z, maty
sekret polega na tym, ze samodzielne wpisywanie kodu pomaga lepiej zrozumiec
przedstawione w nim koncepcje.

W nastepnym kroku utwoérz skrypt o nazwie tests-test_2.sh i nastepujacej zawartosci:

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 197

#1/bin/bash

echo "We will now compare text strings."

stringl="abcd"

string2="efgh"

[[$stringl > $string2]] && echo "stringl comes after string2 alphabetically." ||
>echo "stringl comes before string2 alphabetically."

echo

echo "We will now compare numbers."

numl=10

num2=9

[[$numl -gt $num2]] && echo "numl is greater than num2." || echo "numl is less
>than num2."

Nadaj skryptowi uprawnienia do wykonywania, a nastepnie uruchom go, aby zobaczy¢
wygenerowane dane wyjSciowe. Zmien wartosci zmiennych stringl, string2, numl i num2,
po czym ponownie uruchom skrypt i przeanalizuj otrzymany wynik.

Koniec ¢wiczenia.

W nastepnym podrozdziale blizej przyjrzysz sie zmiennym.

Zmienne w skryptach

Juz troche opowiedziatem o zmiennych w skryptach i pokazatem przyktady ich uzycia.
Ale to nie wszystko, jest jeszcze kilka aspektéw, o ktérych warto wspomniec.

Tworzenie i usuwanie zmiennych

Jak wczes$niej wyja$nitem, czasami konieczne lub po prostu wygodniejsze jest definio-
wanie zmiennych w skryptach. Mozesz takze definiowa¢, przegladaé i usuwac zmienne
bezposrednio z poziomu powtoki. Oto przyktad pracy ze zmiennymi:

[donnie@fedora ~]$ car=Ford

[donnie@fedora ~]$ echo $car

Ford

[donnie@fedora ~]$ unset car

[donnie@fedora ~]$ echo $car

[donnie@fedora ~]$

W tym przyktadzie zdefiniowate$ zmienng car i przypisates$ jej warto$¢ Ford. Pierwsze
polecenie echo wy$wietla aktualng warto$¢ zmiennej. Natomiast drugie potwierdza po-
my$lne usuniecie zmiennej za pomoca polecenia unset.

Zmienne i poziomy powtoki

Gdy umieszczasz wiersz shebang, taki jak #!/bin/bash lub #!/bin/sh, na poczatku
skryptu, wéwczas nowa nieinteraktywna powtoka potomna zostanie uruchomiona za
kazdym razem, gdy uruchomisz ten skrypt. Po zakonczeniu jego dziatania takze uru-
chomiona przez niego powtoka konczy dziatanie. Powtoka potomna dziedziczy wszystkie

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

198 Linux. Zostan mistrzem skryptow powtoki

zmienne, ktére zostaly wyeksportowane z powtoki nadrzednej. Jednak powtoka nad-
rzedna nie dziedziczy zadnych zmiennych po powtoce potomnej. Przekonasz sie o tym,
gdy w powtoce nadrzednej przypiszesz zmiennej car warto$¢ Volkswagen w nastepujacy
sposob:

[donnie@fedora ~]$ export car="Volkswagen"

[donnie@fedora ~]$ echo $car

Volkswagen
[donnie@fedora ~]$

Nastepnie utworz skrypt o nazwie car_demo.sh i nastepujacej zawartosci:

#1/bin/bash

echo \$car is set to $car
export car=Toyota

echo "The $car is very fast."
echo \$car is set to $car

Nowemu plikowi nadaj uprawnienia do wykonywania, a nastepnie uruchom skrypt.
Otrzymasz pokazane tutaj dane wyjsciowe:

[donnie@fedora ~]$./car_demo.sh

$car is set to Volkswagen

The Toyota is very fast.

$car is set to Toyota

[donnie@fedora ~]$

Zwrd¢ uwage, jak warto$¢ zmiennej car (tutaj Volkswagen) zostata dziedziczona po po-
wtoce nadrzednej. Dzieje sie tak z powodu uzycia polecenia export — gwarantuje ono,
ze warto$¢ zmiennej bedzie dostepna dla powtoki potomnej, w ktérej zostat urucho-
miony skrypt. Sprébuj raz jeszcze, ale tym razem bez eksportowania zmienne;j:

[donnie@fedora ~]$ unset car

[donnie@fedora ~]§ car=Studebaker

[donnie@fedora ~]$./car_demo.sh

$car is set to

The Toyota is very fast.

$car is set to Toyota

[donnie@fedora ~]$

Aby rozwigzanie zadziatato, najpierw trzeba usungc zmienng car za pomoca polecenia
unset. Po uzyciu tego polecenia wartos$¢ zmiennej nie bedzie dtuzej eksportowana. Gdy
teraz uruchomisz skrypt, nie znajdzie on warto$ci zmiennej car, zdefiniowanej w po-
wtoce nadrzedne;j.

Dlaczego to jest wazne? Chodzi o to, Ze czasami bedziesz tworzy¢ skrypty, ktdre z kolei
beda wywotywac inne skrypty, co w efekcie prowadzi do uruchomienia kolejnej po-
wtoki potomnej. Jesli chcesz, aby zmienne byty dostepne dla powtoki potomnej, musisz
je wyeksportowac.

Rozroznianie wielkosci liter

W nazwach zmiennych rozrézniana jest wielko$¢ liter. Oznacza to, Ze zmienna o nazwie
car jest zupetnie inna niz zmienne o nazwach Car czy CAR.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 199

Zmienne sSrodowiskowe majg nazwy zapisane wytgcznie wielkimi literami. Dobra prak-
tyka jest natomiast uzywanie matych liter lub réznej wielkosci liter w nazwach zmien-
nych programistycznych. Co ciekawe, powtoki Linux i Unix nie wymuszajg tej reguty
dla zmiennych programistycznych. Warto jednak jej przestrzegaé, poniewaz pomaga
to unikng¢ przypadkowego nadpisania warto$ci waznej zmiennej Srodowiskowe;.

Z przykroscig musze stwierdzi¢, ze w internecie mozna znalez¢ poradniki dotyczace
skryptow powtoki, w ktérych autorzy zachecajg do tworzenia nazw zmiennych
wytacznie wielkimi literami. Niedawno natrafitem na jeden z takich poradnikéw.
Wprawdzie w wiekszosci przypadkéw autor proponuje tworzenie zmiennych o na-
zwach, ktére nie kolidujg ze zmiennymi srodowiskowymi, ale w jednym nakazuje
utworzy¢ zmienng USER i przypisac jej pewng wartos¢. Nie musze dodawac, ze USER
to nazwa juz istniejgcej zmiennej sSrodowiskowej. Zatem przypisanie jej nowej war-
tosci spowoduje nadpisanie tej, ktéra powinna tam by¢. Wniosek z tego taki, ze
w internecie mozna znalez¢ wiele dobrych poradnikéw, ale niestety jest tez sporo
takich, ktore przekazujg btedne informacje.

Zmienne tylko do odczytu

Jak juz wyjasnitem, po zadeklarowaniu zmiennej w standardowy sposéb mozna jg usu-
nac lub przypisaé jej nowa wartos¢. Istnieje réwniez mozliwo$¢ zdefiniowania zmien-
nej jako tylko do odczytu, co uniemozliwia jej ponowne zdefiniowanie lub usuniecie.
Oto jak to dziata:

[donnie@fedora ~]$ car=Nash

[donnie@fedora ~]$ echo $car

Nash

[donnie@fedora ~]$ readonly car

[donnie@fedora ~]$ unset car

bash: unset: car: cannot unset: readonly variable

[donnie@fedora ~]$ car=Hudson

bash: car: readonly variable

[donnie@fedora ~]$

Gdy witasciwos$¢ zostata zdefiniowana jako przeznaczona tylko do odczytu, jedynym
sposobem na zmiane lub usuniecie zmiennej car jest zamkniecie okna terminala.

Céz, jest to jedyny sposdb na pozbycie sie zmiennej tylko do odczytu, jesli nie masz
uprawnien administratora. Natomiast jezeli posiadasz takie uprawnienia, mozesz
uzy¢ debuggera GNU bash (gdb) do usuniecia takiej zmiennej. Jednak wyjasnie-
nie tego zagadnienia wykracza poza zakres tematyczny rozdziatu. (Doktadniejsze
omowienie narzedzia gdb znajdziesz w rozdziale 21., poswieconym debugowaniu
skryptéw powtoki).

To wszystko sprawdza sie Swietne, o ile chcesz zdefiniowac tylko pojedyncze zmienne.
Jednak co w sytuacji, gdy potrzebujesz catej listy zmiennych? W takim przypadku przy-
dajg sie tablice. Przyjrzysz sie im w nastepnym podrozdziale.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

200 Linux. Zostan mistrzem skryptow powtoki

Tablice

Tablica pozwala zebrac¢ liste elementéw w jednej zmiennej. Najprostszym sposobem
utworzenia tablicy jest przypisanie wartosci jednemu z jej indeksoéw, jak pokazuje
w kolejnym przyktadzie:

nazwa[indeks]=wartos¢

W tym przypadku nazwa to nazwa tablicy, za$ indeks to potozZenie elementu w tablicy.
(Pamietaj, ze indeks musi by¢ liczbg). Natomiast wartosc¢ to konkretna warto$¢ przypi-
sana danemu elementowi tablicy.

Numeracja elementéw w tablicy zaczyna sie od 0. Zatem zapis nazwa[0] odwotuje sie do
pierwszego elementu tablicy. Aby utworzy¢ tablice indeksowana, uzyj polecenia
declare z opcja -a:

[donnie@fedora ~]§ declare -a myarray
[donnie@fedora ~]$

Teraz utworz liste, ktéra zostanie wstawiona do tablicy:

[donnie@fedora ~]$ myarray=(iteml item2 item3)
[donnie@fedora ~]$

Wprawdzie mozesz sprawdzi¢ warto$¢ dowolnego elementu tablicy, ale istnieje spe-
cjalny sposob, aby to zrobié. Oto jak to wyglada:

[donnie@fedora ~]§ echo ${myarray[0]}

iteml

[donnie@fedora ~]$ echo ${myarray[1]}

item2

[donnie@fedora ~]$ echo ${myarray[2]}

item3

[donnie@fedora ~]$

Zwrd¢ uwage na umieszczenie konstrukcji myarray[x] w nawiasie klamrowym.

Aby wyswietli¢ calg liste elementéw tablicy, uzyj znaku * lub @ zamiast numeru in-
deksu, jak pokazuje w kolejnym przyktadzie:

[donnie@fedora ~]§ echo ${myarray[*]}

iteml item2 item3

[donnie@fedora ~]§ echo ${myarray[@]}

iteml item2 item3

[donnie@fedora ~]$

Aby po prostu policzy¢ liczbe elementéw tablicy, wystarczy wstawi¢ znak # przed jej
nazwa:

[donnie@fedora ~]$ echo ${#myarray[@]}

3

[donnie@fedora ~]$ echo ${#myarray[*]}

3

[donnie@fedora ~]$

W ten spos6b przedstawitem podstawy pracy z tablicami. Cwiczenie zamieszczone
w nastepnym punkcie pozwoli zajg¢ sie czym$ bardziej praktycznym.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 201

Cwiczenia praktyczne — praca z tablicami

1. Aby zobaczy¢, jak tworzy sie tablice, rozpocznij od zdefiniowania skryptu ip.sh
0 nastepujacej zawartosci:
#1/bin/bash
echo "IP Addresses of intruder attempts"
declare -a ip
ip=(192.168.3.78 192.168.3.4 192.168.3.9)
echo "ip[0] is ${ip[0]}, the first item in the list."
echo "ip[2] is ${ip[2]}, the third item in the Tist."
echo n n
echo "The most dangerous intruder is ${ip[1]}, which is in ip[1]."
echo n n
echo "Here is the entire Tist of IP addresses in the array."
echo ${ip[*]}

2. Plikowi nadaj uprawnienia do wykonywania i uruchom go.
$ chmod u+x ip.sh
$./ip.sh
3. Utwdrz katalog /opt/scripts/ przeznaczony do przechowywania plikow
z danymi, ktére beda potrzebne Twoim skryptom. MoZesz to zrobi¢
W nastepujacy sposdb:
$ sudo mkdir /opt/scripts

4. W katalogu /opt/scripts/ utwérz plik o nazwie banned.txt. (Pamietaj, Ze w tym
katalogu bedziesz musiat uzy¢ sudo w trakcie uruchamiania edytora tekstu).
W nowym pliku umies$¢ nastepujaca zawartos$c:
192.168.0.48
24.190.78.101
38.101.148.126
41.206.45.202
58.0.0.0/8
59.107.0.0/17
59.108.0.0/15
59.110.0.0/15
59.151.0.0/17
59.155.0.0/16
59.172.0.0/15

5. W katalogu domowym utworz skrypt o nazwie attackers.sh, ktory zbuduje
tablice zabronionych adresow IP zamieszczonych na liScie pochodzacej
z utworzonego wcze$niej pliku tekstowego. Nastepnie w skrypcie attackers.sh
umie$¢ nastepujaca zawartosc¢:
#1/bin/bash
badips=$(cat /opt/scripts/banned.txt)
declare -a attackers
attackers=($badips)
echo "Here is the complete list: "
echo ${attackers[@]}
echo
echo "Let us now count the items in the Tist."
num_attackers=${#attackers[*]}

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

202 Linux. Zostan mistrzem skryptéow powtoki

echo "There are $elements IP addresses in the Tist."
echo
echo "attackers[2] is ${attackers[2]}, which is the third address in the list."
exit
6. Skryptowi attackers.sh nadaj uprawnienia do wykonywania i uruchom go.

$ chmod u+x attackers.sh
$./attackers.sh

7. Zmodyfikuj skrypt, aby elementy o indeksach 0, 5 i 8 zostaty wySwietlone na
ekranie, a nastepnie ponownie uruchom skrypt. (Juz wczesniej wyjasnitem, jak
to zrobic).

Koniec ¢wiczenia.

Kilka stéw wyja$nienia na temat tego skryptu. Przede wszystkim w drugim wierszu
zostato uzyte podstawienie polecenia cat, aby zawarto$¢ pliku banned.txt przypisa¢ do
zmiennej badips. (Wiem, ze ciggle pokazuje przyktady podstawienia polecenia, ale jesz-
cze nie wyjasnitem w petni tej koncepcji. Nie martw sie, poniewaz zrobie to za chwile).
Jednak to wcigz nie jest tablica. Utworzona jest oddzielnie, za pomoca polecenia
declare -a.Nastepnie w wierszu attackers=znajduje sie odwotanie do wartosci zmien-
nej badips, ktora zostata p6zniej uzyta do utworzenia tablicy attackers. Ewentualnie
mozna poming¢ uzycie zmiennej posredniej i utworzy¢ tablice bezposrednio, z wykorzy-
staniem podstawienia polecenia cat, jak mozesz to zobaczy¢ w skrypcie attackers_2.sh:

#1/bin/bash

declare -a badips

badips=($(cat /opt/scripts/banned.txt))

echo "Here is the complete list: "

echo ${badips[@]}

echo

echo "Let us now count the items in the list."

elements=${#badips[*]}

echo "There are $elements IP addresses in the list."

echo

echo "badips[2] is ${badips[2]}, which is the third address in the Tlist."

exit

Obie metody dziatajg, ale om6éwiona powyzej jest nieco bardziej przejrzysta.

W rzeczywistym scenariuszu mozna jeszcze dodac¢ kod odpowiedzialny za auto-
matyczne utworzenie reguly zapory sieciowej, ktora bedzie blokowata wszystkie
adresy wymienione w pliku banned.txt. Jednak woéwczas jest wymagane zastoso-
wanie technik, ktorych jeszcze nie omoéwitem. Dlatego takie rozwigzanie zaprezen-
tuje nieco pdzniej.

W nastepnym podrozdziale zajmiesz sie wykorzystaniem zmiennych.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 203

Rozwijanie zmiennych

Rozwijanie zmiennych, nazywane rowniez rozwijaniem parametrow, pozwala po-
wtoce testowa¢ lub modyfikowa¢ warto$ci zmiennej, ktéra jest uzywana w skrypcie.
Odbywa sie to za pomoca specjalnych modyfikatoréw ujetych w nawiasy klamrowe
i poprzedzonych znakiem dolara (${zmienna}).Jesli dana zmienna nie jest zdefiniowana
w powtoce bash, zostanie rozwinieta do pustego ciggu tekstowego. Najlepszym sposo-
bem na zrozumienie sposobu dziatania tego mechanizmu jest przeanalizowanie kilku
prostych przyktadow.

Przypisywanie wartosci
do niezainicjalizowanej zmiennej

Najpierw pokaze przyktad zdefiniowania zmiennej cat o warto$ci w postaci imienia
mojego 16-letniego szarego kociaka. Nastepnie wykonasz test, aby sprawdzi¢, czy
zmienna cat rzeczywiscie ma przypisang wartos¢:

[donnie@fedora ~]$ cat=Vicky

[donnie@fedora ~]$ echo ${cat-"This cat variable is not set."}

Vicky

[donnie@fedora ~]$

Teraz usun warto$¢ zmiennej cat i ponownie wykonaj test. Zobaczmy, jaki bedzie efekt:

[donnie@fedora ~]$§ unset cat

[donnie@fedora ~]$ echo ${cat-"This cat variable is not set."}
This cat variable is not set.

[donnie@fedora ~]$

Co sie wiec stato? Otdz, znak -, ktdry znajduje sie miedzy elementami cat i This cat
variable is not set, sprawdza, czy zmienna cat ma przypisang warto$c. Jesli nie ma,
wowczas cigg tekstowy umieszczony po znaku - zostaje uzyty w miejsce warto$ci
zmiennej. Jednak ta podstawiona warto$c¢ nie jest faktycznie przypisywana zmiennej,
co wida¢ w kolejnym przyktadzie:

[donnie@fedora ~]§ echo $cat
[donnie@fedora ~]$

Teraz zmiennej cat przypisz warto$¢ null i sprobuj ponownie:

donnie@fedora:~$ cat=
donnie@fedora:~$ echo ${cat-"This cat variable is not set."}
donnie@fedora:~$

Tym razem otrzymujesz dane wyjSciowe w postaci pustego wiersza, poniewaz zmienna
cat zostata zdefiniowana. Jednak przypisanag jej wartoscia jest nul1. Spréobuj jeszcze raz,
przy czym uzyj znakow : - zamiast - w nastepujacy sposob:

donnie@fedora:~$ echo ${cat:-"This cat variable is not set."}

This cat variable is not set.
donnie@fedora:~$

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

204 Linux. Zostan mistrzem skryptow powtoki

Dzieje sie tak, poniewaz umieszczenie dwukropka przed znakiem minus powoduje, Ze
zmienne, ktérym przypisano warto$c null, sg traktowane jak zmienne niezdefiniowane.

Na tym koncze temat zmiennych niezdefiniowanych. Czasami moze zachodzi¢ potrzeba
pracy ze zmiennymi, ktdre majg juz przypisane warto$ci. Tym zajmiesz sie w nastep-
nym punkcie.

Przypisywanie wartosci do zmiennej zhioru

Mozesz tez postgpi¢ odwrotnie i podstawi¢ warto$¢ w miejsce zmiennej, ktéra ma juz
przypisang wartos$¢. Przyktad takiego rozwigzania wyglada nastepujaco:
[donnie@fedora ~]$ car="1958 Edsel Corsair"
[donnie@fedora ~]$ echo ${car+"car is set and might or might not be null"}

car is set and might or might not be null
[donnie@fedora ~]$

W tym przypadku konstrukcja z uzyciem znaku + powoduje, Ze nastepujacy po nim ciag
tekstowy zostaje podstawiony w miejsce przypisanej warto$ci zmiennej. Warto zau-
wazy¢, ze w tym ciggu tekstowym nie ma zadnych znakéw specjalnych, ktére wymaga-
tyby znakéw cytowania, wiec sg one opcjonalne. Niemniej jednak dobra praktyka jest
uzywanie — dla bezpieczefistwa — znakéw cytowania. Nalezy roéwniez pamietaé, ze
taka operacja podstawienia nie zmienia faktycznie przypisanej warto$ci zmiennej car,
co mozna zaobserwowac w kolejnym przyktadzie:
[donnie@fedora ~]$ echo $car

1958 Edsel Corsair
[donnie@fedora ~]$

Jak wtas$nie pokazatem na przyktadzie operatora —, operator + traktuje zmienne o war-
tosci nu11 jako zdefiniowane. Natomiast jesli chcesz takie zmienne uznawac za niezde-
finiowane, wowczas uzyj operatora :+. Gdy utworzysz zmienng i pozostawisz jg z war-
toscia nu11, bedzie to wygladac¢ mniej wiecej tak:

[donnie@fedora ~]$ computer=

[donnie@fedora ~]$ echo ${computer:+"computer is set and is not null"}
[donnie@fedora ~]$

W przypadku wartos$ci nu11 polecenie echo nie generuje zadnych danych wyj$ciowych.
Akurat korzystam z komputera Dell, wiec zmiennej computer przypisz teraz wartos$¢
Dell, jak pokazuje ponizej:

[donnie@fedora ~]$ computer=Dell

[donnie@fedora ~]$ echo ${computer:+"computer is set and might or might not be null"}

computer is set and might or might not be null
[donnie@fedora ~]$

Jak juz wczes$niej wspomniatem, oméwione wiasnie operatory podstawiajg warto$c
zmiennej w zaleznosci od tego, czy ma ona przypisang wartos¢. Jednak nie zmienig one
faktycznej wartosci zmiennej. Czasami moze zachodzi¢ potrzeba zmiany wartoS$ci
zmiennej i takg sytuacje omdwie w nastepnym punkcie.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 205

Przypisywanie wartosci zmiennej

Kolejna sztuczka pozwala przypisywaé warto$¢ niezainicjalizowanej zmiennej przy
uzyciu operatoréw = oraz :=. Zacznij od przypisania warto$ci zmiennej town:

donnie@fedora:~$ unset town
donnie@fedora:~$ echo $town
donnie@fedora:~$ echo ${town="Saint Marys"}
Saint Marys

donnie@fedora:~$ echo $town

Saint Marys

donnie@fedora:~$

Teraz zobacz, czy mozesz przypisac inng warto$¢ tej zmiennej:

donnie@fedora:~$ echo ${town="Kingsland"}
Saint Marys

donnie@fedora:~$ echo $town

Saint Marys

donnie@fedora:~$

Jak juz wczes$niej pokazatem, uzycie tego operatora bez poprzedzajacego go dwukropka
powoduje, Ze zmienna o wartosci null jest traktowana jako zdefiniowana. Spojrz na
kolejny przyktad:

donnie@fedora:~$ unset town

donnie@fedora:~$ town=

donnie@fedora:~$ echo ${town="Saint Marys"}

donnie@fedora:~$

Aby zobaczyg¢, jak dziata operator :=, utworz zmienng armadillo o wartos$ci nul1, a na-
stepnie przypisz jej warto$¢ domyslng w nastepujacy sposob:

[donnie@fedora ~]$ armadillo=

[donnie@fedora ~]$ echo ${armadillo:=Artie}

Artie

[donnie@fedora ~]$ echo $armadillo

Artie

1$

[donnie@fedora
Artie to tymczasowe imie, jakie nadatem pancernikowi, ktéry niedawno zaczat w nocy
odwiedza¢ méj ogrod. Jednak jeszcze nie wiem, czy ten pancernik to samiec czy samica,
wiec nie jestem pewien, czy Artie bedzie odpowiednim imieniem. Jesli okaze sie, Ze to
samica, by¢ moze zmienie imie na Annie. Sprébuj wiec powtérzy¢ poprzednie ¢wicze-
nie, ale z pancernikiem o imieniu Annie. Nastepnie zobaczysz, czy mozna uzy¢ przykta-
dowej zmiennej, aby zmieni¢ jej warto$¢ z powrotem na Artie:

[donnie@fedora ~]$ armadillo=Annie
[donnie@fedora ~]$ echo ${armadillo:=Artie}
Annie

[donnie@fedora ~]$ echo $armadillo

Annie

[donnie@fedora ~]$

Zmienna armadillo miata juz przypisang wartos¢ Annie, dlatego, jak widzisz, polecenie
echo ${armadillo:=Artie} nie przyniosto zadnego efektu, poza wyswietleniem warto-
$ci, ktéra wczesniej byta przypisana zmienne;j.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

206 Linux. Zostan mistrzem skryptow powtoki

Co w sytuacji, je$li nie chcesz podstawia¢ wartosci zmiennej, a jedynie wyswietli¢ ko-
munikat btedu? Warto przyjrzyec sie temu blize;j.

Wyswietlanie komunikatu btedu

Nie zawsze chcesz wykonywa¢ podstawienie wartosci lub przypisanie wartosci dla
niezdefiniowanej zmiennej. Czasami w takiej sytuacji wystarczajgce bedzie po prostu
wys$wietlenie komunikatu btedu (za pomoca standardowego strumienia btedéw). Do
tego celu mozna wykorzysta¢ konstrukcje : ? w nastepujacy sposoéb:

[donnie@fedora ~]$ dog=

[donnie@fedora ~]$ echo ${dog:?The dog variable is unset or null.}

bash: dog: The dog variable is unset or null.
[donnie@fedora ~]$

Sprébuj to ponownie zrobi¢ z psem o imieniu Rastus. Tak wabit sie owczarek angielski,
ktérego miata moja babcia, gdy bytem dzieckiem. Niezbedne polecenia przedstawiajg
sie nastepujaco:

[donnie@fedora ~]$ dog=Rastus

[donnie@fedora ~]$ echo ${dog:?The dog variable is unset or null.}

Rastus
[donnie@fedora ~]$

Prawdopodobnie myslisz sobie, Ze operacja wyglada doktadnie tak samo jak w pierw-
szym przyktadzie, w ktérym za pomoca znaku - warto$¢ niezdefiniowanej zmiennej
cat zastapitem odpowiednim komunikatem. Cé6z, po czeSci masz racje. Réznica polega
na tym, ze konstrukcja oparta na znaku - podstawia warto$¢ pojawiajacg sie na stan-
dardowym wyjsciu, podczas gdy oparta na znakach :? podstawia komunikat, ktéry po-
jawia sie na standardowym wyjsciu btedéw. Ponadto jesli w skrypcie powtoki uzyjesz
konstrukcji :? w potaczeniu z niezdefiniowang zmienna, spowoduje to zakonczenie
dziatania skryptu.

Wyprébuj to samodzielnie. W tym celu utworz skrypt o nazwie ex.sh i nastepujacej za-
wartosci:

#1/bin/bash

var=

: ${var:?var is unset, you big dummy}

echo "I wonder if this will work."

Do tej pory pokazatem, jak uzywac polecenia echo do podstawiania zmiennych i wy-
$wietlania danych wyjsciowych. Ta konkretna konstrukcja poprzez uzycie znaku : za-
miast polecenia echo pozwala na samo testowanie zmiennej bez wyswietlania jakich-
kolwiek wynikdw. Gdy teraz uruchomisz ten skrypt, zobaczysz, ze konczy on dziatanie
przed wykonaniem ostatniego polecenia echo:

[donnie@fedora ~]$./ex.sh

./ex.sh: Tine 3: var: var is unset, you big dummy
[donnie@fedora ~]$

Chwileczke! Czy ja wlasnie nazwatem siebie wielkim gltupkiem (ang. big dummy)? No
c6z. W kazdym razie zmien skrypt, aby zmienna miata przypisang wartos$¢, jak widac
na przyktadzie skryptu ex_2.sh:

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 207

#1/bin/bash

var=somevalue

: ${var:?"var is unset, you big dummy"}

echo "I wonder if this will work with a value of "§var"."

Teraz skrypt wykonuje sie do konca, co mozesz zobaczy¢ tutaj:

donnie@fedora:~$./ex_2.sh
I wonder if this will work with a value of somevalue.
donnie@fedora:~$

Podsumowujac, uzycie dwukropka zamiast polecenia echo zapobiega wyswietlaniu
wartos$ci zmiennej w konstrukcji ${var:?"var is unset, you big dummy"}. MozZesz zmienic
ten sposéb dziatania — wystarczy z powrotem zastgpi¢ dwukropek poleceniem echo,
jak pokazuje w kodzie pliku ex_3.sh:

#1/bin/bash

var=somevalue

echo ${var:?"var is unset, you big dummy"}

echo "I wonder if this will work with a value of "$var"."

Zobacz, jaki bedzie wynik tej zmiany:

donnie@fedora:~$./ex_3.sh

somevalue

I wonder if this will work with a value of somevalue.
donnie@fedora:~$

Tym razem warto$¢ zmiennej var zostata wyswietlona.

Jak wiasnie pokazatem na przyktadzie operatoréw ? i +, poprzedzenie znaku ?
dwukropkiem powoduje, ze taki operator traktuje zmienng utworzong z wartoscia
null jako niezdefiniowana. Natomiast pominiecie dwukropka spowoduje, ze tego
rodzaju zmienna bedzie uznana za zdefiniowana.

W nastepnym podrozdziale przejde do oméwienia przesunie¢ zmiennych.

Uzywanie przesunie¢ zmiennych

Ostatni typ rozwijania zmiennych, ktéry zamierzam przedstawi¢, dotyczy podstawia-
nia tylko fragmentu ciggu tekstowego. Ten mechanizm wykorzystuje przesuniecie
zmiennej i moze by¢ nieco trudniejszy do zrozumienia bez konkretnego przyktadu.

Gdy definiujesz zmienna, ma ona okreslong wielko$¢, czyli liczbe znakéw. Konstrukcja
${zmienna:przesuniecie} uzywa przesuniecia, czyli liczby znakéw od okreslonego miejsca.
Jesli przesuniecie wynosi 4, konstrukcja pominie pierwsze cztery znaki i wyswietli
tylko znaki poczawszy od pigtego. Dodanie parametru dfugosé¢ w konstrukcji
${zmienna:przesuniecie:dtugos¢} pozwala réwniez okresli¢, ile znakow chcesz uzy¢.
Na poczatek utwdérz zmienng tekstowg o wartosci MailServer w nastepujacy sposob:

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

208 Linux. Zostan mistrzem skryptow powtoki

[donnie@fedora ~]§ text=MailServer
[donnie@fedora ~]$ echo $text
MailServer

[donnie@fedora ~]$

Zal6zmy teraz, ze chcesz zobaczy¢ tylko tekst rozpoczynajacy sie od piatego znaku.
Mozesz uzy¢ przesuniecia w pokazany tutaj sposéb:
[donnie@fedora ~]§ echo ${text:4}

Server
[donnie@fedora ~]$

Swietnie, to dziata. Teraz zatézmy, ze chcesz wyswietli¢ tylko pierwsze cztery litery.
Uzyj wiec przesuniecia i dtugosci w nastepujacy sposdb:

[donnie@fedora ~]§ echo ${text:0:4}

Mail

[donnie@fedora ~]$

Takie wywotanie oznacza, ze odczyt danych rozpoczyna sie od pozycji nastepujacej po
zerowej i obejmuje tylko pierwsze cztery znaki.

Mozesz rowniez wyodrebni¢ fragment tekstu z dowolnego miejsca ciggu tekstowego,
jak pokazuje w kolejnym przyktadzie:
[donnie@fedora ~]§ echo ${text:4:5}

Serve
[donnie@fedora ~]$

W tym przyktadzie dane sg odczytywane poczawszy od pigtego znaku i obejmujg piec
kolejnych.

Przedstawie teraz znacznie praktyczniejsze zastosowania omawianej konstrukcji.
Zatézmy, ze masz zmienng location, ktéra zawiera nazwe miasta i stanu w USA wraz
z odpowiadajacym mu kodem pocztowym. Powiedzmy, Ze z podanego ciggu tekstowego
chcesz wyodrebni¢ sam kod pocztowy. Oto jak mozesz to zrobic:

[donnie@fedora ~]$ Tocation="Saint Marys GA 31558"

[donnie@fedora ~]$ echo "Zip Code: ${location:14}"

Zip Code: 31558
[donnie@fedora ~]$

Zamiast definiowa¢ przesuniecie poprzez odliczanie od poczatku ciggu tekstowego,
mozna réwniez uzy¢ liczby ujemnej i tym samym wyodrebni¢ tylko ostatni fragment
danych. Poniewaz kod pocztowy sktada sie z pieciu cyfr, mozna uzy¢ wartosci -5 w na-
stepujacy sposdb:

[donnie@fedora ~]$ echo "Zip Code: ${location: -5}"

Zip Code: 31558
[donnie@fedora ~]$

Aby zapewni¢ poprawne dziatanie tego mechanizmu, zawsze pamietaj o pozostawie-
niu spacji miedzy dwukropkiem i myslnikiem. Ponadto poniewaz nazwy miast moga
mie¢ r6zng dtugos¢, ta metoda bedzie lepszym rozwigzaniem, jesli chcesz wyodrebniaé
kody pocztowe z catej listy lokalizacji.

I to tyle jesli chodzi o przesuniecia. Teraz zajmiesz sie dopasowywaniem wzorcow.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 209

Dopasowanie wzorca

Kolejna sztuczka zwigzana z interpretacja zmiennych dotyczy dopasowywania wzorcow.
Rozpoczniesz od utworzenia zmiennej pathname w przedstawiony tutaj sposdb:

[donnie@fedora ~]$ pathname="/var/1ib/yum"
[donnie@fedora ~]$

Zatézmy teraz, ze z tej $ciezki dostepu chcesz usuna¢ nazwe katalogu najnizszego po-
ziomu. Mozesz to zrobi¢ za pomocg znakéw % i *, jak pokazuje w kolejnym przyktadzie.
[donnie@fedora ~]$ echo ${pathname%/yum*}
/var/1ib
[donnie@fedora ~]$

Znak % nakazuje powtoce pominiecie koncowego fragmentu ciggu tekstowego, ktory
zostatl dopasowany do wzorca. W tym przypadku gwiazdka na konicu nie jest konieczna,
poniewaz ciagg tekstowy yum akurat znajduje sie na konicu $ciezki. Zatem ten sam wynik
uzyskasz takze bez uzycia gwiazdki. Jednak jesli chcesz poming¢ dwa najnizsze po-
ziomy $ciezki, musisz skorzysta¢ z gwiazdki, aby dopasowanie wzorca odbyto sie pra-
widlowo. Spojrz, oto co mi chodzi:

[donnie@fedora ~]$ echo ${pathname%/1ib}

/var/1ib/yum
[donnie@fedora ~]$ echo ${pathname%/1ib*}
/var

[donnie@fedora ~]$

Jak wida¢, bez uzycia gwiazdki dopasowanie wzorca nie zadziatato. Natomiast
z gwiazdka wszystko dziata poprawnie. Dlatego nawet jesli gwiazdka nie jest ab-
solutnie konieczna, najlepiej jg dodac dla pewnosci.

Z drugiej strony czasami moze pojawi¢ sie potrzeba wyodrebnienia nazw katalogéow
nizszego poziomu. Aby to zrobié, wystarczy zamienic¢ znak % na # w nastepujacy sposob:

[donnie@fedora ~]$ echo ${pathname#/var}

/1ib/yum
[donnie@fedora ~]$ echo ${pathname#/var/1ib}

/yum
[donnie@fedora ~]$

Na zakonczenie tego punktu przedstawie jeszcze jedng ciekawg sztuczke. Tym razem
pokaze, jak dopasowac¢ wzorzec, a nastepnie podstawi¢ co$ innego. Najpierw utworz
zmienng string w nastepujacy sposob:

[donnie@fedora ~]$ string="Hot and Spicy Food"

[donnie@fedora ~]$ echo $string

Hot and Spicy Food
[donnie@fedora ~]$

Wszystko dziata dobrze, przy czym zat6zmy, ze nie chcesz umieszczac spacji miedzy
stowami. Zamiast tego uzyjesz znaku podkre$lenia (), jak pokazuje w kolejnym przy-
ktadzie:

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

210 Linux. Zostan mistrzem skryptow powtoki

[donnie@fedora ~]$ echo ${string/[[:space:]1]1/_}
Hot_and Spicy Food
[donnie@fedora ~]$

To nie zadziatato najlepiej, poniewaz zastapiona zostata tylko pierwsza spacja. Aby za-
stapi¢ wszystkie wystapienia, po ciggu tekstowym musisz dodac¢ kolejny uko$nik w taki
sposob:

[donnie@fedora ~]$ echo ${string//[[:space:]]1/_}

Hot_and_Spicy_Food
[donnie@fedora ~]$

To wyglada znacznie lepiej. Ale co tak naprawde sie tu dzieje? C6z, uzywamy konstruk-
cji /wzorzec_do zastgpienia/, aby wykona¢ podstawienie. Cokolwiek umie$cisz miedzy
dwoma uko$nikami, zostanie zastagpione. Mozesz poda¢ pojedynczy znak, klase zna-
koéw lub inny wzorzec, ktory chcesz zastgpi¢. Na koncu, miedzy ostatnim ukos$nikiem
i zamykajacym nawiasem klamrowym, umie$¢ znak, ktérym chcesz zastapi¢ wzorzec.

Wprawdzie na temat rozwijania zmiennych mozna powiedzie¢ znacznie wiecej, ale tu-
taj zaprezentowatem tylko najbardziej praktyczne przyktady. Jesli chcesz dowiedzie¢
sie wiecej, odno$niki do wartych uwagi zasobéw znajdziesz na koncu rozdziatu.

Skoro juz oméwitem podstawianie wzorca, w nastepnym podrozdziale przejde do pod-
stawiania polecen.

Podstawianie polecen

We wczesniejszych ¢éwiczeniach praktycznych dotyczacych zliczania zalogowanych
uzytkownikéw i korzystania z tablic pokazatem kilka przyktadéw zastosowania tech-
niki podstawiania polecen, ale jeszcze nie wyjasnitem jej doktadnie. Najwyzszy czas to
nadrobic.

Podstawianie polecen to niezwykle przydatne narzedzie, z ktérego bedziesz czesto ko-
rzysta¢. Naprawde. Za jego pomocg mozna zrobi¢ wiele ciekawych rzeczy. Polega ono
na wykorzystaniu wyniku polecenia powtoki w innym poleceniu lub przypisaniu go
jako wartoSci zmiennej. Polecenie, ktérego wynik dziatania chcesz wykorzystac,
umieszczasz w konstrukeji §$(). Oto prosty przyktad:

[donnie@fedora ~]$ echo "This machine is running kernel version $(uname -r)."

This machine is running kernel version 6.5.5-200.fc38.x86_64.
[donnie@fedora ~]$

W tym przypadku wynik dziatania polecenia uname -r, ktére pokazuje wersje aktualnie
uruchomionego jadra Linuksa, zostat uzyty w miejsce konstrukcji podstawienia polecenia.

Teraz utworz skrypt o nazwie command_substitution_1.sh i nastepujacej zawartosci:
#1/bin/bash
[[! -d Daily_Reports 1] && mkdir Daily_Reports
cd Daily_Reports
datestamp=$§ (date +%F)
echo "This is the report for $datestamp" > daily report $datestamp.txt

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 211

Wyjasnie teraz sposob jego dziatania. W drugim wierszu skrypt sprawdza, czy istnieje
katalog Daily_Reports. Jesli go nie ma, zostanie utworzony. W czwartym wierszu kon-
strukcja podstawienia polecenia stuzy do utworzenia zmiennej datestamp razem z war-
toscig w postaci biezacej daty. Ta warto$¢ jest zwracana przez polecenie date +%F i be-
dzie zapisana w formacie rok-miesigc-dzien (np. 2023-10-03). W ostatnim wierszu
komunikat wraz z dzisiejsza datg zostaje zapisany do pliku, ktérego nazwa réwniez
zawiera te date. Spojrz na przyktad uzycia tego skryptu:

[donnie@fedora ~]§ 1s -1 Daily_Reports/

total 4

-rw-r--r--. 1 donnie donnie 34 Oct 3 15:30 daily_report_2023-10-03.txt

[donnie@fedora ~]$ cat Daily Reports/daily report 2023-10-03.txt

This is the report for 2023-10-03

[donnie@fedora ~]$

Niezte, co? Uwierz mi, bedziesz czesto stosowac tego typu rozwigzania podczas two-
rzenia skryptéw przeznaczonych do automatycznego generowania raportow.

Wskazowka

Polecenie date oferuje wiele réznych opcji formatowania. Aby sie z nimi zapoznag,
wystarczy wyswietli¢ strone podrecznika systemowego dla tego polecenia (man date).

Ale chwileczke, brakuje tutaj waznego elementu. Co stanie sie w sytuacji, gdy raport na
dzisiaj zostat juz utworzony? Czy chcesz go nadpisac?

Nie, nie w tym przypadku. Utwdérz wiec skrypt o nazwie command_substitution_2.sh,
ktéry zanim utworzy nowy raport, to najpierw sprawdzi, czy dzisiejszy raport juz ist-
nieje. Takie rozwigzanie wymaga dodania tylko niewielkiej liczby nowych polecen, jak
pokazuje w kolejnym fragmencie kodu:

#1/bin/bash

[[! -d Daily Reports]] && mkdir Daily Reports

cd Daily_Reports

datestamp=$(date +%F)

[[! -f daily report $datestamp.txt]] && echo "This is the report for

$datestamp" > daily report $datestamp.txt || echo "This report has already been

done today."

Ostatnie polecenie, ktére wyglada jak trzy wiersze, w rzeczywistosci znajduje sie
w jednym wierszu zawijajacym sie na stronie drukowanej ksigzki.

A teraz przygotuj sie na to, co zobaczysz po uruchomieniu zmodyfikowanej wers;ji
skryptu:

[donnie@fedora ~]$./command_substitution_2.sh
This report has already been done today.
[donnie@fedora ~]$

Dla zabawy przyjrzyj sie kilku innym ciekawym przyktadom.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

212 Linux. Zostan mistrzem skryptow powtoki

Utworz skrypt o nazwie am_i_root_1.sh i umie$¢ w nim nastepujacy kod:

#1/bin/bash
test $(whoami) != root &% echo "You are not the root user."
test §(whoami) == root && echo "You are the root user."

Polecenie whoami zwraca nazwe uzytkownika, ktéry je uruchamia. Oto jak to wyglada,
gdy uruchamiam je najpierw bez sudo, a nastepnie z sudo:

[donnie@fedora ~]$ whoami

donnie

[donnie@fedora ~]§ sudo whoami

root
[donnie@fedora ~]$

Jak wida¢, uruchomienie polecenia whoami z uzyciem sudo pokazuje, Zze wykonujacym je
uzytkownikiem jest root. Pierwsze polecenie wykorzystuje operatora != do sprawdze-
nia, czy uzytkownikiem nie jest root. Natomiast drugie polecenie uzywa operatora ==,
aby sprawdzi¢, czy uzytkownikiem jest root. Teraz uruchom skrypt i zobacz, co sie stanie:

[donnie@fedora ~]$./am_i_root_1.sh

You are not the root user.

[donnie@fedora ~]$ sudo ./am_i_root_1.sh

[sudo] password for donnie:

You are the root user.
[donnie@fedora ~]$

Skrypt dziata, co oznacza, ze jeste$ juz catkiem niezty w tworzeniu skryptéw. Ale mo-
zesz by(jeszcze lepszy, gdy uproscisz nieco kod. Zatem zmodyfikuj skrypt do nastepu-
jacej postaci:

#1/bin/bash

test $(whoami) != root && echo "You are not the root user." || echo "You are the

>root user."

W tym skrypcie zamiast dwo6ch polecein mamy tylko jedno. Jednak w obu przypadkach
wynik jest identyczny.

Zamiast umieszczac polecenie w konstrukcji $ (), mozesz rowniez uja¢ je w apostrofy:
[donnie@fedora ~]$ datestamp="date +%F~
[donnie@fedora ~]$ echo $datestamp
2023-10-03
[donnie@fedora ~]$

Wprawdzie ta metoda dziata, ale jest przestarzata i nie polecam jej stosowania. Najwiek-
szy problem polega na tym, Ze je$li dane polecenie zawiera znaki specjalne, ktére po-
wtloka moze btednie zinterpretowa¢, musisz pamietac o ich odpowiednim zabezpiecze-
niu za pomoca ukosnika. Natomiast podczas uzywania nowszej konstrukcji $() nie
musisz sie tym az tak przejmowac. Wspominatem o tej metodzie tylko dlatego, ze mo-
zesz nadal natkna¢ sie na skrypty, w ktérych jest ona stosowana.

Na tym zakoncze omawianie tematu podstawiania polecen. W nastepnym podrozdziale
dowiesz sieg, jak podejmowac decyzje w kodzie skryptow.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 213

Konstrukcje warunkowe i petle

Dotychczas przedstawiatem wiele technik i konstrukcji programistycznych, ktére po-
zostaja charakterystyczne dla skryptéw powtoki. Natomiast w tym podrozdziale om6-
wie kilka konstrukcji, ktére sa powszechne w wiekszos$ci jezykéw programowania.
Rozpoczne od zaprezentowania innego sposobu podejmowania decyzji w programie.

Konstrukcja warunkowa if-then

Chociaz konstrukcje decyzyjne && i || sprawdzaja sie w prostych skryptach, w przy-
padku bardziej ztozonych operacji, takich jak testowanie wielu warunkéw jednocze-
$nie, warto rozwazy¢ uzycie konstrukcji i f-then. W pierwszym przyktadzie utworzysz
skrypt o nazwie am_i_root_2.sh, ktérego zawarto$¢ bedzie przedstawiata sie nastepujaco:
#1/bin/bash
if [$(id -u) == 0]; then
echo "This user is root."
fi
if [$(id -u) != 0 1; then
echo "This user is not root."
echo "This user's name is $(id -un)."
fi

Zwrdoc uwage, ze kazdy blok decyzyjny rozpoczyna sie od stowa kluczowego if
i konczy stowem kluczowym fi (tak, to if zapisane wspak). Warto réwniez zazna-
czy¢, ze — w przeciwienstwie do niektérych jezykdédw programowania — w skryp-
tach powtoki bash weciecia nie s3 wymagane. Niemniej jednak stosowanie wciec
znacznie poprawia czytelnos¢ kodu.

Zamiast uzywac polecenia whoami, tym razem korzystam z polecenia id, ktére oferuje
wiecej opcji. (Dodatkowe informacje na ich temat znajdziesz na stronach podrecznika
systemowego dla obu polecen). Jesli chodzi o reszte, zamiast podejmowac préobe szcze-
gétowego wyjasniania poszczegdlnych wierszy kodu, pozwole Ci po prostu przestudio-
wac ten skrypt i przekonaé sie samodzielnie, na czym polega jego dziatanie. Dla mnie
to bedzie tatwiejsze, za$ dla Ciebie mniej nuzace. Poza tym — wierze w Twoje umie-
jetnosci.
A teraz zobacz, co sie stanie po uruchomieniu tego skryptu:

[donnie@fedora ~]$./am_i_root_2.sh

This user is not root.

This user's name is donnie.

[donnie@fedora ~]$

[donnie@fedora ~]$ sudo ./am_i_root_2.sh

This user is root.
[donnie@fedora ~]$

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

214 Linux. Zostan mistrzem skryptow powtoki

Gdy testujesz wiecej niz tylko jeden warunek dla pewnej decyzji, bardziej wtasciwe jest
uzycie jednej konstrukcji if-then-elif zamiast dwoch oddzielnych if-then. Tym sa-
mym poprawisz czytelno$¢ kodu i dzieki temu kazdy, kto go czyta, bedzie mogt tatwiej
zrozumie¢ sposéb jego dziatania. Utworz skrypt am_i_root_3.sh, w ktérym wykorzy-
stasz te technike. Jego zawarto$¢ powinna przedstawiac sie nastepujaco:
#1/bin/bash
if [$(id -u) == 0]; then
echo "This user is root."
elif [$(id -u) != 0]; then
echo "This user is not root."
echo "This user's name is $(id -un)."
fi

Stowo kluczowe elif jest tutaj skrotem od else if. Poza tym wszystko dziata podobnie
jak w poprzednim skrypcie. Po uruchomieniu otrzymasz doktadnie taki sam wynik jak
wczesniej. Warto rdwniez zwr6ci¢ uwage na mozliwo$¢ sprawdzania wielu warunkéw
za pomocg wiecej niz tylko jednej klauzuli eli f.

Ewentualnie mozesz skorzystac¢ z konstrukgji i f-then-else. Utworz skrypt am_i_root_4.sh
0 nastepujacej zawartosci:
#1/bin/bash
if [$(id -u) == 0]; then
echo "This user is root."
else
echo "This user is not root."
echo "This user's name is $(id -un)."
fi

Stosowanie klauzuli else moze okaza¢ sie bardzo przydatne, poniewaz pozwala ona
zdefiniowa¢ domys$lne dziatanie, ktére zostanie podjete, jesli zaden z warunkéw w blo-
kach if lub elif nie zostanie speiniony. Zapoznaj sie teraz z przyktadowym skryptem,
ktéry wykrywa system operacyjny uruchomiony w danym komputerze:
#1/bin/bash
0s=$ (uname)
if [[$os == Linux 1]; then
echo "This machine is running Linux."
elif [[$os == Darwin]]; then
echo "This machine is running mac0S."
elif [[$os == FreeBSD]]; then
echo "This machine is running FreeBSD."
else
echo "I don't know this $os operating system."
fi
Jak wida¢, ten skrypt potrafi wykrywac systemy operacyjne Linux, macOS lub FreeBSD.
Jesli komputer nie dziata pod kontrolg Zadnego z nich, wéwczas klauzula else na konicu
wyswietla domys$lny komunikat. Warto rowniez zauwazy¢, ze na koncu poszczegdl-
nych polecen if i elif nalezy umiesci¢ srednik oraz stowo kluczowe then. To nie jest
konieczne w przypadku polecenia else.

Spojrz na wynik uruchomienia omawianego skryptu w komputerze, ktéry dziata pod
kontrolg systemu operacyjnego Openlndiana:

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 215

donnie@openindiana:~$./os-test.sh
I don't know this SunOS operating system.
donnie@openindiana:~$

Oczywiscie w tym skrypcie mozna dodac¢ kolejng klauzule e1if, aby sprawdzi¢ obec-
nos¢ systemu SunOS.

To w zasadzie wyczerpuje temat konstrukcji warunkowej i f-then. W nastepnym punk-
cie przedstawie petle, ktéra wykonuje okreslone operacje podczas oczekiwania na
spelnienie pewnego warunku.

Konstrukcja do-while

Ta konstrukcja bedzie wielokrotnie wykonywata zestaw polecen, dopoki okreslony
warunek pozostaje prawdziwy. Oto przyktad jej uzycia:
#1/bin/bash
x=10
while [[$x -gt 0]]; do
x=$ (expr $x 1)
echo $x
done

Ten skrypt while_demo.sh rozpoczyna dziatanie od przypisania warto$ci 10 zmiennej x.
Dopdki warto$¢ x pozostaje wieksza od 0, skrypt odejmuje od niej 1 i przypisuje nowa
warto$¢ zmiennej x za pomocg polecenia expr $x-1. Nastepnie wyswietla te wartos¢.
Wynik dziatania skryptu wyglada nastepujgco:

[donnie@fedora ~]$./while_demo.sh
9

8
7
6
5
4
3
2
1
0
[

donnie@fedora ~]$

Warto zauwazy¢, ze w skrypcie while_demo.sh mozna zastosowac skrécong notacje
do zmniejszania o 1 wartosci zmiennej x w trakcie kazdej iteracji petli. W tym celu
wystarczy wiersz x=§ (expr $x - 1) zastgpi¢ nastepujacym:

((x=-))

Jest to konstrukcja podobna do tej, ktérag mozna spotkaé w programach napisa-
nych w jezykach C lub C++. Nalezy jednak pamietac, ze nie jest ona przenosna,
co oznacza, ze dziata poprawnie w powtoce bash, ale niekoniecznie juz w innych.
Dlatego jesli chcesz, aby skrypt dziatat réwniez w powtokach Bourne’a, dash lub ash,
powinienes unikac tej skréconej konstrukgji i pozostac przy poleceniu x=$(expr $x - 1).

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

216 Linux. Zostan mistrzem skryptow powtoki

Petli while mozZesz rowniez uzy¢ do odczytywania pliku tekstowego wiersz po wierszu.
Oto prosty skrypt o nazwie read_file.sh, ktéry odczytuje zawarto$¢ pliku /etc/passwd:
#1/bin/bash
file=/etc/passwd
while read -r line; do
echo $1ine
done < "$file"

Jak widzisz, skrypt rozpoczyna sie od utworzenia zmiennej file i przypisania jej war-
tosci /etc/passwd. Wiersz while definiuje zmienng 1ine, a polecenie read -r przypisuje
wartosci tej zmiennej. W trakcie kazdej iteracji petli while polecenie read -r odczytuje
jeden wiersz pliku, przypisuje go zmiennej 1ine, a nastepnie wyswietla ten wiersz na
standardowym wyjsciu (stdout). Po odczytaniu wszystkich wierszy pliku petla konczy
dziatanie. Ostatnie polecenie zawiera przekierowanie standardowego wejscia, aby pe-
tla while odczytywata plik. Normalnie polecenie read dzieli dtugie wiersze na krotsze
i konczy kazda cze$¢ dlugiego wiersza ukosnikiem. Opcja -r wytgcza to zachowanie.

Mozliwe sa sytuacje, kiedy bedziesz chciat utworzy¢ petle dziatajaca w nieskonczo-
nos¢. Taka, ktora sie nie zatrzyma, dopdki jej tego nie nakazesz. (Moze tez sie zdarzy¢,
ze przez przypadek zdefiniujesz tego rodzaju petle, ale to zupetnie inna historia. Na
razie zalézmy, Ze chcesz to zrobi¢ celowo). Aby przetestowac tego rodzaju petle, utwérz
skrypt infinite_loop.sh o nastepujacej tresci:

#1/bin/bash

while :
do
echo "This loop is infinite."
echo "It will keep going until you stop it."
echo "To stop it, hit Ctrl-c."
sleep 1
done

To dos$¢ bezuzyteczny skrypt, ktérego dziatanie polega jedynie na wyswietlaniu kilku
komunikatéw. Polecenie sleep 1 powoduje jednosekundowe opdZnienie miedzy po-
szczegblnymi iteracjami petli. Oto co sie stanie, gdy uruchomisz ten skrypt:

[donnie@fedora ~]$./infinite_loop.sh
This Tloop is infinite.

It will keep going until you stop it.
To stop it, hit Ctrl-c.

This loop is infinite.

It will keep going until you stop it.
To stop it, hit Ctrl-c.

~C

[donnie@fedora ~]$

Istnieje jeszcze kilka innych sztuczek, ktére mozesz wykonaé za pomoca petli while, ale
na razie to wystarczy. W nastepnym punkcie przyjrzysz sie petli for-in.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 217

Konstrukcja for-in

Konstrukcja for-in przetwarza liste i wykonuje polecenie dla jej kazdego elementu.
W skrypcie car_demo_2.sh wiersz for tworzy zmienng cars. Sp6jrz na kod tego skryptu:
#1/bin/bash
for cars in Edsel Ford Nash Studebaker Packard Hudson
do
echo "$cars"

done
echo "That's all, folks!"

W trakcie kazdej iteracji petli stowo kluczowe in pobiera nazwe klasycznego samo-
chodu z listy i przypisuje j3 jako wartos¢ zmiennej cars. Petla konczy dziatanie po prze-
tworzeniu catej listy. Oto co sie dzieje, gdy uruchomisz ten skrypt:

[donnie@fedora ~]$./car_demo_2.sh
Edsel

Ford

Nash

Studebaker

Packard

Hudson

That's all, folks!

[donnie@fedora ~]$

To do$¢ proste, wiec sprobuj czego$ innego. Tym razem utworzysz plik list_demo.sh:

#1/bin/bash
for filename in *
do
echo "$filename"
done

Zadaniem tej petli jest wySwietlenie plikow, ktére znajduja sie w biezacym katalogu,
czyli petla dziata podobnie do polecenia 1s. Znak wieloznaczny * nakazuje petli for od-
czytanie wszystkich nazw plikow niezaleznie od ich liczby. W poleceniu echo zmienna
$filename zostata ujeta w cudzystéw na wypadek, gdyby ktoras z nazw plikow zawie-
rata spacje. Oto co sie dzieje, gdy uruchomisz ten skrypt:

[donnie@fedora ~]$./1ist_demo.sh

15827 zip.zip

2023-08-01_15-23-31.mp4

2023-08-01_16-26-12.mp4

2023-08-02_13-57-37.mp4

xargs_test.txt
yad-form.sh
zoneinfo.zip
[donnie@fedora ~]$

Dlaczego ten skrypt dziata? Gdy polecenie echo * wydasz w wierszu polecen, otrzymasz
nieuporzagdkowana liste plikow w katalogu biezagcym. Petla for-in powoduje, ze nazwa
kazdego pliku jest wySwietlana w oddzielnym wierszu.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

218 Linux. Zostan mistrzem skryptéow powtoki

Na tym koncze omdwienie petli for-in. W nastepnym punkcie przyjrzysz sie samej
petli for.

Konstrukcja for

Jest podobna do konstrukcji for-in z tg r6znica, Ze lista jest pobierana z innego zro6dta.
W przypadku petli for uzytkownik podaje liste jako argument podczas wywotywania
skryptu. Utwdrz skrypt car_demo_3.sh, aby to przetestowac:

#1/bin/bash

for cars

do

echo "$cars"
done

Zmienna cars jest tworzona w wierszu, ktory zawiera stowo kluczowe for. Jednak nie
ma w nim zdefiniowanej listy samochodéw. Skad wiec bierze sie ta lista? Jest tworzona
na podstawie argumentéw, ktore uzytkownik wprowadza w powtoce podczas urucha-
miania skryptu. Tym razem zamiast nazw klasycznych samochodéw uzyjesz listy wspdt-
czesnych modeli, jak pokazuje w kolejnym przyktadzie:

[donnie@fedora ~]$./car_demo_3.sh Toyota Volkswagen Subaru Honda

Toyota

Volkswagen

Subaru

Honda
[donnie@fedora ~]$

W kolejnym punkcie poznasz polecenie break.

Polecenie break

Uzyj polecenia break, aby zachowa¢ wieksza kontrole nad dziataniem petli for-in
iwhile-do. Aby zobaczy¢, jak to dziala, utworz skrypt break_demo.sh o nastepujacej za-
wartosci:

#1/bin/bash

j=0
while [[$§j -1t 5 1]
do
echo "This is number: $j"
J=$((3 + 1))
if [["$j" == '2' 1]; then
echo "We have reached our goal: $j"
break
fi
done

echo "That's all, folks!"

Polecenie while nakazuje skryptowi wykonywanie petli tak dtugo, dopoki wartos$¢
zmiennej j jest mniejsza niz 5. Konstrukcja j=$ ((j + 1)) w szdéstym wierszu to operator
matematyczny, ktéry zwieksza warto$¢ zmiennej j o 1 w trakcie kazdej iteracji petli.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 219

Konstrukcja i f-then, ktéra rozpoczyna sie w si6dmym wierszu, okresla, co powinno sie
sta¢, gdy warto$¢ zmiennej j jest rowna 2. W omawianym przyktadzie polecenie break
konczy wtedy dziatanie petli. Spdjrz na przyktad uruchomienia tego skryptu:

[donnie@fedora ~]$./break_demo.sh

This is number: 0

This is number: 1

We have reached our goal: 2

That's all, folks!

[donnie@fedora ~]$

Jak juz wspomniatem podczas omawiania skryptu while_demo.sh, istnieje mozli-
wos¢ zastgpienia wywotania j=$((j + 1)) nastepujacym skrétem:

((3++))
Jednak to jest skrét scisle zwigzany z powtoka bash i moze nie dziata¢ w innych.
Wymienione polecenie mozna zapisac¢ rowniez w postaci j=$(expr j + 1) — ona
takze jest przenosna i stosuje posta¢, ktérg przedstawitem podczas omawiania
skryptu while_demo.sh.

(W rozdziale 11. przedstawie wiecej informacji na temat przeprowadzania operacji
matematycznych w skryptach powtoki).

Dla zabawy usun polecenie break ze skryptu i uruchom go ponownie. Powiniene$ otrzy-
mac nastepujgce dane wyjsciowe:
[donnie@fedora ~]$./break_demo.sh
This is number: 0
This is number: 1
We have reached our goal: 2
This is number: 2
This is number: 3
This is number: 4
That's all, folks!
[donnie@fedora ~]$

Tym razem dziatanie petli nie zatrzymuje sie na liczbie 2.

Skoro skonczyliSmy break, mozemy kontynuowac.

Polecenie continue

Polecenie continue rowniez modyfikuje dziatanie petli for-in orazwhile-do. Tym razem
utworz skrypt for_continue.sh o nastepujacej zawartosci:

#1/bin/bash
for cars in Pontiac 0ldsmobile Buick Chevrolet Ford Mercury

do
if [[$cars == Buick || $cars == Mercury]]; then
continue
fi
echo $cars
done

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

220 Linux. Zostan mistrzem skryptéow powtoki

W kazdej iteracji petli for inna nazwa klasycznego samochodu jest przypisywana
zmiennej cars. Konstrukcja if-then sprawdza, czy wartos$¢ zmiennej cars to Buick lub
Mercury. Polecenie continue w bloku if-then powoduje, Ze petla pomija te dwie nazwy
samochodow, wiec polecenie echo ich nie wyswietli. W tym przyktadzie widzisz réw-
niez inne zastosowanie konstrukgji | |. Gdy jest uzywana w warunku, woéwczas dziata
jako operator logiczny LUB. Oto jak wyglada wynik dziatania tego kodu:

[donnie@fedora ~]$./for_continue.sh

Pontiac

Oldsmobile

Chevrolet

Ford

[donnie@fedora ~]$

Teraz sprébuj osiagna¢ ten sam efekt przy uzyciu petli while. Utworz skrypt o nazwie
while_continue.sh i nastepujacej zawartosci:

#1/bin/bash

j=0

while [[$j -1t 6 1]

do
=$((i + 1))
[[$5 -eq 3 || $5 -eq 6 11 && continue
echo "$j"

done

Tym razem chcesz po prostu poming¢ liczby 3 i 6. Oto wynik uruchomienia skryptu:

[donnie@fedora ~]$./while_continue.sh
1

2

a

5

[donnie@fedora ~]$

Dobra, wystarczy tego. W nastepnym punkcie przejde do petli until.

Konstrukcja until

Petla unti1 bedzie wykonywana do momentu spetnienia okreslonego warunku. Mozna
ja wykorzystac¢ na wiele sposobdw, na przyktad do opracowania gry w zgadywanie.
Aby zobaczy¢ przyktad jej zastosowania, utworz skrypt o nazwie secret_word.sh i na-
stepujacej zawarto$ci:

#1/bin/bash

secretword=Donnie

word=

echo "Hi there, $USER!"

echo "Would you Tike to play a guessing game?"

echo "If so, then enter the correct secret word"

echo "to win a special prize."

echo

echo

until [["$word" = "$secretword"]]

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 221

do

echo -n "Enter your guess.
read word

done

echo "Yay! You win a pat on the back!"

Zmienna secretWord ma warto$¢ Donnie (hej, to ja!). Z kolei zmienna word nie ma przy-
pisanej zadnej warto$ci. Petla while bedzie wykonywana do momentu wprowadzenia
poprawnej warto$ci zmiennej secretWord. (W tym przypadku polecenie read wstrzy-
muje dziatanie skryptu i czeka na wprowadzenie warto$ci przez uzytkownika). Omé6-
wiony skrypt dziata w nastepujacy sposoéb:

[donnie@fedora ~]$./secret_word.sh

Hi there, donnie!

Would you 1ike to play a guessing game?

If so, then enter the correct secret word

to win a special prize.

Enter your guess. Vicky

Enter your guess. Cleopatra

Enter your guess. Donnie

Yay! You win a pat on the back!

[donnie@fedora ~]$

Niezte, prawda? To kolejna sztuczka, ktérg mozesz zaimponowac na najblizszej imprezie.

No dobrze, przechodze do nastepnej konstrukcji.

Konstrukcja case

Konstrukcja case pozwala unikng¢ stosowania konstrukcji if-then-else. Umozliwia
uzytkownikowi wprowadzenie ciggu tekstowego, a nastepnie sprawdza dostarczone
dane i obstuguje opcje, ktérg wskazuje ten cigg tekstowy. Spdjrz na podstawowq struk-
ture konstrukg;ji case:

case $variable in

match_1)
commands_to_execute

match_2)
commands_to_execute

match_3)

commands_to_execute
*) Optional Information
commands_to_execute_for_no_match

E] ;
esac
Konstrukcja case jest poréwnywana z szeregiem wartosci az do znalezienia dopasowania.
Woéwczas wykonywane sg wszystkie polecenia do podwojnego $rednika (;;). Nastep-
nie rozpoczyna sie wykonywane polecen, ktore zostaty zdefiniowane po wierszu pole-
cenia esac.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

222 Linux. Zostan mistrzem skryptow powtoki

Jesli nie zostanie znalezione Zadne dopasowanie, wykonywane sg polecenia miedzy *)
i podwdéjnym Srednikiem. Symbol *) dziata podobnie jak klauzula else w konstrukcji
if-then — definiuje domyslne dziatanie w przypadku, gdy zaden z testowanych wa-
runkéw nie zostanie spetniony.

Dla zabawy wyproébuj te konstrukcje. W tym celu utwdrz skrypt term_color.sh, ktory
bedzie przedstawiat sie nastepujaco:
#1/bin/bash
echo -n "Choose Background Color for Terminal(b-black,g-grey): "
read color
case "$color" in
b)
setterm -background black -foreground white
9)
setterm -background white -foreground black
*) 2
echo "I do not understand"
esac
exit
Ten skrypt pozwala zmieni¢ kolor tta terminala. (Doskonale wiem, Ze w przypadku opcji
g zostato zdefiniowane tto w kolorze biatym. To dlatego, Ze gdy uruchomisz ten skrypt
i wybierzesz opcje g, tto bedzie wyglada¢ bardziej na szare niz biate). Uruchomienie
skryptu wyglada nastepujaco:
[donnie@fedora ~]$./term_color.sh

Choose Background Color for Terminal(b-black,g-grey): g
[donnie@fedora ~]$

Uruchom skrypt w terminalu, wybierz opcje g, a powinienes zobaczyg¢, jak tto powtoki
zmienia kolor na szary. (Jesli twdj terminal ma juz ustawione biate tto, wéwczas wy-
bierz opcje b). Aby zobaczy¢, jak cate tto terminala zmienia sie na szare, wystarczy wy-
da¢ polecenie clear.

Dla jeszcze wiekszej zabawy zmodyfikuj skrypt i dodaj kolejng opcje. Najpierw zmien
wiersz polecenia echo na poczatku:

echo -n "Choose Background Color for Terminal(b-black,g-grey,y-yellow): "
Nastepnie po opcji g dodaj nowa opcje y. Jej kod powinien przedstawiac¢ sie nastepujgco:

y)
setterm -background yellow -foreground red

Aby zobaczy¢ co$ naprawde brzydkiego, uruchom skrypt ponownie i wybierz opcje y.
(Nie martw sie jednak, to ustawienie nie jest trwate). Na rysunku 8.1 pokazuje, jak be-
dzie wygladac¢ uzycie réznych opcji.

Weczes$niej juz wyjasnitem, jak uzywac petli for do wprowadzania argumentéw podczas
uruchamiania skryptéw. W nastepnym punkcie poznasz inny sposdéb.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 223

kel Debian12-selinux [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

.
donnie@debian12: s lsi
v LT

e_doc.sh

@ oh@g B E@Eright ctl
Rysunek 8.1. Wynik dziatania skryptu term_color.sh

Uzywanie parametréw pozycyjnych

Podczas uruchamiania skryptu powtoki mozna réwniez poda¢ parametry, ktére beda
wykorzystywane wewnatrz skryptu. Pierwszy podany parametr bedzie oznaczony
jako $1, drugi jako $2 itd. (maksymalnie do $9). Parametr $0 jest zarezerwowany dla
nazwy samego skryptu.

Aby zobaczy¢, jak to dziata w praktyce, utwdrz skrypt o nazwie position_demo.sh, kt6-
rego zawarto$¢ bedzie przedstawiata sie nastepujaco:

#1/bin/bash

position_demo

echo "I have a cat, whose name is $1."

echo "I have another cat, whose name is $2."

echo "I have yet another cat, whose name is $3."

echo

echo

echo "The script that I just ran is $0"

Aby uruchomi¢ skrypt, wpisz trzy parametry po nazwie skryptu w nastepujgcy sposob:

[donnie@fedora ~]$./position_demo.sh Vicky Cleopatra Lionel

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

224 Linux. Zostan mistrzem skryptow powtoki

I have a cat, whose name is Vicky.

I have another cat, whose name is Cleopatra.

I have yet another cat, whose name is Lionel.
The script that I just ran is ./position_demo.sh
[donnie@fedora ~]$

W danych wyj$ciowych skryptu zmienne $1, $2 i $3 zostana zastapione parametrami,
ktére podates w powloce. Zmienna $0 zostanie rozwinieta do petnej $ciezki i nazwy
skryptu.

W skryptach mozesz wykorzystac trzy specjalne parametry pozycyjne, ktore zwieksza
funkcjonalno$¢ tworzonych skryptéw. Oto ich lista:

B $# Wyswietla liczbe wprowadzonych parametréw.
B $0. WySwietla wszystkie wprowadzone parametry, kazdy w osobnym wierszu.

B §$* Wyswietla wszystkie wprowadzone parametry w jednym wierszu,
rozdzielone spacjami.

Ciekawa rzeczg, ktéra mozna zrobi¢ za pomoca parametru $#, jest sprawdzanie btedow.
Aby zobaczy¢, co mam na mysli, uruchom ponownie skrypt position_demo.sh, ale tym
razem podaj tylko jedno imie jako parametr. Powiniene$ otrzymac dane wyjsciowe po-
dobne do nastepujacych:

[donnie@fedora ~]$./position_demo.sh Vicky

I have a cat, whose name is Vicky.

I have another cat, whose name is .

I have yet another cat, whose name is .

The script that I just ran is ./position_demo.sh
[donnie@fedora ~]$

Jak widzisz, skrypt nie ostrzegt o tym, ze nie podano poprawnej liczby parametrow.
Zmodyfikuj go nieco, aby to naprawié. Nowa postac¢ skryptu position_demo_2.sh przed-
stawia si¢ wiec nastepujgco:
#1/bin/bash
position_demo
if [[$# -ne 3 1]; then
echo "This script requires three arguments."
exit 1
i
echo "I have a cat, whose name is §1."
echo "I have another cat, whose name is $2."
echo "I have yet another cat, whose name is $3."
echo
echo
echo "The script that I just ran is $0"

Uruchom go z trzema parametrami, a otrzymasz taki sam wynik jak w przypadku pierw-
szej wersji skryptu. Nastepnie uruchom go ponownie, ale tym razem podaj tylko jeden
parametr. Teraz powinienes zobaczy¢ co$ takiego:

[donnie@fedora ~]$ vim position_demo_2.sh

[donnie@fedora ~]$./position_demo_2.sh Vicky

You entered 1 argument(s).

This script requires two arguments.

[donnie@fedora ~]$

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 225

To wyglada znacznie lepie;j.
Zaprezentuje kolejng sztuczke. Spdjrz na wynik dziatania polecenia date bez okreslania
zadnych opcji formatowania:

[donnie@fedora ~]$ date
Fri Oct 6 03:24:39 PM EDT 2023
[donnie@fedora ~]$

W wyniku wykonania polecenia date otrzymasz siedem nastepujacych pol:
B dzien tygodnia,

miesigc,

dzien miesiaca,

godzina,

przyrostek AM lub PM,

strefa czasowa,

rok.

Teraz utworz skrypt position_demo_3.sh, ktéry kazde pole danych wyjsciowych polece-
nia date bedzie traktowat jako parametr pozycyjny. Kod tego skryptu przedstawia sie
nastepujaco:

#1/bin/bash

set $(date)

echo $*

echo "Day, First Argument: $1"

echo "Month, Second Argument: $2"

echo "Date, Third Argument: $3"

echo "Time, Fourth and Fifth Arguments: $4, $5"

echo "Time Zone, Sixth Argument: $6"

echo "Year, Seventh Argument: $7"

echo "$2 $3, $7"

W drugim wierszu pokazatem kolejne zastosowanie polecenia set, ktorego jeszcze nie
omawiatem. Wczesniej byto uzywane z opcja -o na potrzeby okreslania opcji powtoki.
Tym razem uzyjesz set bez zadnych opcji, ale z argumentem $(date). Oto co méwi
strona podrecznika systemowego powtoki bash na temat takiego uzycia polecenia set:

Bez podania opcji polecenie wyswietla nazwy i wartosci wszystkich zmiennych
powltoki w formacie, ktéry mozna wykorzystac jako dane wejsciowe do ustawienia
lub zresetowania aktualnie zdefiniowanych zmiennych.

W tym przypadku polecenie set przetwarza wynik dziatania § (date) i formatuje go w spo-
séb, ktory umozliwia wykorzystanie poszczegoélnych poél jako parametréw pozycyjnych.

W trzecim wierszu mamy do czynienia z prawdziwg magig. Parametr pozycyjny $* wy-
Swietla w jednym wierszu wszystkie pola § (date). Zadaniem pozostatych polecen echo
jest po prostu wyswietlenie tekstu, a nastepnie wartosci okreslonego pola lub pél. Oto
jak to wyglada w praktyce:

[donnie@fedora ~]$./position_demo_3.sh

Fri Oct 6 03:46:28 PM EDT 2023
Day, First Argument: Fri

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

226 Linux. Zostan mistrzem skryptéow powtoki

Month, Second Argument: Oct

Date, Third Argument: 6

Time, Fourth and Fifth Arguments: 03:46:28, PM
Time Zone, Sixth Argument: EDT

Year, Seventh Argument: 2023

Oct 6, 2023

[donnie@fedora ~]$

Skrypt dziata zgodnie z oczekiwaniami i wyglada catkiem fajnie. Dodaj go do listy sztu-
czek przeznaczonych do wyprébowania na nastepnej imprezie.

Mysle, ze to wyczerpuje temat parametréw pozycyjnych. W nastepnym podrozdziale
przejde do kodéw wyijscia.

Kody wyjscia

Prawdopodobnie widziates juz kilka przyktadéw uzycia polecenia exit, ktére moze za-
konczy¢ dziatanie skryptu w normalny sposéb lub spowodowac jego wczesniejsze za-
konczenie w przypadku wystgpienia btedu. Czego jeszcze nie wyjasnitem, to kwestii
kodéw wyjscia. Istniejg dwie ogdlne kategorie kodow wyijscia:
B Standardowe kody wyjscia powloki. Kazda powtoka ma wtasny zestaw
zdefiniowanych kodéw wyjscia. (Dla uproszczenia w tym rozdziale omowie
jedynie kody wyjscia stosowane w powtoce bash).

B Niestandardowe kody wyjscia. Istnieje mozliwo$¢ samodzielnego
zdefiniowania kodéw wyjscia przeznaczonych do réznych celow.

Rozpoczne od oméwienia standardowych kodéw wyjscia.

Standardowe kody wyjscia powtoki

Gdy program lub skrypt koncza dziatanie z powodzeniem, zwracajg kod wyjscia réwny 0.
W przeciwnym razie kod wyj$cia bedzie liczba niezerowgq z zakresu od 1 do 255. Aby sie
o tym przekonac, uzyj polecenia find do przeszukania katalogu /etc/ w celu znalezienia
pliku passwd. Zréb to w nastepujacy sposob:

[donnie@fedora ~]$ find /etc -name passwd

find: '/etc/audit': Permission denied
find: '/etc/cups/ss1': Permission denied

/etc/pam.d/passwd

find: '/etc/pki/rsyslog': Permission denied

find: '/etc/polkit-1/Tocalauthority': Permission denied
find: '/etc/polkit-1/rules.d': Permission denied

find: '/etc/credstore.encrypted': Permission denied
/etc/passwd
[donnie@fedora ~]$

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 227

Jak widaé¢, polecenie find znalazto plik, ale jednocze$nie wygenerowato wiele btedéw
Permission denied (pol. odmowa dostepu) ze wzgledu na to, ze prébowato sprawdzic¢
katalogi, do ktorych nie ma dostepu uzytkownik ze zwyktymi uprawnieniami. Teraz
w nastepujacy sposéb sprawdz kod wyijscia tego polecenia:

[donnie@fedora ~]$ echo $?

1
[donnie@fedora ~]$

Zmienna specjalna ? zwraca kod wyj$cia ostatnio wykonanego polecenia. W tym przy-
padku wynosi on 1, co oznacza, ze wystapit jaki$ btad. Konkretnie chodzito o to, ze po-
lecenie find nie uzyskato dostepu do niektdérych katalogéw, aby przeprowadzi¢ w nich
wyszukiwanie. Sprébuj wiec ponownie, ale tym razem uzyj polecenia sudo:

[donnie@fedora ~]$ sudo find /etc -name passwd
[sudo] password for donnie:

/etc/pam.d/passwd

/etc/passwd

[donnie@fedora ~]$ echo $?

0

[donnie@fedora ~]$

Tym razem otrzymujesz kod wyjscia 0, co oznacza, Ze nie wystapity zadne btedy.
W wiekszos$ci przypadkoéw zobaczysz kod wyjscia 0 lub 1. Peina lista kodéw wyijscia,
ktoére mozesz napotkac, obejmuje:
B 1 — bledy ogélne,
B 2 — nieprawidlowe uzycie wbudowanych polecen powtoki,
126 — brak mozliwosci wykonania Zgdanego polecenia,
127 — polecenie nie zostato znalezione,
128 — nieprawidtowy argument dla polecenia exit,
128+n — krytyczny sygnat btedu n,

130 — skrypt przerwany przez nacis$niecie klawiszy Ctrl+C.

Mozna zademonstrowac dziatanie niektérych innych kodéw. Zacznij od utworzenia
skryptu o nazwie exit.sh i nastepujacej zawartosci:

#1/bin/bash
exit n

0d razu widac¢ biad. Polecenie exit wymaga argumentu liczbowego i nie zadziata z ar-
gumentem tekstowym. Jednak udaj, ze nie zauwazytes$ tego btedu, i sprébuj uruchomié
skrypt. Oto co otrzymasz w wyniku:

[donnie@fedora ~]$./exit.sh

./exit.sh: Tine 2: exit: n: numeric argument required

[donnie@fedora ~]$ echo $?

2

[donnie@fedora ~]$

Kod wyjscia 2 oznacza nieprawidtowe uzycie wbudowanego polecenia powloki.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

228 Linux. Zostan mistrzem skryptow powtoki

Wspomniane wbudowane polecenie powloKki to po prostu polecenie, ktére nie ma
wtasnego pliku wykonywalnego, poniewaz jest zintegrowane z plikiem wykonywal-
nym powtoki bash. Mozna pomyslec¢, ze w omawianej sytuacji powinien by¢ wyswie-
tlony kod wyjscia 128 z powodu podania nieprawidtowego argumentu dla polecenia
exit.]Jednak tak to nie dziata. (Szczerze méwigc, nie jestem pewien, co musiatbym zro-
bi¢, aby otrzymac kod 128. Ale to nie stanowi problemu). Aby zobaczy¢ peing liste po-
lecent wbudowanych, wystarczy zajrze¢ na strone podrecznika systemowego, wyswie-
tlang po wydaniu poleceniaman builtins.

Kod wyjscia 126 zwykle oznacza, Ze nie masz uprawnien do uruchomienia danego po-
lecenia. Na przyktad zat6zmy, ze zapomniate$ ustawi¢ uprawnienia do wykonywania
skryptu, co widac tutaj:

[donnie@fedora ~]$ 1s -1 somescript.sh

-rw-r--r--. 1 donnie donnie 0 Oct 7 16:26 somescript.sh
[donnie@fedora ~]$

Zobacz, co sie stanie, gdy sprobujesz uruchomic¢ ten skrypt:

[donnie@fedora ~]$./somescript.sh

bash: ./somescript.sh: Permission denied
[donnie@fedora ~]§ echo $?

126

[donnie@fedora ~]$

Kod wyjscia 127 zostanie wygenerowany, gdy sprébujesz wykona¢ nieistniejace po-
lecenie:

[donnie@fedora ~]§ donnie

bash: donnie: command not found

[donnie@fedora ~]§ echo $?

127

[donnie@fedora ~]$

Moje imie oczywiscie nie jest poprawnym poleceniem powtoki.

Kod 128+n oznacza, ze wystapit jakis krytyczny btad. Litera n oznacza dodatkows cyfre
dodawang do 128. Na przyktad jesli uruchomisz polecenie i przerwiesz jego wykony-
wanie za pomoca kombinacji klawiszy Ctrl+C, otrzymasz kod 128+2, czyli 130. (Dwojka
w tym przypadku wskazuje na konkretny rodzaj btedu o znaczeniu krytycznym).

W skryptach powtoki mozesz uzywac¢ standardowych kodéw wyjscia do obstugi réoz-
nych sytuacji. Aby to zobaczy¢ w praktyce, utworz skrypt o nazwie netchk.sh i nastepu-
jacej zawartosci:
#1/bin/bash
if [[$# -eq 0 1]; then
site="google.com"
else
site="$1"
fi
ping -c 2 $site > /dev/null
if [[$? 1= 011; then
echo $(date +%F) . . . Network Failure!
Togger "Could not reach $site."
else

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 229

echo $(date +%F) . . . Success!
Togger "§site is reachable."
fi

Ten skrypt oczekuje, ze wywolasz go z argumentem w postaci nazwy hosta, nazwy do-
meny lub adresu IP. W pierwszej konstrukcji if-then na poczatku skryptu wida¢, ze
jesli nie podasz argumentu, skrypt domyslnie uzyje domeny google.com. W przeciw-
nym razie uzyje podanego przez Ciebie argumentu. Nastepnie sprobuje wykona¢ pole-
cenie ping do wskazanej domeny. Jesli jego wykonanie sie powiedzie, kod wyjscia be-
dzie rowny 0. Je$li sie nie powiedzie — bedzie to inna wartos¢.

W drugiej konstrukcji if-then wida¢, ze jesli kod wyjscia jest rézny od 0, skrypt wy-
$wietli komunikat o btedzie sieci i umiesci odpowiedni wpis w pliku dziennika syste-
mowego (w systemie Fedora ten wpis trafi do pliku /var/log/messages). W przeciwnym
razie wyswietli komunikat o sukcesie. Oto jak wyglada przyktadowy wynik uruchomie-
nia skryptu:

[donnie@fedora ~]$./netchk.sh

2023-10-07 . . . Success!

[donnie@fedora ~]$./netchk.sh www.donnie.com

ping: www.donnie.com: Name or service not known

2023-10-07 . . . Network Failure!

[donnie@fedora ~]$

Niewiele wiecej jest do powiedzenia na temat standardowych kodéw wyjscia. Zatem
w nastepnym punkcie poznasz kody wyjscia definiowane przez uzytkownika.

Kody wyjscia zdefiniowane przez uzytkownika

Mozna okresli¢ wlasne kody wyjscia — wystarczy poda¢ argument liczbowy dla pole-
cenia exit. Jest to przydatne, gdy zachodzi potrzeba przekazania konkretnego kodu
wyj$cia do programu zewnetrznego. Doskonatym przyktadem jest narzedzie do moni-
torowania sieci Nagios.

Nagios to narzedzie, ktére potrafi monitorowac praktycznie kazdy rodzaj urzadze-
nia w sieci. Moze nadzorowac rézne typy serwerdw, stacji roboczych, routeréw,
przetacznikéw, a nawet drukarek. Tym, co czyni go tak wyjatkowym, jest modu-
towa konstrukcja, ktéra umozliwia prace z wtyczkami. Jesli musisz monitorowacd
konkretne urzadzenie i okaze sig, ze nie ma odpowiedniej wtyczki, mozesz po pro-
stu przygotowac wtasng. Wtyczki mozna tworzy¢ w réznych jezykach programo-
wania. Moga one miec¢ réwniez postac skryptéw powtoki.

Na serwerze lub stacji roboczej, ktérg chcesz monitorowac, mozesz zainstalowac agenta
monitorujacego Nagios i utworzy¢ skrypt powtoki do generowania kodéw wyjscia
oczekiwanych przez Nagios. Aby pozna¢ spos6b dziatania takiego rozwigzania, przyj-
rzyj sie ponizszemu fragmentowi kodu, ktdry jest cze$cig wiekszego skryptu:
#1/bin/bash
0s=$ (uname)

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

230 Linux. Zostan mistrzem skryptéow powtoki

quantity=$(cut -f3 -d: /etc/passwd | grep -w 0 | wc -1)
if [$os == Linux]; then
if [$quantity -gt 1]; then
echo "CRITICAL. There are $quantity accounts with UID 0."

exit 2

else
echo "OKAY. There is only one account with UID 0."
exit 1

fi

Ten skrypt analizuje plik /etc/passwd, aby sprawdzi¢, czy istnieje wiecej niz jeden uzyt-
kownik z identyfikatorem UID réwnym 0. Jest to istotne, poniewaz wymieniony iden-
tyfikator nadaje kontu uprawnienia uzytkownika root. W systemie Linux nigdy nie po-
winno by¢ wiecej niz jedno konto z identyfikatorem UID o wartosci 0. W kodzie
konstrukcji if-then widaé, Ze jesli skrypt znajdzie wiecej niz jedno takie konto, wow-
czas wygeneruje kod wyjscia 2. W przeciwnym razie wygeneruje kod wyjscia 1.

Ten kod wyjscia wraz z odpowiadajacym mu poleceniem echo sg przekazywane do
agenta monitorujgcego Nagios. Nastepnie ten agent przekaze dane wyj$ciowe polece-
nia echo do serwera Nagios, ktory z kolei wyswietli komunikat w panelu Nagios. (Caty
skrypt przedstawie w dalszej czesci rozdziatu).

To w zasadzie wszystko, jesli chodzi o kody wyjscia. W nastepnym podrozdziale do-
wiesz sie nieco wiecej na temat polecenia echo.

Wiecej informacji o poleceniu echo

Juz poznate$ najprostszy sposob uzycia polecenia echo, ktore stuzy do wyswietlania ko-
munikatéw na ekranie lub zapisywania tekstu do pliku. Teraz przyjrzysz sie réznym
opcjom formatowania dostepnym dla tego polecenia.

Jesli uzyjesz opcji -n, zapobiegniesz tworzeniu nowego wiersza na koncu wyswietla-
nego tekstu. Spdjrz na ponizszy przyktad:

[donnie@fedora ~]$ echo -n "The fat cat jumped over the skinny dog."
The fat cat jumped over the skinny dog.[donnie@fedora ~]$

Tej opcji uzyj w potaczeniu z -e, a zyskasz dostep do opcji, ktére wykorzystuja ukosnik.
Na przyktad jesli chcesz wstawi¢ pionowy znak tabulacji do wiersza tekstu, uzyj opcji
-e w potaczeniu z \v w nastepujacy sposob:

[donnie@fedora ~]$ echo -e "The fat cat jumped\v over the skinny dog."

The fat cat jumped

over the skinny dog.
[donnie@fedora ~]$

Aby wstawi¢ tabulator poziomy, uzyj opcji \t, na przyktad tak:

[donnie@fedora ~]$ echo -e "The fat cat jumped\t over the skinny dog."
The fat cat jumped over the skinny dog.
[donnie@fedora ~]$

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 231

Natomiast jesli chcesz wstawi¢ uko$nik | do tekstu, uzyj po prostu dwéch kolejnych
uko$nikow w ten sposéb:

[donnie@fedora ~]$ echo -e "The fat cat jumped over the thin\\skinny dog."

The fat cat jumped over the thin\skinny dog.

[donnie@fedora ~]$

Nie jestes$ ograniczony tylko do wyswietlania wiadomosci tekstowych. Mozesz rowniez
uzy¢ znaku wieloznacznego, aby wyswietli¢ liste plikow znajdujacych sie w biezacym
katalogu, jak pokazuje w kolejnym przyktadzie:
[donnie@fedora ~]$ echo *
1 15827 _zip.zip 18.csv 2023-08-01_15-23-31.mp4 2023-08-01_16-26-12.mp4 2023-
08-02_13-57-37.mp4 2023-10-25_price.txt 21261.zip 4-2_Building_an_Alpine_
Container.bak 4-2 Building_an_Alpine _Container.pptx 46523.zip 48986.zip 50645.
zip 54586.zip 70604.zip access_log_parse.sh access_log parse.txt actorfile_10.
txt actorfile_1l.txt actorfile_l.txt actorfile 2.txt actorfile_4.txt
actorfile_5.txt actorfile_6.txt actorfile_7.txt actorfile_8.txt actorfile 9.
txt add_fields.awk add-repos.sh addresses.txt alignment_l.txt alignment_2.txt
alma9_default.txt alma9_ future.txt alma_link.t

donnie@fedora:~$

Mozesz réwniez wyswietli¢ komunikat wraz z listg plikéw, na przyktad w taki sposéb:

[donnie@fedora ~]$ echo -e "These are my files:\n" *

These are my files:
15827 _zip.zip 2023-08-01_15-23-31.mp4 2023-08-01_16-26-12.mp4

test.txt yad-form.sh zoneinfo.zip
[donnie@fedora ~]$

Przy odrobinie wyobrazni bedziesz w stanie wykorzystac te opcje formatowania, aby
poprawi¢ wyglad danych wyswietlanych na ekranie oraz dokumentéw tekstowych.

Niestety, mimo ze te opcje formatowania dla polecenia echo sg bardzo ciekawe,
nie dziatajag one dobrze w niektérych powtokach innych niz bash, na przyktad
w dash. W rozdziale 19., poswieconym przenosnosci skryptéw powtoki, pokaze,
jak rozwigzac ten problem za pomoca polecenia printf zamiast echo.

To by byto na tyle, jesli chodzi o polecenie echo. W nastepnym podrozdziale przejdziesz
do rzeczywistych przyktadow, w ktérych uzyto oméwione wczesniej techniki.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

232 Linux. Zostan mistrzem skryptéow powtoki

Kilka rzeczywistych przyktadow
omoéwionych technik

W tej czesci pokaze kilka praktycznych zastosowan dla technik, ktore dotychczas zo-
staly oméwione. A wlasciwie to zamiast tylko pokazywac, pozwole Ci samodzielnie wy-
probowac je w ciekawych i praktycznych ¢wiczeniach.

Cwiczenie praktyczne — stosowanie
konstrukgji if-then

To jest prawdziwy przyktad z zycia wziety. Kilka lat temu opracowatem ten skrypt jako
wtyczke do systemu monitorowania sieci Nagios. Chodzito o to, aby upewni¢ sie, ze
ztosliwi hakerzy nie dodali nieuprawnionego konta z identyfikatorem UID 0 do pliku
/etc/passwd w komputerach z systemami Linux i FreeBSD. Dzieje sie tak, poniewaz
kazde konto z identyfikatorem UID o wartos$ci 0 w pliku passwd ma peine uprawnienia
uzytkownika root. Na pewno nie chcesz, aby jakiekolwiek nieautoryzowane konta
mialy takie uprawnienia.

Problem polega na tym, ze w komputerach z Linuksem powinno by¢ tylko jedno konto
uzytkownika o identyfikatorze UID 0, za$§ w systemie FreeBSD s3 dwa takie konta.
(Jedno nosi nazwe toor i ma ustawiong powtoke bash jako domyslng. Drugie konto to
root, ktdre ma ustawiong powtoke csh jako domyslng). Potrzebny jest wiec skrypt, ktory
bedzie dziatat w obu tych systemach operacyjnych. (Pamietaj, ze podczas tego ¢wicze-
nia bedziesz modyfikowac plik passwd, wiec najlepiej jest wykonac¢ je w maszynie wir-
tualnej, a nie na rzeczywistym serwerze produkcyjnym).

Zwrd6¢ uwage, ze kody wyjscia 11 2, ktore otrzymasz podczas wykonywania skryptu, sa
oczekiwane przez Nagios, aby wskaza¢ stan OKAY lub CRITICAL. Pamietaj tez, Ze mozesz
dodac¢ wiecej blokéw elif, jesli chcesz sprawdza¢ inne systemy UNIX lub podobne.
(W rzeczywistosci zobaczysz, ze wtasnie dodatem kod przeznaczony do sprawdzania
system6w macOS i Openlndiana). Po tym wstepie przechodzimy do skryptu.

1. Niestety skrypt jest zbyt dtugi, aby go tutaj w catosci przedstawic. Dlatego
przejdz do repozytorium z materiatami do ksigzki w serwisie GitHub i pobierz
skrypt UID-0_check.sh. Przenie$ go do maszyny wirtualnej z Linuksem. Otwoérz
skrypt w edytorze tekstu i przeanalizuj kod.

2. Uruchom skrypt, aby zobaczy¢ wygenerowane dane wyj$ciowe. Powiniene$
zobaczy¢ nastepujacy komunikat:
[donnie@fedora ~]$./UID-0_check.sh
OKAY. There is only one account with UID 0.
[donnie@fedora ~]$

3. OSTRZEZENIE: Jak wcze$niej wspomnialem, to éwiczenie nalezy wykonaé
w maszynie wirtualnej, a nie w komputerze produkcyjnym.

W maszynie wirtualnej z systemem Linux utwé6rz nowe konto uzytkownika.
W tym celu skorzystaj z odpowiedniego polecenia tworzenia uzytkownikéw

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 233

w danej dystrybucji Linuksa. Otwérz plik /etc/passwd w edytorze tekstu
i zmien warto$¢ identyfikatora UID nowego uzytkownika na 0.

Pole identyfikatora UID jest trzecim polem w kazdym wierszu pliku passwd.
Na przyktad w tym wierszu identyfikator UID uzytkownika Vicky wynosi 1001:

vicky:x:1001:1001:: /home/vicky:/bin/bash

Zmiana tej wartos$ci na 0 spowoduje, Ze wiersz bedzie przedstawiat sie
nastepujgco:
vicky:x:0:1001::/home/vicky:/bin/bash

4. Zapisz plik i uruchom skrypt ponownie. Teraz powiniene$ zobaczy¢ komunikat
podobny do nastepujgcego:
[donnie@fedora ~]§ ./UID-0_check.sh

CRITICAL. There are 2 accounts with UID 0.
[donnie@fedora ~]$

5. Usun nowo utworzone konto uzytkownika.

6. Utwdrz maszyne wirtualng z systemem FreeBSD i zainstaluj w niej pakiety sudo
oraz bash, tak jak to wyjasnitem na poczatku ksigzki. Skopiuj skrypt UID-0_check.sh
do tej maszyny i powtorz kroki od 3. do 5. Tym razem dwa konta sg oznaczone
jako OKAY, natomiast trzy jako CRITICAL. W ten sposdb masz potwierdzenie, ze
fragment kodu elif [$os == FreeBSD]; then na koncu skryptu poprawnie
wykrywa system operacyjny i wykonuje przeznaczony dla niego kod.

Koniec ¢wiczenia.

Cwiczenie praktyczne — analiza dziennika
dostepu serwera Apache

W tym ¢wiczeniu pokaze, jak potezny moze by¢ jednowierszowy skrypt powtoki. Jed-
nak opracowanie takiego polecenia moze by¢ do$¢ skomplikowane i dlatego wyjasnie,
jak je zbudowac krok po kroku. Na kazdym etapie pracy upewnisz sie o poprawnosci
jego dziatania i dopiero wtedy przejdziesz do nastepnego etapu. Jesli jeste$ gotowy,
zaczynajmy.

1. Przygotuj maszyne wirtualng z systemem Fedora Server, w ktoérej jest uzyta
sie¢ mostkowa. (Ten rodzaj sieci bedzie potrzebny, aby uzyska¢ dostep do
maszyny wirtualnej z poziomu innych urzadzen, ktdre znajduja sie w Twojej
sieci).

2. Zainstaluj i uruchom serwer WWW Apache w nastepujacy sposob:

$ sudo dnf install httpd
$ sudo systemctl enable --now httpd

3. Otwdrz port 80 w zaporze sieciowej maszyny wirtualnej w nastepujacy
sposob:
$ sudo firewall-cmd --permanent --add-service=http
$ sudo firewall-cmd --reload

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

234 Linux. Zostan mistrzem skryptow powtoki

4. W jak najwiekszej liczbie innych urzadzen w Twojej sieci uruchom
przegladarke internetowgq i wpisz adres IP maszyny wirtualnej. Ten adres
powinien wyglada¢ mniej wiecej tak:
http://192.168.0.10

Pamietaj, Ze mozesz uzyskac dostep z poziomu zaréwno fizycznych
komputerdéw, jak i innych maszyn wirtualnych, ktére znajduja sie w tej samej
sieci. Warto rowniez zaznaczy¢, Ze nie ma potrzeby tworzenia wiasnej strony
internetowej, poniewaz domys$lna strona testowa serwera Fedora bedzie
wystarczajgca na potrzeby tego ¢wiczenia.

5. Wyswietl dziennik dostepu serwera Apache za pomoca nastepujacego
polecenia:

$ sudo less /var/log/httpd/access_log

Zwrdé¢ uwage, ze kazdy wiersz rozpoczyna sie od adresu IP maszyny, ktéra
uzyskata dostep do tej strony internetowej. Oto przyktad:
192.168.0.25 [06/0ct/2023:16:44:15 -0400] "GET /poweredby.png

HTTP/1.1" 200 5714 "http://192.168.0.10/" "Mozilla/5.0 (Windows NT 10.0;
Win64; x64; rv:109.0) Gecko/20100101 Firefox/118.0"

6. Jak wida¢, zrédtowy adres IP znajduje sie w pierwszym polu, a poszczeg6lne
pola sa oddzielone spacjami. Aby wys$wietli¢ tylko liste zrodtowych adresow IP,
mozesz uzy¢ polecenia cut — w jego wywotaniu wskaz spacje jako separator
i wybierz tylko pierwsze pole. Polecenie i wynik jego wywotania wygladatyby
mniej wiecej tak:

[donnie@fedora-server ~]$ sudo cut -d" " -fl /var/log/httpd/access_log
00l
192.168.0.16

192.168.0.16
192.168.0.27
192.168.0.25
192.168.0.25
192.168.0.9
192.168.0.8
192.168.0.8
192.168.0.8
192.168.0.8

[donnie@fedora-server ~]$

Otrzymasz liste adreséw IPv4 maszyn, ktdore uzyskaty dostep do tego serwera,
z jednym wyjatkiem. Tym wyjatkiem jest adres [Pv6 na poczatku listy, ktéry
jest adresem localhost komputera dziatajacego pod kontrolg systemu Fedora
Server. (Prawdopodobnie nie zobaczysz tego adresu IPv6, chyba ze
wyswietlisz strone testowg z poziomu samej maszyny wirtualnej).

7. Do tej pory wszystko idzie dobrze. Udato sie wyodrebni¢ pierwsze pole
z danych dziennika serwera Apache. Teraz dodasz druga cze$¢ polecenia, ktora
posortuje dane wyjsciowe, aby filtr uniq zadziatat poprawnie w nastepnym
kroku. Oto jak to wyglada zmodyfikowana wersja polecenia:
[donnie@fedora-server ~]$ sudo cut -d" " -fl /var/log/httpd/access log | sort

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 235

Jezeli uzyjesz polecenia sort bez opcji -n, lista nie zostanie posortowana
w odpowiedniej kolejnosci liczbowej. Jednak na tym etapie nie ma to
znaczenia.

8. Kolejnym krokiem jest usuniecie z danych wyjsciowych powtarzajgcych sie
adresow IP oraz zliczenie, ile razy kazdy z nich wystepuje w pliku Zrédtowym.
Oto jak wyglada zmodyfikowane polecenie:

[donnie@fedora-server ~1$ sudo cut -d" " -f1 /var/log/httpd/access log | sort |
S-uniq -c

1::1

11 192.168.0.16

4 192.168.0.25

4 192.168.0.27

4 192.168.0.8

1 192.168.0.9
[donnie@fedora-server ~1$

9. Teraz przeprowadzisz sortowanie wedtug liczby wystapien kazdego adresu IP
w odwrotnej kolejnosci liczbowej. Zrobisz to w nastepujacy sposdb:

[donnie@fedora-server ~]§ sudo cut -d" " -fl1 /var/log/httpd/access_log | sort |
S-uniq -c | sort -nr
11 192.168.0.16
192.168.0.8
192.168.0.27
192.168.0.25
192.168.0.9
1::1
[donnie@fedora-server ~1$

[l S S

10. Skoro masz pewno$¢, ze polecenie dziata poprawnie, utwdrz skrypt o nazwie
ipaddress_count.sh i nastepujacej zawartoSci:
#1/bin/bash
cut -d" " -fl /var/log/httpd/access log | sort | unig -c | sort -nr
Pamietaj, Ze do jego uruchomienia s3 wymagane uprawnienia administratora
(sudo).

11. Na koniec nieco ulepszysz przyktadowy skrypt. Dodaj kod, ktéry zapisze dane
wyjsciowe do pliku tekstowego z nazwa zawierajacg znacznik czasu. Gotowy
skrypt bedzie przedstawiat sie nastepujaco:

#1/bin/bash

timestamp=$ (date +%F)

echo "These addresses have accessed this webserver as of $timestamp." >
ipaddress_1ist_$timestamp.txt

cut -d" " -fl /var/log/httpd/access_log | sort | unig -c | sort -nr >>
ipaddress_list_$timestamp.txt

Oczywiscie istnieja inne programy, ktére wykonuja bardziej kompleksowa
analize plikéw dziennika serwera WWW. Jednak dzieki oméwionemu tutaj
skryptowi mozesz szybko sprawdzié, kto uzyskuje dostep do Twojego serwera.

Koniec ¢wiczenia.

Mozesz teraz przejs¢ do ostatniego ¢wiczenia.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

236 Linux. Zostan mistrzem skryptow powtoki

Cwiczenie praktyczne — testy beta nowego
dysku twardego

Ostatni przyktad dotyczy doswiadczenia, ktore miatem kilka lat temu. Wtedy to firma
Western Digital zaprosita mnie do udziatu w testach beta nowego modelu dysku twar-
dego. Moim zadaniem byto jedynie utrzymanie dysku w ciggtym dziataniu przez caty
czteromiesieczny okres testow, a nastepnie zebranie danych z dziennika BIOS-u dysku
po zakonczeniu testéw. Jednak postanowitem pdjs$c¢ o krok dalej i napisatem skrypt po-
wtoki, ktory codziennie automatycznie zbierat dane o wydajnosci dysku. Podobnie jak
w przypadku poprzednich ¢wiczen takze to wykonaj w swojej maszynie wirtualnej
z systemem Fedora Server.

1. Aby zbiera¢ dane o wydajnosci dysku, musisz zainstalowac¢ kilka pakietow.
Zrobisz to za pomoca nastepujacego polecenia:
$ sudo dnf install sysstat smartmontools

2. Uruchom ustuge sysstat i upewnij sie, Ze jest aktywna. W tym celu wydaj
przedstawione tutaj polecenia:

$ sudo systemctl start sysstat
§ systemctl status sysstat

3. Do zbierania danych wykorzystasz komponent sar z pakietu sysstat. Jednak
zanim jakiekolwiek dane beda dostepne, minie kilka minut. W miedzyczasie
mozesz wygenerowac troche aktywno$ci na dysku twardym poprzez
przeprowadzenie aktualizacji systemu. Zr6b to w nastepujacy sposob:
$ sudo dnf -y upgrade

4. Zapoznaj sie ze strong podrecznika systemowego man dla polecenia sar i zwr6¢
uwage na typy danych, ktére mozna zbiera¢ za pomoca réznych jego opcji.
Niektore z tych opcji zostaty uzyte w skrypcie powtoki.

Ten skrypt jest zbyt obszerny, aby go tutaj w cato$ci przedstawic. Dlatego
pobierz plik hard_drive.sh z repozytorium w serwisie GitHub. Otworz plik
w edytorze tekstu i przeanalizuj. Wszystkie koncepcje uzyte w tym skrypcie
zostaty juz omdéwione, wiec powinienes by¢ w stanie zrozumie¢ sposdb jego
dziatania.

5. Ostatnie polecenie w skrypcie to smartct] i wymaga ono uprawnien sudo.
Dlatego bedziesz musiat uzy¢ sudo, aby uruchomi¢ skrypt, na przyktad w taki
sposéb:
$ sudo ./hard drive.sh
Uzbroj sie w cierpliwo$¢, poniewaz wykonanie tego zadania zajmie kilka minut.

Pamietaj tez, ze wirtualny dysk maszyny wirtualnej nie jest rozpoznawany przez
smartmontools. Dlatego w raporcie pojawig sie pewne komunikaty ostrzegawcze.

6. Po zakonczeniu dziatania skryptu zajrzyj do raportu, ktory zostat
wygenerowany w katalogu Drive_Reports.

7. Mozesz réwniez uruchomi¢ ten skrypt w swoim fizycznym komputerze
z Linuksem. Powinien dziata¢ na wiekszosci dystrybucji, o ile masz
zainstalowane pakiety sysstat i smartmontools oraz uruchomiong ustuge sysstat.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 237

Koniec ¢wiczenia.

To juz wszystko w tym rozdziale. Ponizej znajdziesz krotkie podsumowanie, a nastep-
nie mozesz przej$¢ do nastepnego rozdziatu.

Podsumowanie

W tym rozdziale oméwitem ogromng ilo$¢ materialu i mam nadzieje, ze Cie nim nie
przytloczytem. Moim celem bylo przedstawienie kompleksowego przegladu koncepcji
i technik, ktérych mozna uzy¢ do tworzenia funkcjonalnych skryptéw powtoki. Zacza-
tem od wyjasnienia technik charakterystycznych dla skryptéw powtoki, a nastepnie
przeszedtem do technik wspdlnych dla wiekszosci jezyké6w programowania.

Tak naprawde to jeden z najfajniejszych aspektéw poznawania tematu tworzenia
skryptéw powtoki. Jest to o wiele tatwiejsze do opanowania niz jezyki programowania
wyzszego poziomu — takie jak C, Java czy Rust — a jednocze$nie niezwykle przydatne.
Co wiecej, uczac sie skryptéw powtoki, poznajesz réwniez konstrukcje i koncepcje,
ktére maja zastosowanie w tych jezykach. Dlatego je$li planujesz w przysztosci nau-
czy¢ sie innego jezyka programowania, nauka skryptéw powtoki moze by¢ $§wietnym
przygotowaniem.

Pomimo ze przedstawitem ogromna ilo$¢ materiatu, to jeszcze nie koniec. W nastep-
nym rozdziale zaprezentuje kilka dodatkowych sposobow filtrowania i przeprowadza-
nia operacji na tekscie. Do zobaczenia!

Pytania

1. Ktory z ponizszych fragmentéw kodu przedstawia najczesciej preferowany
sposob podstawiania polecen?
A. “polecenie”
B. %(polecenie)
C. "polecenie"
D. $(polecenie)

2. Jak utworzy¢ tablice imion?
A. set array=names
names=(Vicky Frank Cleopatra Katelyn)
B. array=names
names=(Vicky Frank Cleopatra Katelyn)
C. array names
names=(Vicky Frank Cleopatra Katelyn)
D. declare names

names=(Vicky Frank Cleopatra Katelyn)

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

238 Linux. Zostan mistrzem skryptéow powtoki

E. declare -a names

names=(Vicky Frank Kleopatra Katelyn)

3. Jak sprawdzi¢ kod wyj$cia ostatnio wykonanego polecenia?
A. echo $#
B. echo §$?
C. echo $$
D. echo §!
4. Chcesz zdefiniowac¢ petle, ktéra odczyta liste imion, a nastepnie zapisze te

imiona do innego pliku tekstowego. Jednak chcesz poming¢ dwa z tych imion.
Ktére z ponizszych polecen spowoduje, ze Twoj skrypt zrobi to poprawnie?

A. break
B. skip
C. continue
D. stop

5. Chcesz poréwnac¢ dwie wartosci liczbowe, aby sprawdzi¢, czy sq réwne.
Ktérego z nastepujacych operatoréw uzyjesz?

N w

n 1

n D
o]

O
1
=]
[¢°]

Lektura uzupetniajaca

B Artykut What is the Bash Shebang and How to Use it na stronie
https://www.rosehosting.com/blog/what-is-the-bash-shebang/.

B Artykut An introduction to parameter expansion in Bash na stronie
https://opensource.com/article/17/6 /bash-parameter-expansion.

B Sekcja Shell Parameter Expansion (w podreczniku powtoki bash) na stronie
https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter
-Expansion.html.

B Artykut Introduction to if na stronie https://tldp.org/LDP/Bash-Beginners
-Guide/html/sect_07_01.html.

® Artykut Bash while Loop na stronie https://linuxize.com/post/bash-while-loop/.

B Artykul How to Find Most Used Disk Space Directories and Files in Linux na stronie
https://www.tecmint.com/find-top-large-directories-and-files-sizes-in-linux/.

B Artykut Standard Exit Status Codes in Linux na stronie
https://www.baeldung.com/linux/status-codes.

B Artykut How to Use the sar Command on Linux na stronie
https://www.howtogeek.com/793513/how-to-use-the-sar-command-on-linux/.

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdziat 8 m Podstawowa konstrukcja skryptu powtoki 239

Odpowiedzi

vi s whN =
oo o o A

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Skorowidz I

A

ACL, access control list, 513,516,518
agent uzytkownika, user agent, 377
akcja, 370
algorytm yescrypt, 463
aliasy, 102
powtoki PowerShell, 620
analiza dziennikéw zdarzen, 286
argumenty powtoki, 43
atak
typu cross-site scripting, XSS, 286
typu directory traversal, 383
wstrzykiwania kodu JavaScript, 286
z wykorzystaniem dowigzan symbolicznych,
536
audyt, 454
AWK, 368
analiza dziennikéw dostepu, 374
dane wejsciowe z polecen, 387
deklarowanie zmiennych, 398
dziatania, 370
implementacje, 369
konstrukcje warunkowe, 397
okres$lanie generacji procesora, 401
petla for, 405
petla while, 398
rekordy wielowierszowe, 410
struktura skryptu, 395
sumowanie liczb w wierszu, 399
tablice, 405
wyrazenia regularne, 385
wyszukiwanie uzytkownikéw, 372
wzorce, 370
zmienne wbudowane, 384, 398

bashdb, 579
debugowanie skryptu, 580
instalacja, 580
uzyskiwanie pomocy, 582
bashizm, 486
bezpieczenstwo, 476
skryptéw powtoki, 509
$ciezek dostepu, 553
biblioteki funkgcji, 304
busybox, 369

Kup ksigzke

C

CGl, Common Gateway Interface, 549
ciag

tekstowy opcji, 443

tekstowy trybu pliku, 51
cron, 147,176, 183

dane

dynamiczne, 340

statyczne, 335
Debian

edytor domyslny, 97

pliki konfiguracyjne globalne, 96

pliki konfiguracyjne uzytkownikéw, 97
debugger powtoki bash, Patrz bashdb
debugowanie skryptéw powtoki, 560, 568, 580
deskryptor pliku, 79
dopasowywanie wzorcéw, 209
dostep do skryptdw, 510
dowiazanie symboliczne, 51, 98, 188, 483
drukowanie, 181
dystrybucja, 26
dzienniki dostepu, 374

edytor tekstowy, 32

domyslny, 97

gedit, 35

kwrite, 35

leafpad, 35

nano, 32

Notatnik, 35

vim, 32, 34,98

WordPad, 35
eksportowanie zmiennej, 71
emulator terminala, 27
EOF, end of file, 350

Fedora
pliki konfiguracyjne globalne, 93
pliki konfiguracyjne uzytkownikow, 94

Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

634

Linux. Zostan mistrzem skryptéw powtoki

filtrowanie tekstu
narzedzie grep, 272
narzedzie sed, 243
wyrazenia regularne, 240
filtry strumieni tekstowych, 107-183
formularz, 417, 426
FreeBSD, 467
funkcja, 294
eval, 546
alternatywy, 551
bezpieczne uzycie, 547
niebezpieczny sposéb uzycia, 548
wstrzykiwanie polecen, 546
printf, 407
funkcje
definiowanie, 296
matematyczne, 616
powtoki, 99
przekazywanie parametréw, 299
przekazywanie wartosci, 300
trygonometryczne, 324
tworzenie, 298
w skryptach powtoki, 298
wywolywanie, 298
zastosowanie, 306

G
gawk, 369
globbing plikéw, 593, 594, 600
gniazda, 51

graficzny interfejs uzytkownika, 35, 416,
423,430

H

harmonogram systemd, 176, 183
hasta, 539
szyfrowanie, 540
here document, 334
uzycie z danymi
dynamicznymi, 340
statycznymi, 335
wykorzystanie funkcji, 343
hipertacze, 31
historia polecen, 59

identyfikator UID, 462

ImageMagick, 354
graficzny interfejs uzytkownika, 423
instalacja, 356
przetwarzanie wsadowe plikow, 363

Kup ksigzke

skrypty Freda, 364
wys$wietlanie obrazéw, 357
zmiana wielko$ci obrazu, 359
instalacja
gsed w systemie FreeBSD, 244
gsed w systemie macOS, 245
gsed w systemie Openlndiana, 245
oprogramowania, 181
interfejs
graficzny, 35, 416, 423, 430
logowania poprzez SSH, 435
programistyczny aplikacji, API, 307
inzynieria spoteczna, 555

jezyk
AWK, 368
programowania
interpretowany, 36
kompilowany, 36

K

kalendarz, 418
katalog, 51
domowy, 543, 544
tymczasowy /tmp/, 535
klasy znakéw, 167
kody wyijscia
standardowe, 226
uzytkownika, 229
komunikat btedu, 206
konfiguracja
globalna, 93
listy kontroli dostepu, 513,516, 518
sudo, 510
konstrukcja
$(), 210,212
[...], 487
[[...]], 486
case, 221
case-esac, 305,329
do-while, 215
for, 218
for-in, 217
if-elif-else, 455
if-then, 193, 213, 232
if-then-elif, 214
if-then-else, 214, 463, 465
until, 220
kotwice pozycyjne, 241, 242
kwalifikatory globbingu, 598

Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Skorowidz 635
L wyszukiwanie bez rozrézniania
wielko$ci liter, 275
liczby wyszukiwanie ciggu tekstowego, 272

catkowite, 313, 318
zmiennoprzecinkowe, 319, 407

lista kontroli dostepu, ACL, 513, 516, 518
rozwijana, 419

literaty, 241

M
makro, 69
mawk, 369
mechanizm
cron, 147,176, 183
sudo, 37,510

menedzer plikow, 421
metaznaki, 62, 241

kotwice pozycyjne, 241

modyfikatory, 241-243

zestawy znakoéw, 241, 242
modut

datetime, 606

mathfunc, 605
modyfikatory, 241-243

N

nadpisywanie pliku, 78
narzedzie, Patrz takze polecenie

bc, 319
uzywanie plikow programu, 324
uzywanie w skryptach powtoki, 327
uzywanie w trybie interaktywnym, 320

checkbashisms, 494-497

date, 606

dialog
automatyczny wybor narzedzia, 431
tworzenie interfejsu logowania, 435
tworzenie interfejsu uzytkownika, 428
tworzenie okna dialogowego, 428
tworzenie widzetoéw, 433

dtrace, 524

dtruss, 524

expect
automatyzacja odpowiedzi, 348
jawne hasto, 351

find, 47

firewall, 471

grep, 272
analiza plikow, 278
wyszukiwanie z uzyciem sktadni

rozszerzonej, 280

Kup ksigzke

wyszukiwanie numerdéw, 278
wyszukiwanie petnych wyrazéw, 274
wyszukiwanie powtarzajacych sie stéw, 280
wyszukiwanie stéw na litere p, 281
wyszukiwanie stéw zawierajacych cyfry,
282

znak specjalny *, 279
znaki powrotu karetki, 276

mktemp, 537

octal dump, 150

Regex101, 285

RegexBuddy, 284

RegexMagic, 284

sed
dodawanie wiersza tekstu, 259, 261
dodawanie wierszy do pliku, 265
kopiowanie wierszy z pliku, 267
modyfikowanie listy, 249, 250
modyfikowanie tekstu, 247
modyfikowanie wierszy w pliku, 266
operacje sekwencyjne, 261
przenos$nosc, 244
skrypty ztozone, 268
usuwanie elementow z listy, 256
usuwanie pustych wierszy, 258
uzywanie polecenia q, 263
uzywanie poleceniar, 265
uzywanie polecenia w, 264
w skryptach powtoki, 270
zastepowanie tekstu, 246, 267
zastepowanie wyrazéw, 253
zmiana wiersza tekstu, 262
zmiana wystapien stow, 262

shall, 504-506

shc, 520, 545
deszyfrowanie plikéw binarnych, 527
instalacja, 520
niewykrywalne pliki binarne, 524
testowanie, 520
zaciemnianie skryptéw, 520

shellcheck, 498
wybér powtoki, 499

strace, 524

strings, 457

truss, 524

UnSHc, 528

xargs, 474

xdialog, 568
automatyczny wyboér narzedzia, 431
tworzenie interfejsu logowania, 435
tworzenie interfejsu uzytkownika, 430

xtrace, 571, 581

Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

636 Linux. Zostan mistrzem skryptéow powtoki

narzedzie, Patrz takZe polecenie P
yad
menedzer plikéw, 416 pakiet
narzedzie do weryfikacji plikéw, 421 gsed, 244
programowanie przyciskéw formularza, openssl, 540
426 pandoc, 341
tworzenie formularzy, 417 snap, 612
tworzenie interfejsu uzytkownika, 416, sshpass, 540
423 parametr
tworzenie rozwijanej listy, 419 pozycyjny, 92, 223, 299
nawias TTL, 454
klamrowy, 54, 200, 397 petla
kwadratowy, 192 do-while, 215
nawk, 369 for, 44,218, 405, 472
nazwane potoki, 51 for-in, 217
numer rekordu, number of record, 384 until, 220
until-do, 328
0 while, 216, 398,418,419
petle dziatajgce w nieskoniczono$¢, 565
obliczanie wyrazen, 314, 316, 318, 603 plik
obrazy .bash_logout, 95, 97
wys$wietlanie wtasciwosci, 359 .bash_profile, 95
zmiana wielko$ci, 359 .bashrc, 95,97, 104
opcja .profile, 97
allexport, 100, 101 /etc/bashrc, 93
noclobber, 78, 84, 100 /etc/profile, 93
opcje powtoki, 98 pliki, 51
operator .csv, 377,380
&&, 192 json, 377
:=, 205 .tsv, 380
||, 192 binarne, 527
<, 80 CSV, 289
<<, 334 deszyfrowanie, 527
=, 205 graficzne, 363
==,391, 488 konfiguracyjne
>, 77,84 powtoki, 89, 92
>|, 77 uzytkownikdéw, 94, 97
>>,77,81 w Debianie, 96
2>,81 w Fedorze, 93
2>>, 81,83 niewykrywalne programéw, 524
dodawania, +, 314 programu bc, 324
dzielenia, /, 314 rozszerzone dopasowywanie, 593
logiczny AND, [, &&, 49, 345 tymczasowe
logiczny OR, LUB, ||, 49, 345 tworzenie, 536, 537
mnozenia, *, 314 zabezpieczanie, 534
negacji, !, 192 uzywanie deskryptora, 79
odejmowania, -, 314 wykonywalne
reszty z dzielenia, %, 314 zabezpieczanie, 544
stderr, 81 zapobieganie nadpisywaniu, 78
stdin, 80 podpowtoka, 195
stdout, 80 podrecznik systemowy, 28
tréjargumentowy, ?:, 408 sekcje, 29
oprogramowanie CUPS, 181 podstawianie

polecen, 210
wzorca, 210

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Skorowidz 637
polecenia firewall-cmd, 472
historia, 59 fmt, 160-162, 179

interaktywne wykonywanie, 44

jednoliterowe, 41

laczenie, 45

narzedzie find, 47

opcje, 41

petnowyrazowe, 41

podstawianie, 210

PowerShell, 623

rekurencyjne wykonywanie, 56

sekwencje, 45

struktura, 40

typu cmdlet, 620

warunkowe wykonywanie, 46

polecenie

a, 258

alias, 103

apropos, 30

awk, 368-392, 370, 395-412, 464

bash, 70

bc, 320-331

break, 218, 583

c, 261

cat, 72,73,109-114, 202

clear, 102

cls, 102

continue, 219

convert, 362, 425

convert -flop, 361

convert -resize, 359, 364

cp, 54

curl, 308

cut, 115,116

d, 255, 257

date, 211, 317, 561

declare -f, 297

declare -F, 295

declare -i, 318

display, 357

echo, 68,197,230, 568
problemy z przenosnoscig, 491
Z wyrazeniami matematycznymi, 316

egrep, 280

env, 482

eval, 546

examine, 581

exit, 227, 229

expand, 136

expect, 348-351

export, 71

expr, 314, 315

fgrep, 283

fi, 193

find, 83, 226
opcje wyszukiwania, 47-53
wykonywanie wielu operacji, 53

Kup ksigzke

getopt, 442
getopts, 441, 443-450
grep, 272-284
head, 146-149
identify, 359

info info, 31

join, 119-121, 132
last, 470

less, 71

1p, 182

lpr, 182

Is, 28,41, 103, 594
Is -d, 595
Is-1,51,72

Is -1d, 595

man, 28

man -aw, 29

man -f, 29

man -k, 30
mktemp -d, 539
mlr --ojson, 377
mlr --p2c, 376

nl, 139-145
nmap, 460

od, 150, 152-154
p, 264

passwd, 466
paste, 117,118
ping, 459

pr, 175-180

print, 324, 391
printf, 29, 407-410
ps, 388,389

ps aux, 387

q, 263

r, 265

return, 301

rm -f, 538

s, 248, 250, 255
scale, 320

sed, 243-72

set, 99, 225

set +o0, 100

set-e, 576-579
set-0,100

set-u, 574,575
shellcheck, 498-504
shellcheck -s, 500
shopt, 91

sleep, 216,570
sort, 122-132, 379, 382
sort -t, 379
source, 304

split, 163, 164

Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

638

Linux. Zostan mistrzem skryptéw powtoki

polecenie
sudo, 37,50
tac, 114,115
tail, 148, 149
tee, 84, 85
touch, 561
tr, 80, 165-172
tr-d, 276
truss, 545
unalias, 105
unexpand, 138
uniq, 155-158, 278, 279
uniq -c, 376
unset, 197
vi, 34
w, 264
wc, 159, 160
whatis, 29
which, 104
whoami, 212, 213
xargs, 172-175, 475
zcat, 287
zmodload, 605
pomoc, 28, 624
porty
filtrowane, filtered, 456
otwarte, open, 456
zamkniete, closed, 456
POSIX, 483, 493
potoki, 71
PowerShell, 26, 611
powtoka, 25
bash, 25-27, 481
cechy specyficzne, 486
dowigzanie symboliczne, 483
konfiguracja srodowiska, 482
pliki konfiguracyjne, 89, 92
sesje, 91
bez logowania, 91
csh, 467,588
drukowanie plikéw tekstowych, 181
interaktywna, 91
logowania, 91
nieinteraktywna, 91
posh, 494
PowerShell, 611
aliasy, 620
funkcje matematyczne, 616
instalacja, 612, 613
polecenia, 614
polecenia typu cmdlet, 620
pomoc, 624
programowanie obiektowe, 619
przeglad polecen, 623
skrypty, 619, 625
uruchamianie, 613

Kup ksigzke

poziomy, 197

sh, 187, 467

standardowe kody wyjscia, 226

ustawianie opcji, 98

zmienne, 197

zsh, 25, 26, 588
cechy skryptow, 590
globbing plikéw, 593, 594, 600
instalacja, 588
moduty zewnetrzne, 604
podstawianie wartosci, 590
tablice, 601
zamiana wielko$ci liter, 592

zastepowanie ciaggéw tekstowych, 591

powtoki

roznice, 485

zgodnos¢ z POSIX, 493
procesy, 389
programowanie obiektowe, OOP, 619
projekt dokumentacji Linuksa, 31
przekierowanie wejscia-wyjscia, 76
przesuniecie zmiennej, 207
putapka, trap, 538

regex, 241
rekord, 370

rekurencyjne wykonywanie polecen, 56

root, 461, 467,512
rozszerzenie

.ps1, 619

.sh, 619

rozszerzone dopasowywania wzorcow,

extended globbing, 594
rozwijanie
katalogéw, 596
plikéw, 597
zmiennych, 203, 590

S

secure shell, SSH, 188

sesje powtoki, 91

SGID, Set Group Identity, 530
silnik pdflatex, 341
skanowanie portdw, 456

sktadnia here document, 334, 340, 343

skrypty
analiza dziennika dostepu, 233
analiza dziennikow zdarzen, 286

audyt konta uzytkownika root, 461, 467

automatyzacja
instalacji repozytoriéw, 288
narzedzie expect, 348
sktadnia here document, 334

Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Skorowidz 639

bezpieczenstwo, 509 sortowanie, 122
blokowanie adreséw IP, 471 naturalne, 376
debugowanie, 560, 580 standard POSIX, 483, 493
dla zapory sieciowej, 471 standardowy strumien
Freda dla ImageMagick, 364 btedéw, stderr, 77, 81
identyfikacja systemu operacyjnego, 454 wejscia, stdin, 76, 79
informacje o procesorze, 627 wyjscia, stdout, 76, 78
konwersja rozszerzen plikéw, 355 sterownik drukarki, 181
modyfikowanie wielu plikow, 286 sudo, 37,510
monitorowanie SUID, Set User Identity, 530

aktywnosci uzytkownika, 469 system

Tecmint, 448 plikéw shadow, 463
opcje, 441 stron info, 31
parametry pozycyjne, 223 systemd, 176, 183
powtoki, 32

systemy typu BSD, 481

PowerShell, 619, 625 szyfrowanie haset, 540
zsh, 590
przenos$ne, 480 ,
przeprowadzanie audytu, 454 S
rozréznianie wielkodci liter, 198 L
sed, 244, 268, 270, 289 Sciezka
skanowanie portéw, 456 dostepu, 553
testowanie wyszukiwania, 47
dysku twardego, 236
powtok, 486 T
tworzenie, 186
kopii katalogu, 188 tablice, 405,472
tablic, 200-202 przenosne, 488
tablic przeno$nych, 488 tworzenie, 200-202
zmiennych, 197 w zsh, 601
typowe bledy, 561 terminal, 25
usuwanie zmiennych, 197 testowanie warunkéw, 191-197
uzupelnianie p6l w pliku, 289 testy, 191
uzywanie funkcji, 298 przenoéne, 486
warunek testowy zestawienie, 194, 195
konstrukcja if-then, 193 token, 334
polecenie test, 191 tworzenie
uzycie nawiasu kwadratowego, 192 bibliotek funkcji, 304

wieloplatformowe, 626
wykorzystanie API CoinGecko, 307, 447
zaciemnianie, 520
zarzadzanie dostepem, 510
zestawienie testéw, 194, 195
zgodne ze standardem POSIX, 493
zliczanie zalogowanych uzytkownikéw, 189
zwigzane z bezpieczenstwem, 476
stowo kluczowe
awk, 396
elif, 214
export, 101 U
fi, 213
function, 297 UID, user id numbers, 372
in, 217 uprawnienia
licensing, 335 administratora, 37,510
source, 304 do plikdw, 598
test, 191
then, 193

formularzy, 417

funkgcji, 298

graficznego interfejsu uzytkownika, 415, 416
niewykrywalnych plikéw binarnych, 524
plikéw tymczasowych, 536, 537
przeno$nych tablic, 488

rozwijanej listy, 419

skryptéw powtoki, 32, 186

tablic, 200-202

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

640 Linux. Zostan mistrzem skryptéow powtoki

uprawnienie eksportowanie, 71
SGID, 530 niezainicjalizowane, 562, 574
SUID, 530 niezdefiniowane, 207
urzadzenia programistyczne, 70
blokowe, 51 przypisywanie wartosci, 203-205
znakowe, 51 rozwijanie, 203, 590
uzytkownik root, 461, 467, 512 $rodowiskowe, 67, 90
tylko do odczytu, 199
w uzywanie przesuniec¢, 207
w skryptach, 197
warto$¢ null, 203, 204 wbudowane jezyka AWK, 384
wbudowane hasta, 524 wynikowe, 302
wejscie, 79 zdefiniowane, 207
widzet, 428, 433 znak
wiersz #,104, 187,200
polecen $,68,70,339,370, 464
ustawianie opcji powtoki, 98 %, 209
uzycie funkgji eval, 546 *,43,200,209,314,593
shebang, 187,197, 346 - 203,206
wiasciwoséci obrazu, 359 7,207,593
wstrzykiwanie polecen, 546 @,200
wyciek danych wrazliwych, 534 \, 69,314,323
wyjécie, 78 A, 275, 279,322,594
btedéw, 81 71,418
wyrazenia ~, 390
matematyczne, 314, 316 +, 204 o
regularne, 195, 240, 385 podkreslenia, 209
program RegexBuddy, 284 Za.CthY: 68
program RegexMagic, 284 znaki
w narzedziu grep, 280, 283 $@,300
wzorzec wyszukiwania, 278-280 &&, 46,192
zaawansowane, 280), 222

ze stalymi ciggami tekstowymi, 283 -, 203
wyszukiwanie, 47-53, 272-280 7,206
wyszukiwarka internetowa, 32 3 221
wys$wietlanie komunikatu btedu, 206 \", 381
wywotania systemowe, 524 \?,277
wzorce, 209 ||, 46,192

w AWK, 370 <<-, 334,336,337
cudzystowu, 561
cytowania, 61
z uzywanie, 63

klasy, 167
nowego wiersza, \n, 152
powrotu karetki, \r, 152, 276
sterujace, 61

uzywanie, 62
zwykte, 62

zapora sieciowa, 471

zbiory znakéw, 241

zmienna Srodowiskowa
DISPLAY, 569, 581
PATH, 553

zZmienne
catkowite, 318
deklarowanie, 398
dopasowanie wzorca, 209

Kup ksigzke Pole¢ ksigzke

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Zmien swoja strone WWW w dziatajacy bankomat!

Dowiedz sie wiece] i dotacz juz dzisiaj! % i
http://program-partnerski.helion.pl

https://program-partnerski.helion.pl

Poswiec skryptowi minute, a zaoszczedzisz godziny!

Wiele zadan administracyjnych w Linuksie mozna wykona¢, korzystajac z graficznego interfejsu
uzytkownika. Jednak prawdziwa moc swojego systemu uwolnisz za pomoca skryptow wiersza
polecen i powtoki. W ten sposéb mozesz efektywnie automatyzowac powtarzalne zadania, precy-
zyjnie skonfigurowac system, a takze zapewnic wysoki stopien bezpieczenstwa.

Ta praktyczna ksigzka swietnie postuzy poczatkujacym i bardziej zaawansowanym administratorom
Linuksa. Bedzie tez pomocna w przygotowaniu sie do egzaminéw CompTIA Linux+ i Linux Professional
Institute. Rozpoczniesz od podstaw korzystania z powtoki, aby w kolejnych rozdziatach przejs¢ do
bardziej zaawansowanych koncepcji. Zobaczysz, jak tworzy¢ skrypty automatyzujace powtarzalne
zadania administracyjne, a takze wiele innych przydatnych rozwigzan. W ksigzce znajdziesz praktyczne,
gotowe do uzycia skrypty. Zostaty one opracowane w taki sposob, by utatwic¢ zarzadzanie systemem,
wspomagac nauke omawianych koncepcji i pomagac podczas rozwigzywania problemow. Przede
wszystkim skoncentrujesz sie na powtoce bash, ale zapoznasz sie réwniez z powtoka Zsh i PowerShell.

W ksigzce:

e koncepcja powtoki i rézne rodzaje powtok

e przekierowanie, potok i polecenia ztozone

o filtry strumieni tekstowych i dynamiczne przetwarzanie danych
o funkcje, biblioteki i tworzenie modutowych skryptow powtoki

o struktura przenosnych skryptow powtoki

Donald A. Tevault od 2006 roku pracuje z systemami Linux. Posiada certyfikaty Level 3 Security

i GIAC Incident Handler, zajmowat sie bezpieczenstwem Linuksa w kontekscie internetu rzeczy. Jest

profesjonalnym wyktadowca wiedzy o Linuksie. Obecnie prowadzi kanat BeginLinux Guru w serwisie
YouTube. Jest rowniez autorem ksigzki Bezpieczeristwo systemu Linux. Hardening i najnowsze
techniki zabezpieczania przed cyberatakami.

ISBN q?F‘—S

328 931756 (pqck-l-)

	!5-16_spis
	08
	Blank Page
	Blank Page

