

• Kup książkę
• Poleć książkę
• Oceń książkę

• Księgarnia internetowa
• Lubię to! » Nasza społeczność

https://helion.pl/rt/lizomi
https://helion.pl/rf/lizomi
https://helion.pl/ro/lizomi
https://helion.pl
https://helion.pl/r/4CAKF

Spis treści 5

Spis treści

O autorze .. 17

O korektorze merytorycznym ... 18

Przedmowa .. 19

ROZDZIAŁ 1
Rozpoczęcie pracy z powłoką ... 25

Czym jest powłoka systemowa? .. 25
Jak znaleźć pomoc dotyczącą poleceń powłoki? .. 28

Jak korzystać ze stron podręcznika systemowego? 28
Jak korzystać z systemu stron info? .. 31
Projekt dokumentacji Linuksa ... 31
Korzystanie z ulubionej wyszukiwarki internetowej 32

Tworzenie skryptów powłoki za pomocą edytora tekstu 32
Edytory tekstowe .. 32
Edytory tekstu wyposażone w interfejs graficzny 35

Kompilowane i interpretowane języki programowania 36
Uprawnienia administratora i mechanizm sudo ... 37
Podsumowanie .. 37
Pytania ... 37
Lektura uzupełniająca .. 38
Odpowiedzi ... 39

ROZDZIAŁ 2
Interpretowanie poleceń ... 40

Struktura polecenia ... 40
Korzystanie z opcji poleceń ... 41
Korzystanie z argumentów powłoki .. 43

Jednoczesne wykonywanie wielu poleceń .. 44
Interaktywne wykonywanie poleceń ... 44
Korzystanie z sekwencji poleceń ... 45

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

6 Linux. Zostań mistrzem skryptów powłoki

Używanie narzędzia find ... 47
Wykonywanie wielu operacji za pomocą polecenia find 53

Rekurencyjne wykonywanie poleceń .. 56
Ćwiczenie praktyczne — rekurencyjne wykonywanie poleceń 57

Korzystanie z historii poleceń ... 59
Znaki sterujące i znaki cytowania ... 61

Używanie znaków sterujących .. 62
Używanie znaków cytowania .. 63

Podsumowanie .. 64
Pytania ... 65
Lektura uzupełniająca .. 66
Odpowiedzi ... 66

ROZDZIAŁ 3
Zmienne i potoki .. 67

Zmienne środowiskowe ... 67
Zmienne programistyczne .. 70
Potoki .. 71
Podsumowanie .. 73
Pytania ... 74
Lektura uzupełniająca .. 74
Odpowiedzi ... 75

ROZDZIAŁ 4
Przekierowanie wejścia-wyjścia ... 76

Wprowadzenie do przekierowania wejścia-wyjścia 76
Standardowy strumień wyjścia .. 78

Zapobieganie nadpisywaniu pliku ... 78
Używanie deskryptora pliku .. 79

Standardowy strumień wejścia .. 79
Standardowy strumień błędów .. 81
Polecenie tee ... 84
Ćwiczenie praktyczne — potoki, przekierowania i wyszukiwanie plików 85
Podsumowanie .. 87
Pytania ... 87
Lektura uzupełniająca .. 88
Odpowiedzi ... 88

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Spis treści 7

ROZDZIAŁ 5
Dostosowywanie środowiska do własnych potrzeb 89

Wymagania techniczne .. 89
Przegląd zmiennych środowiskowych .. 89
Sesje powłoki ... 91
Pliki konfiguracyjne powłoki .. 92

Globalne pliki konfiguracyjne w Fedorze ... 93
Pliki konfiguracyjne użytkowników w systemie Fedora 94
Globalne pliki konfiguracyjne w systemie Debian 96
Pliki konfiguracyjne użytkowników w systemie Debian 97
Określanie edytora domyślnego w systemie Debian 97

Ustawianie opcji powłoki z poziomu wiersza poleceń 98
Aliasy ... 102
Podsumowanie .. 105
Pytania ... 106
Lektura uzupełniająca .. 106
Odpowiedzi ... 10

ROZDZIAŁ 6
Filtry strumieni tekstowych — część 1 .. 107

Wymagania techniczne .. 107
Wprowadzenie do filtrów strumieni tekstowych .. 108
Używanie polecenia cat ... 109
Używanie polecenia tac ... 114
Używanie polecenia cut ... 115
Używanie polecenia paste .. 117
Używanie polecenia join .. 119
Używanie polecenia sort .. 122
Podsumowanie .. 133
Pytania ... 133
Lektura uzupełniająca .. 134
Odpowiedzi ... 134

ROZDZIAŁ 7
Filtry strumieni tekstowych — część 2 .. 135

Wymagania techniczne .. 136
Używanie polecenia expand ... 136
Używanie polecenia unexpand .. 138
Używanie polecenia nl ... 139
Używanie polecenia head .. 146
Używanie polecenia tail ... 148

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

8 Linux. Zostań mistrzem skryptów powłoki

Używanie poleceń head i tail razem ... 149
Używanie polecenia od .. 150
Używanie polecenia uniq ... 155
Używanie polecenia wc .. 159
Używanie polecenia fmt .. 160
Używanie polecenia split ... 163
Używanie polecenia tr ... 165
Używanie polecenia xargs .. 172
Używanie polecenia pr ... 175
Drukowanie z poziomu powłoki .. 181
Podsumowanie .. 183
Pytania ... 183
Lektura uzupełniająca .. 184
Odpowiedzi ... 185

ROZDZIAŁ 8
Podstawowa konstrukcja skryptu powłoki ... 186

Wymagania techniczne .. 186
Podstawy konstrukcji skryptów powłoki .. 187
Ćwiczenie praktyczne — zliczanie zalogowanych użytkowników 189

Wykonywanie testów .. 191
Używanie słowa kluczowego test ... 191
Umieszczanie warunku testowego w nawiasie kwadratowym 192
Używanie konstrukcji warunkowej if-then .. 193
Używanie innych rodzajów testów .. 194

Podpowłoka .. 195
Ćwiczenie praktyczne — testowanie warunków 196

Zmienne w skryptach ... 197
Tworzenie i usuwanie zmiennych .. 197
Zmienne i poziomy powłoki .. 197
Rozróżnianie wielkości liter ... 198
Zmienne tylko do odczytu ... 199

Tablice ... 200
Ćwiczenia praktyczne — praca z tablicami .. 201

Rozwijanie zmiennych ... 203
Przypisywanie wartości do niezainicjalizowanej zmiennej 203
Przypisywanie wartości do zmiennej zbioru .. 204
Przypisywanie wartości zmiennej .. 205
Wyświetlanie komunikatu błędu ... 206
Używanie przesunięć zmiennych ... 207
Dopasowanie wzorca .. 209

Podstawianie poleceń .. 210

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Spis treści 9

Konstrukcje warunkowe i pętle .. 213
Konstrukcja warunkowa if-then .. 213
Konstrukcja do-while .. 215
Konstrukcja for-in ... 217
Konstrukcja for ... 218
Polecenie break ... 218
Polecenie continue .. 219
Konstrukcja until ... 220
Konstrukcja case ... 221
Używanie parametrów pozycyjnych .. 223

Kody wyjścia .. 226
Standardowe kody wyjścia powłoki .. 226
Kody wyjścia zdefiniowane przez użytkownika 229

Więcej informacji o poleceniu echo ... 230
Kilka rzeczywistych przykładów omówionych technik 232
Ćwiczenie praktyczne — stosowanie konstrukcji if-then 232
Ćwiczenie praktyczne — analiza dziennika dostępu serwera Apache 233
Ćwiczenie praktyczne — testy beta nowego dysku twardego 236

Podsumowanie .. 237
Pytania ... 237
Lektura uzupełniająca .. 238
Odpowiedzi ... 239

ROZDZIAŁ 9
Filtrowanie tekstu za pomocą grep, sed i wyrażeń regularnych 240

Wymagania techniczne .. 240
Wyrażenia regularne .. 240

Literały i metaznaki ... 241
Narzędzie sed .. 243

Problemy z przenośnością narzędzia sed .. 244
Zastępowanie tekstu za pomocą narzędzia sed 246
Usuwanie tekstu za pomocą narzędzia sed ... 255
Dodawanie i wstawianie tekstu za pomocą narzędzia sed 258
Modyfikowanie tekstu za pomocą narzędzia sed 261
Inne przydatne sztuczki z narzędziem sed .. 263
Używanie plików programu narzędzia sed .. 265
Złożone skrypty w plikach programów narzędzia sed 268
Używanie narzędzia sed w skryptach powłoki 270

Narzędzie grep .. 272
Podstawowe wyszukiwanie za pomocą polecenia grep 272
Zaawansowane wyszukiwanie za pomocą narzędzia grep 274
Jeszcze bardziej zaawansowane wyszukiwanie

za pomocą narzędzia grep ... 277

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

10 Linux. Zostań mistrzem skryptów powłoki

Zaawansowane wyrażenia regularne w narzędziu grep 280
Używanie wyrażeń regularnych ze stałymi ciągami tekstowymi

w narzędziu grep ... 283
Używanie narzędzi wspomagających pracę z wyrażeniami regularnymi 284

RegexBuddy i RegexMagic .. 284
Regex101 .. 285

Wybrane przykłady ze świata rzeczywistego .. 285
Jednoczesna modyfikacja wielu plików ... 286
Analiza dzienników zdarzeń serwera Apache pod kątem ataków

typu cross-site scripting .. 286
Automatyzacja instalacji repozytoriów zewnętrznych 288
Uzupełnianie pustych pól w pliku CSV .. 289

Podsumowanie .. 291
Pytania ... 291
Lektura uzupełniająca .. 292
Odpowiedzi ... 293

ROZDZIAŁ 10
Funkcje ... 294

Wymagania techniczne .. 294
Wprowadzenie do funkcji .. 294
Definiowanie funkcji .. 296
Używanie funkcji w skryptach powłoki .. 298

Tworzenie i wywoływanie funkcji ... 298
Przekazywanie parametrów pozycyjnych do funkcji 299
Przekazywanie wartości z funkcji .. 300

Tworzenie bibliotek funkcji .. 304
Rzeczywiste przykłady zastosowania funkcji .. 306

Sprawdzanie połączenia sieciowego ... 306
Korzystanie z API CoinGecko ... 307

Podsumowanie .. 311
Pytania ... 311
Lektura uzupełniająca .. 312
Odpowiedzi ... 312

ROZDZIAŁ 11
Wykonywanie operacji matematycznych .. 313

Wymagania techniczne .. 313
Wykonywanie obliczeń na liczbach całkowitych za pomocą wyrażeń 313

Używanie polecenia expr .. 314
Używanie polecenia echo z wyrażeniami matematycznymi 316

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Spis treści 11

Wykonywanie obliczeń na liczbach całkowitych przy użyciu zmiennych 318
Wykonywanie operacji matematycznych na liczbach

zmiennoprzecinkowych za pomocą narzędzia bc 319
Używanie programu bc w trybie interaktywnym 320
Używanie plików programu bc ... 324
Używanie programu bc w skryptach powłoki 327

Podsumowanie .. 331
Pytania ... 331
Lektura uzupełniająca .. 332
Odpowiedzi ... 332

ROZDZIAŁ 12
Automatyzacja skryptów za pomocą składni here document
i narzędzia expect .. 333

Wymagania techniczne .. 333
Używanie składni here document .. 334

Używanie składni here document w połączeniu z danymi statycznymi ... 335
Używanie składni here document w połączeniu

z danymi dynamicznymi ... 340
Wykorzystanie funkcji w składni here document 343

Automatyzacja odpowiedzi za pomocą narzędzia expect 348
Kwestie bezpieczeństwa związane z narzędziem expect 351

Podsumowanie .. 351
Pytania ... 352
Lektura uzupełniająca .. 353
Odpowiedzi ... 353

ROZDZIAŁ 13
Używanie ImageMagick w skryptach .. 354

Wymagania techniczne .. 354
Konwersja niestandardowych rozszerzeń plików 355
Instalacja ImageMagick ... 356

Wyświetlanie obrazów .. 357
Przeglądanie właściwości obrazu .. 359

Zmiana wielkości obrazu i dostosowywanie go do własnych potrzeb 359
Przetwarzanie wsadowe plików graficznych .. 363
Korzystanie ze skryptów Freda przeznaczonych

dla programu ImageMagick .. 364
Podsumowanie .. 365
Pytania ... 366

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

12 Linux. Zostań mistrzem skryptów powłoki

Lektura uzupełniająca .. 366
Odpowiedzi ... 367

ROZDZIAŁ 14
Używanie języka AWK — część 1 .. 368

Wprowadzenie do języka AWK .. 368
Omówienie wzorców i działań ... 370
Pobieranie danych wejściowych z plików tekstowych 371

Wyszukiwanie użytkowników ... 372
Analiza dzienników dostępu do serwera WWW 374
Używanie wyrażeń regularnych ... 385

Pobieranie danych wejściowych z poleceń ... 387
Podsumowanie .. 392
Pytania ... 393
Lektura uzupełniająca .. 394
Odpowiedzi ... 394

ROZDZIAŁ 15
Używanie języka AWK — część 2 .. 395

Wymagania techniczne .. 395
Podstawowa struktura skryptu AWK .. 395
Używanie konstrukcji warunkowych .. 397
Używanie pętli while i deklarowanie zmiennych .. 398

Sumowanie liczb w wierszu .. 399
Określanie generacji procesora ... 401

Używanie pętli for i tablic .. 405
Wykorzystanie arytmetyki zmiennoprzecinkowej i funkcji printf 407
Praca z rekordami wielowierszowymi .. 410
Podsumowanie .. 412
Pytania ... 412
Lektura uzupełniająca .. 413
Odpowiedzi ... 414

ROZDZIAŁ 16
Tworzenie interfejsów użytkownika za pomocą narzędzi yad,
dialog i xdialog .. 415

Wymagania techniczne .. 415
Tworzenie graficznego interfejsu użytkownika za pomocą narzędzia yad 416

Podstawy pracy z narzędziem yad .. 416
Tworzenie formularzy do wprowadzania danych 417

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Spis treści 13

Tworzenie rozwijanej listy ... 419
Używanie menedżera plików narzędzia yad .. 421
Programowanie przycisków formularza .. 426
Kilka końcowych przemyśleń na temat narzędzia yad 427

Tworzenie interfejsów użytkownika za pomocą narzędzi dialog i xdialog 428
Podstawy pracy z narzędziem dialog .. 428
Podstawy pracy z narzędziem xdialog ... 430
Automatyczny wybór między narzędziami dialog i xdialog 431
Dodawanie widżetów ... 433
Tworzenie interfejsu logowania poprzez SSH .. 435

Podsumowanie .. 438
Pytania ... 439
Lektura uzupełniająca .. 439
Odpowiedzi ... 440

ROZDZIAŁ 17
Używanie opcji skryptów powłoki za pomocą getopts 441

Wymagania techniczne .. 441
Wyjaśnienie potrzeby użycia polecenia getopts ... 441
Porównanie poleceń getopt i getopts .. 442
Używanie getopts .. 443
Analiza rzeczywistych przykładów ... 447

Zmodyfikowana wersja skryptu dla API Coingecko 447
Skrypt monitorujący Tecmint .. 448

Podsumowanie .. 451
Pytania ... 451
Lektura uzupełniająca .. 452
Odpowiedzi ... 452

ROZDZIAŁ 18
Skrypty powłoki dla specjalistów ds. bezpieczeństwa 453

Wymagania techniczne .. 453
Proste skrypty do przeprowadzania audytu ... 454

Identyfikacja systemu operacyjnego ... 454
Prosty skrypt do skanowania portów .. 456
Kontrola konta użytkownika root ... 461
Tworzenie skryptu monitorującego aktywność użytkownika 469

Tworzenie prostych skryptów zapory sieciowej .. 471
Tworzenie skryptu blokującego adresy IP w dystrybucji Red Hat 471

Wyszukiwanie istniejących skryptów związanych z bezpieczeństwem 476

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

14 Linux. Zostań mistrzem skryptów powłoki

Podsumowanie .. 477
Pytania ... 478
Lektura uzupełniająca .. 478
Odpowiedzi ... 479

ROZDZIAŁ 19
Przenośne skrypty powłoki .. 480

Wymagania techniczne .. 480
Uruchamianie powłoki bash w systemach innych niż Linux 481

Konfiguracja środowiska powłoki bash za pomocą env 482
Tworzenie dowiązania symbolicznego do powłoki bash 483

Zgodność ze standardem POSIX .. 483
Różnice między powłokami ... 485
Specyficzne cechy powłoki bash .. 486

Korzystanie z testów przenośnych .. 486
Tworzenie przenośnych tablic ... 488
Problemy z przenośnością polecenia echo .. 491

Testowanie skryptów pod kątem zgodności ze standardem POSIX 493
Tworzenie skryptów w powłoce zgodnej z POSIX 493
Używanie narzędzia checkbashisms .. 494
Używanie narzędzia shellcheck ... 498
Używanie narzędzia shall .. 504

Podsumowanie .. 506
Pytania ... 507
Lektura uzupełniająca .. 507
Odpowiedzi ... 508

ROZDZIAŁ 20
Bezpieczeństwo skryptów powłoki .. 509

Wymagania techniczne .. 509
Zarządzanie dostępem do skryptów .. 510

Nadawanie uprawnień administratora .. 510
Używanie listy kontroli dostępu .. 513
Zaciemnianie skryptów zapisanych w postaci zwykłego tekstu 520
Deszyfrowanie plików binarnych utworzonych

za pomocą narzędzia shc ... 527
Kwestie związane z SUID i SGID ... 530
Unikanie wycieków danych wrażliwych ... 534

Zabezpieczanie plików tymczasowych .. 534
Używanie haseł w skryptach powłoki .. 539

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Spis treści 15

Wstrzykiwanie poleceń przy użyciu funkcji eval ... 546
Używanie funkcji eval w wierszu poleceń .. 546
Bezpieczny sposób używania funkcji eval .. 547
Niebezpieczny sposób używania funkcji eval .. 548
Alternatywy dla funkcji eval .. 551

Kwestie związane z bezpieczeństwem ścieżek dostępu 553
Scenariusz ataku 1. Przejęcie konta użytkownika 555
Scenariusz ataku 2. Inżynieria społeczna ... 555

Podsumowanie .. 556
Pytania ... 557
Lektura uzupełniająca .. 558
Odpowiedzi ... 559

ROZDZIAŁ 21
Debugowanie skryptów powłoki ... 560

Wymagania techniczne .. 560
Typowe błędy popełniane w skryptach .. 561

Za mało znaków cudzysłowu .. 561
Tworzenie pętli działającej w nieskończoność 565

Korzystanie z technik i narzędzi przeznaczonych
do debugowania skryptów powłoki .. 568

Używanie polecenia echo .. 568
Wykorzystanie narzędzia xtrace podczas debugowania 571
Sprawdzanie pod kątem niezdefiniowanych zmiennych 574
Sprawdzanie błędów za pomocą opcji -e .. 576
Korzystanie z debuggera powłoki bash ... 579
Debugowanie skryptu za pomocą bashdb .. 580
Uzyskiwanie pomocy w narzędziu bashdb .. 582

Podsumowanie .. 583
Pytania ... 584
Lektura uzupełniająca .. 584
Odpowiedzi ... 585

ROZDZIAŁ 22
Wprowadzenie do skryptów powłoki Z ... 587

Wymagania techniczne .. 587
Wprowadzenie do powłoki zsh .. 588
Instalacja zsh ... 588
Unikalne cechy skryptów powłoki zsh .. 590

Różnice w rozwijaniu zmiennych .. 590
Tablice w zsh .. 601
Rozszerzone możliwości matematyczne .. 603

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

16 Linux. Zostań mistrzem skryptów powłoki

Korzystanie z modułów zsh ... 604
Używanie modułu mathfunc ... 605
Moduł datetime .. 606

Podsumowanie .. 608
Pytania ... 609
Lektura uzupełniająca .. 610
Odpowiedzi ... 610

ROZDZIAŁ 23
Używanie powłoki PowerShell w Linuksie .. 611

Wymagania techniczne .. 611
Instalacja powłoki PowerShell w systemach Linux i macOS 612

Instalacja powłoki PowerShell w Linuksie za pomocą pakietu snap 612
Instalacja powłoki PowerShell w Fedorze .. 613
Instalacja powłoki PowerShell w macOS-ie ... 613
Uruchamianie powłoki PowerShell .. 613

Powody, dla których administratorzy systemów Linux i macOS
powinni poznać powłokę PowerShell .. 613

Praca w środowiskach z różnymi systemami operacyjnymi 614
Polecenia powłoki PowerShell mogą być prostsze 614
Rozszerzone wbudowane funkcje matematyczne 616

Różnice między skryptami PowerShell a tradycyjnymi skryptami
w systemach Linux oraz Unix ... 619

Korzystanie z rozszerzeń plików i uprawnień do wykonywania 619
Powłoka PowerShell jest zorientowana obiektowo 619
PowerShell korzysta z poleceń cmdlet ... 620
Korzystanie z aliasów powłoki PowerShell .. 620

Przegląd dostępnych poleceń PowerShell .. 623
Uzyskiwanie pomocy dotyczącej poleceń powłoki PowerShell 624
Przykłady praktyczne skryptów powłoki PowerShell, które działają

na różnych platformach .. 625
Skrypt write-marquee.ps1 ... 626
Skrypt check-cpu.ps1 .. 627

Podsumowanie .. 631
Lektura uzupełniająca .. 632

Skorowidz .. 633

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

186 Linux. Zostań mistrzem skryptów powłoki

Rozdział

8

Podstawowa
konstrukcja
skryptu powłoki

Tak, wiem. Pewnie nie możesz się doczekać, aby rozpocząć tworzenie skryptów po-włoki, ale jeszcze nie miałeś okazji tego zrobić. W tym rozdziale omówię podstawy tego zagadnienia. Na koniec zaprezentuję kilka praktycznych i użytecznych przykładowych skryptów. Wprawdzie wiele technik przedstawionych w tym rozdziale działa w każdej powłoce, ale niektóre mogą być przeznaczone wyłącznie dla powłoki bash. I to na niej się teraz dla uproszczenia skoncentruję. Z kolei w rozdziale 22. pokażę techniki stosowane w powłoce zsh. Natomiast w rozdziale 19. przedstawię metody, które działają w róż-nych powłokach. W tym rozdziale omówię następujące zagadnienia:
 podstawy konstrukcji skryptów powłoki,
 wykonywanie testów,
 podpowłoki,
 zmienne w skryptach,
 tablice,
 rozwijanie zmiennych,
 podstawianie poleceń,
 konstrukcje warunkowe i pętle,
 parametry pozycyjne,
 kody wyjścia,
 więcej informacji o poleceniu echo,
 przykłady z życia wzięte. Jeśli jesteś gotowy, zaczynajmy!

Wymagania techniczne Użyj dowolnej dystrybucji Linuksa z zainstalowaną powłoką bash. Jeśli korzystasz z systemu macOS, użyj jednej z dostępnych maszyn wirtualnych z Linuksem, ponieważ część skryptów wymaga poleceń, które nie będą działać w macOS-ie. Wprawdzie omówione w tekście przykłady możesz wykonywać w swoim lokalnym systemie macOS, ale pamiętaj, że zaprezentuję też ćwiczenia praktyczne.
Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 187

Dołączyłem również jedno ćwiczenie praktyczne, które wykorzystuje maszynę wirtu-alną z dystrybucją FreeBSD. Zatem utwórz maszynę wirtualną z tym systemem, a na-stępnie zainstaluj w nim pakiety sudo oraz bash, jak pokazałem we „Wprowadzeniu” do książki. Ponadto, jak również wyjaśniłem we „Wprowadzeniu”, gotowe skrypty możesz pobrać z repozytorium, które zamieściłem w serwisie GitHub. W tym celu wystarczy wydać następujące polecenie:
$ git clone https://github.com/PacktPublishing/The-Ultimate-Linux-Shell-Scripting-
Guide.git

Podstawy konstrukcji skryptów powłoki Podczas tworzenia skryptu powłoki pierwszym zadaniem jest określenie powłoki, za pomocą której będzie interpretowany kod danego skryptu.
Uwaga

Możesz mieć konkretny powód, dla którego wybierzesz daną powłokę zamiast innej.
Dokładniejsze omówienie tego zagadnienia znajdziesz w rozdziałach 19. i 22.

 W pierwszym wierszu skryptu zdefiniujesz powłokę, która ma być użyta jako interpreter. Jest to tzw. wiersz shebang. Będzie miał postać podobną do tutaj pokazanej:
#!/bin/bash Zazwyczaj wiersz, który rozpoczyna się od znaku #, oznacza komentarz i jest ignoro-wany przez powłokę. Wiersz shebang (i proszę nie pytać, skąd wzięła się ta nazwa) jest wyjątkiem od tej reguły. Oprócz określenia konkretnej powłoki przeznaczonej do uży-cia, takiej jak /bin/bash czy /bin/zsh, można też zdefiniować ogólną /bin/sh, aby two-rzone skrypty były bardziej przenośne i działały w większej liczbie powłok i systemów operacyjnych. Oto jak to wygląda wiersz shebang, który wskazuje ogólną powłokę sh:
#!/bin/sh Ta ogólna powłoka sh ma na celu umożliwienie uruchamiania skryptów w różnych sys-temach, które mogą (ale nie muszą) mieć zainstalowaną powłokę bash. Jednak takie podejście prowadzi również do problemów, ponieważ różne powłoki reprezentowane przez sh nie są w pełni ze sobą zgodne. Zobacz, jak to działa w praktyce:
 W systemie FreeBSD oraz prawdopodobnie w innych systemach typu BSD (Berkeley Software Distribution) plik wykonywalny sh to klasyczna powłoka Bourne’a, która jest przodkiem powłoki bash (Bourne Again Shell).
 W systemach z rodziny Red Hat, sh jest dowiązaniem symbolicznym, które wskazuje plik wykonywalny bash. Warto pamiętać, że powłoka bash może korzystać z pewnych funkcji programistycznych niedostępnych w innych powłokach, które wymieniłem na tej liście. (Więcej informacji na ten temat przedstawię w rozdziale 19., poświęconym przenośności skryptów powłoki).

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

188 Linux. Zostań mistrzem skryptów powłoki

 W dystrybucjach typu Debian/Ubuntu sh jest dowiązaniem symbolicznym do pliku wykonywalnego dash. Ta nazwa oznacza Debian Almquist Shell, czyli szybszą i lżejszą implementację powłoki bash.
 W systemie Alpine Linux sh wskazuje na ash, czyli lekką powłokę, która jest częścią programu busybox. (W systemie Alpine powłoka bash nie jest domyślnie zainstalowana).
 W systemie OpenIndiana, który jest bezpłatnie dostępną wersją systemu operacyjnego Oracle Solaris, sh jest dowiązaniem symbolicznym do powłoki

ksh93. Znana również jako Korn shell, jest ona w pewnym stopniu, choć nie całkowicie, zgodna z powłoką bash. (Powłoka ksh została opracowana przez Davida Korna).
 W systemie macOS sh jest dowiązaniem symbolicznym do powłoki bash. (Co ciekawe, wprawdzie zsh jest domyślną powłoką logowania w macOS-ie, ale powłoka bash jest nadal instalowana domyślnie i pozostaje dostępna do użycia).
Uwaga

Pamiętaj, że używanie w skryptach wiersza shebang w postaci #!/bin/sh może być
problematyczne. Wynika to z faktu, że reprezentowane przez #!/bin/sh poszcze-
gólne powłoki w różnych systemach operacyjnych nie są ze sobą w pełni zgodne.
Załóżmy, że tworzysz skrypt w systemie z rodziny Red Hat, w którym to sh wskazuje
powłokę bash. Istnieje duże ryzyko, że ten skrypt nie zadziała w systemach Debian
i FreeBSD, w których sh wskazuje odpowiednio dash i powłokę Bourne’a. Z tego
powodu skoncentruję się na razie na powłoce bash, zaś w prezentowanych przy-
kładach będę używać wiersza shebang w postaci #!/bin/bash. Jak wspomniałem już
wcześniej, dokładniejsze omówienie związanych z tym kwestii znajdzie się w roz-
dziale 19., poświęconym przenośności skryptów powłoki.

 W zależności od Twoich potrzeb i wymagań skrypt powłoki może być bardzo prosty lub złożony. Może składać się z jednego standardowego polecenia lub kilku takich po-leceń systemu Linux/Unix, które będą wykonywane po kolei. Z drugiej strony, skrypty mogą osiągać złożoność zbliżoną do programów napisanych w językach wyższego po-ziomu, takich jak C. Na początek spójrz na bardzo prosty skrypt, który składa się z tylko jednego polecenia.
#!/bin/bash
rsync -avhe ssh /var/www/html/course/images/
root@192.168.0.22:/var/www/html/course/images/ To prosty jednowierszowy skrypt powłoki, którego używałem do tworzenia kopii za-pasowej katalogu images w jednym komputerze i przesyłania jej do katalogu kopii za-pasowych w innym komputerze, działającym pod kontrolą systemu Debian. Ten skrypt wykorzystuje program rsync z odpowiednimi opcjami do synchronizacji obu katalo-gów poprzez sesję bezpiecznej powłoki (ang. secure shell, SSH). (Chociaż zazwyczaj nie pozwalam użytkownikowi root na logowanie przez ssh, w tym przypadku jest to ko-nieczne. Oczywiście takie rozwiązanie stosowałbym tylko w sieci lokalnej i nigdy przez internet). Zgodnie z przeznaczeniem ten skrypt nosi nazwę rsync_with_debian. Zanim

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 189

będzie można go uruchomić, najpierw trzeba nadać mu uprawnienia do wykonywania. Służy do tego następujące polecenie:
$ chmod u+x rsync_with_debian W drugim wierszu omawianego skryptu rsync_with_debian, zaraz po wierszu shebang, znajduje się dokładnie to samo polecenie, które musiałbym wpisać w powłoce, gdybym nie miał tego skryptu. Jak widać, dzięki utworzeniu takiego skryptu znacznie uprości-łem sobie pracę. Aby udostępnić ten skrypt wszystkim użytkownikom systemu, umieść go w katalogu

/usr/local/bin, który powinien znajdować się w zmiennej PATH każdego użytkownika. Zanim przejdziesz dalej, utrwal sobie to, czego się właśnie nauczyłeś. W tym celu wy-konaj zamieszczone tutaj ćwiczenie praktyczne.
Ćwiczenie praktyczne — zliczanie zalogowanych
użytkowników To ćwiczenie pomoże utworzyć skrypt powłoki, który pokaże liczbę zalogowanych użytkowników. Następnie zmodyfikujesz go w taki sposób, aby wyświetlał tylko uni-kalnych użytkowników. (W skrypcie wykorzystasz wybrane z filtrów strumieni teksto-wych, o których dowiedziałeś się w poprzednich dwóch rozdziałach).

1. W dowolnej z maszyn wirtualnych, które działają pod kontrolą systemu Linux, utwórz trzy dodatkowe konta użytkowników. W systemie Fedora możesz użyć wymienionych tutaj poleceń, przy czym wybierz własne nazwy użytkowników:
$ sudo useradd vicky
$ sudo passwd vicky Z kolei w Debianie wydaj następujące polecenie:
$ sudo adduser vicky

2. W lokalnym terminalu maszyny wirtualnej sprawdź jej adres IP za pomocą wymienionego polecenia:
$ ip a

3. W komputerze gospodarza otwórz cztery okna terminala. Korzystając z adresu IP maszyny wirtualnej, w pierwszym oknie zaloguj się do własnego konta użytkownika, zaś w innych oknach zaloguj się do pozostałych kont. Polecenia będą wyglądać mniej więcej tak:
$ ssh vicky@192.168.0.9

4. W oknie terminala, w którym jesteś zalogowany, wyświetl listę wszystkich aktualnie zalogowanych użytkowników:
$ who Powinieneś zobaczyć pięciu użytkowników, ponieważ Twoje konto pojawi się raz dla lokalnego logowania w terminalu i raz dla zdalnego logowania poprzez SSH.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

190 Linux. Zostań mistrzem skryptów powłoki

5. Utwórz skrypt o nazwie logged-in.sh i następującej zawartości:
#!/bin/bash
users="$(who | wc -l)"
echo "There are currently $users users logged in." Używasz w nim koncepcji podstawienia polecenia, aby wynik wykonania polecenia who | wc -l przypisać do zmiennej skryptowej users. (Więcej informacji na temat tej koncepcji przedstawię w dalszej części książki, więc na razie się tym nie przejmuj).

6. Za pomocą następującego polecenia nadaj skryptowi uprawnienia do wykonywania:
$ chmod u+x logged-in.sh

7. Teraz uruchom skrypt w ten sposób:
$./logged-in.sh Wynik jego uruchomienia powinien wyglądać następująco:
There are currently 5 users logged in. Problem polega na tym, że w rzeczywistości mamy tylko czterech użytkowników. Liczba podana przez skrypt jest niepoprawna, ponieważ Twoja nazwa użytkownika jest liczona dwukrotnie. Teraz naprawisz ten błąd.

8. Zmodyfikuj kod skryptu logged-in.sh do następującej postaci:
#!/bin/bash
users="$(who | wc -l)"
echo "There are currently $users users logged in."
echo
uniqusers="$(who | cut -d" " -f1 | sort | uniq | wc -l)"
echo "There are currently $uniqusers unique users logged in." Zmienna uniqusers jest tworzona przez wszystkie polecenia połączone ze sobą za pomocą potoku i umieszczone w nawiasie. Polecenie cut używa spacji jako separatora (-d" ") i wyodrębnia pierwsze pole (-f1) z wyniku działania polecenia who. Te dane wyjściowe są następnie przekazywane do polecenia
sort, a później do uniq, które z kolei przekazuje do polecenia wc -l tylko unikalne nazwy użytkowników.

9. Po ponownym uruchomieniu skryptu dane wyjściowe powinny wyglądać następująco:
There are currently 5 users logged in.
There are currently 4 unique users logged in.

10. Dokonaj ostatniej modyfikacji skryptu, aby wyświetlić nazwy unikalnych zalogowanych użytkowników. Gotowy skrypt będzie przedstawiał się następująco:
#!/bin/bash
users="$(who | wc -l)"
echo "There are currently $users users logged in."
echo
uniqusers="$(who | cut -d" " -f1 | sort | uniq | wc -l)"
echo "There are currently $uniqusers unique users logged in."
echo

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 191

listusers="$(who | cut -d" " -f1 | sort | uniq)"
echo "These users are currently logged in: \n$listusers " Raz jeszcze uruchom skrypt. Powinieneś otrzymać dane wyjściowe podobne do tutaj przedstawionych:

There are currently 5 users logged in.
There are currently 4 unique users logged in.
These users are currently logged in:
cleopatra
donnie
frank
vicky Gratulacje! Właśnie utworzyłeś swój pierwszy skrypt powłoki. Teraz czas na jego prze-testowanie.

Wykonywanie testów W trakcie tworzenia skryptów często pojawia się potrzeba sprawdzenia określonych warunków przed podjęciem decyzji o dalszym działaniu. Może to być na przykład we-ryfikacja istnienia konkretnego pliku lub katalogu, sprawdzenie uprawnień do pliku lub katalogu bądź wiele innych operacji. Istnieją trzy główne sposoby przeprowadza-nia takich testów:
 Użycie słowa kluczowego test wraz z warunkiem testowym, połączone z innym poleceniem za pomocą konstrukcji && lub ||.
 Umieszczenie warunku testowego w nawiasie kwadratowym.
 Zastosowanie konstrukcji if-then. Najpierw przyjrzysz się słowu kluczowemu test.

Używanie słowa kluczowego test W pierwszym przykładzie sprawdzisz, czy określony katalog istnieje, a jeśli nie — utwo-rzysz go. Oto jak to działa w praktyce:
[donnie@fedora ~]$ test -d graphics || mkdir graphics
[donnie@fedora ~]$ ls -ld graphics/
drwxr-xr-x. 1 donnie donnie 0 Sep 26 15:41 graphics/
[donnie@fedora ~]$ Teraz dodaj ten kod do skryptu test_graphics.sh:
#!/bin/bash
cd
pwd
test -d graphics || mkdir graphics
cd graphics
pwd

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

192 Linux. Zostań mistrzem skryptów powłoki

Uruchom skrypt i zobacz, jakie otrzymasz dane wyjściowe:
[donnie@fedora ~]$./test_graphics.sh
/home/donnie
/home/donnie/graphics
[donnie@fedora ~]$ Jak zapewne się domyślasz, operator -d oznacza katalog (ang. directory). Konstrukcja

|| powoduje, że polecenie mkdir zostanie wykonane tylko wtedy, gdy podany katalog nie istnieje. Oczywiście jeśli katalog już istnieje, nie zostanie utworzony ponownie. Jest to dobry środek ostrożności, który może zapobiec przypadkowemu nadpisaniu istnie-jących plików lub katalogów. (Nieco dalej w rozdziale zamieszczę tabelę z większą liczbą operatorów testowych). Teraz przyjrzysz się drugiej metodzie przeprowadzania testu.
Umieszczanie warunku testowego
w nawiasie kwadratowym Drugi sposób przeprowadzenia testu polega na umieszczeniu warunku testowego w nawiasie kwadratowym, jak pokazuję w kolejnym przykładzie:

[-d graphics] Przede wszystkim zwróć uwagę na konieczność umieszczenia spacji po otwierającym nawiasie kwadratowym i przed zamykającym. Przedstawiona konstrukcja sprawdza istnienie katalogu graphics, podobnie jak w przypadku polecenia test -d. Teraz oma-wianą konstrukcję umieść w skrypcie test_graphics_2.sh w następujący sposób:
#!/bin/bash
cd
pwd
[-d graphics] || mkdir graphics
cd graphics
pwd Uruchomienie tego skryptu spowoduje wygenerowanie dokładnie takiego samego wy-niku jak w przypadku poprzedniego skryptu. Teraz wprowadzisz pewną modyfikację. Kod skryptu test_graphics_2.sh zmień w taki sposób, aby przedstawiał się następująco:
#!/bin/bash
cd
pwd
[! -d graphics] && mkdir graphics
cd graphics
pwd Użyty tutaj operator negacji (!) oznacza, że dany operator wykonuje działanie prze-ciwne do zamierzonego. W tym przypadku ! powoduje, że operator -d sprawdza brak katalogu graphics zamiast jego obecności. Aby takie rozwiązanie zadziałało poprawnie, musisz również zmienić operator || na &&. (Zwróć uwagę na konieczność umieszczenia spacji operatorem ! i przed opcją -d).

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 193

Istnieje możliwość przetestowania wartości liczbowych, na przykład w ten sposób:
[$var -eq 0] W tym poleceniu znajduje się odwołanie do wartości zmiennej var. Polecenie spraw-dza, czy jest ona równa (-eq) 0. Zamiast używać negacji (!) do sprawdzenia, czy wartość zmiennej nie wynosi 0, użyj operatora -ne. Zobacz, jak to będzie wyglądać w skrypcie

test_var.sh:
#!/bin/bash
var1=0
var2=1
[$var1 -eq 0] && echo "$var1 is equal to zero."
[$var2 -ne 0] && echo "$var2 is not equal to zero." Teraz uruchom wymieniony skrypt:
[donnie@fedora ~]$./test_var.sh
0 is equal to zero.
1 is not equal to zero.
[donnie@fedora ~]$ Trzeci sposób przeprowadzenia testu polega na użyciu konstrukcji if-then, na temat której więcej dowiesz się w kolejnym punkcie.

Używanie konstrukcji warunkowej if-then Konstrukcja if-then okazuje się przydatna, gdy masz do czynienia z bardziej złożonymi warunkami. Oto najprostszy przykład zdefiniowany w skrypcie test_graphics_3.sh:
#!/bin/bash
cd
pwd
if [! -d graphics]; then
 mkdir graphics
fi
cd graphics
pwd Omawiana konstrukcja rozpoczyna się od polecenia if, a kończy poleceniem fi (któ-rego nazwa to odwrócony zapis słowa kluczowego if). Po warunku testowym należy umieścić średnik, a następnie słowo kluczowe then. Następny element to akcja, którą chcesz wykonać — w tym przypadku będzie nią polecenie mkdir graphics. Wprawdzie w przeciwieństwie do innych języków programowania wcięcie bloku akcji w skryptach powłoki nie jest konieczne, ale pomaga zapewnić większą czytelność skryptu. Oczywiście możliwości konstrukcji if-then są znacznie szersze, niż tutaj przedstawi-łem. Jednak teraz nie myśl o tym, ponieważ więcej informacji na ich temat znajdziesz w dalszej części rozdziału. Jednak zanim tam dotrzesz, chcę omówić kilka dodatkowych koncepcji, które możesz stosować, aby urozmaicić tworzone konstrukcje if-then. W następnym punkcie przyjrzysz się różnym rodzajom testów.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

194 Linux. Zostań mistrzem skryptów powłoki

Używanie innych rodzajów testów Istnieje znacznie więcej rodzajów testów, które można przeprowadzić, m.in.: porów-nanie ciągów tekstowych, porównania liczbowe, sprawdzanie istnienia plików lub ka-talogów oraz ich uprawnień. W tabeli 8.1 znajduje się zestawienie najpopularniejszych testów wraz z ich operatorami.
Tabela 8.1. Zestawienie najpopularniejszych testów wraz z ich operatorami

Operator Opis

-b nazwa_pliku Prawda, jeśli istnieje plik urządzenia blokowego o podanej
nazwie.

-c nazwa_pliku Prawda, jeśli istnieje plik urządzenia znakowego o podanej
nazwie.

-d nazwa_katalogu Prawda, jeśli istnieje katalog o podanej nazwie.
-e nazwa_pliku Prawda, jeśli istnieje jakikolwiek plik o podanej nazwie.
-f nazwa_pliku Prawda, jeśli istnieje zwykły plik o podanej nazwie.
-g nazwa_pliku Prawda, jeśli plik lub katalog mają zdefiniowane

uprawnienie SGID.
-G nazwa_pliku Prawda, jeśli plik istnieje i należy do efektywnego

identyfikatora grupy.
-h nazwa_pliku Prawda, jeśli plik istnieje i jest dowiązaniem symbolicznym.
-k nazwa_pliku Prawda, jeśli plik lub katalog istnieją i mają ustawiony tzw.

bit lepkości (ang. sticky bit).
-L nazwa_pliku Prawda, jeśli plik istnieje i jest dowiązaniem symbolicznym.

(Tak samo jak -h).

-p nazwa_pliku Prawda, jeśli plik istnieje i jest nazwanym potokiem.
-O nazwa_pliku Prawda, jeśli plik istnieje i należy do efektywnego

identyfikatora użytkownika.
-r nazwa_pliku Prawda, jeśli plik istnieje i jest możliwy do odczytu.
-S nazwa_pliku Prawda, jeśli plik istnieje i jest gniazdem.
-s nazwa_pliku Prawda, jeśli plik istnieje i ma niezerowy rozmiar.
-u nazwa_pliku Prawda, jeśli plik istnieje i ma ustawiony bit SUID.
-w nazwa_pliku Prawda, jeśli plik istnieje i jest możliwy do zapisu.
-x nazwa_pliku Prawda, jeśli plik istnieje i jest wykonywalny.
plik1 -nt plik2 Prawda, jeśli plik1 jest nowszy niż plik2.
plik1 -ot plik2 Prawda, jeśli plik1 jest starszy niż plik2.
-z ciąg_znaków Prawda, jeśli długość ciągu znaków wynosi 0.
-n ciąg_znaków Prawda, jeśli długość ciągu znaków jest różna od 0.
ciąg1 == ciąg2 Prawda, jeśli dwa ciągi znaków są identyczne.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 195

Tabela 8.1. Zestawienie najpopularniejszych testów wraz z ich operatorami – ciąg dalszy

Operator Opis

ciąg1 != ciąg2 Prawda, jeśli dwa ciągi znaków nie są identyczne.
ciąg1 < ciąg2 Prawda, jeśli ciąg1 występuje przed ciąg2 w porządku

alfabetycznym.
ciąg1 > ciąg2 Prawda, jeśli ciąg1 występuje po ciąg2 w porządku

alfabetycznym.
liczba1 -eq liczba2 Prawda, jeśli dwie liczby całkowite są równe.
liczba1 -ne liczba2 Prawda, jeśli dwie liczby całkowite nie są równe.
liczba1 -lt liczba2 Prawda, jeśli liczba1 jest mniejsza od liczba2.

liczba1 -gt liczba2 Prawda, jeśli liczba1 jest większa od liczba2.

liczba1 -le liczba2 Prawda, jeśli liczba1 jest mniejsza od liczba2 lub jej równa.

liczba1 -ge liczba2 Prawda, jeśli liczba1 jest większa od liczba2 lub jej równa.

-o nazwa_opcji Prawda, jeśli opcja powłoki jest włączona. Wiem, że w tabeli 8.1 znajduje się całkiem sporo informacji. Nie przejmuj się tym. Jeśli nie chcesz tego wszystkiego zapamiętywać, po prostu trzymaj tę tabelę pod ręką, aby móc łatwo po nią sięgnąć. W następnym podrozdziale przedstawię podpowłokę.
Podpowłoka Gdy wykonujesz test przy użyciu konstrukcji [$var -ne 0], uruchamia ona tzw. pod-
powłokę. Aby temu zapobiec, użyj zamiast tego następującej konstrukcji:

[[$var -ne 0]] Może to sprawić, że skrypt będzie działał nieco wydajniej, co w zależności od konkret-nego przypadku będzie miało większe lub mniejsze znaczenie.
Uwaga

Tego typu konstrukcja, [[. . .]], jest również niezbędna podczas wykonywania
testów, które wymagają dopasowania wzorca do wyrażenia regularnego. (Dopa-
sowywanie wyrażeń regularnych nie działa w konstrukcji [. . .]).

Wadą konstrukcji [[. . .]] jest to, że nie można jej używać w niektórych powło-
kach innych niż bash, na przykład dash, ash czy Bourne’a. (Więcej informacji na ten
temat przedstawię w rozdziale 19., poświęconym przenośności skryptów powłoki).

Oczywiście na tym etapie poznawania powłoki nie musisz jeszcze wiedzieć, czym
są wyrażenia regularne. Dokładnie o nich opowiem w rozdziale 9., który dotyczy
filtrowania tekstu za pomocą narzędzi grep, sed i właśnie wyrażeń regularnych.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

196 Linux. Zostań mistrzem skryptów powłoki

W każdym razie zawsze możesz wypróbować swoje skrypty zarówno z użyciem pod-powłok, jak i bez nich, aby sprawdzić, które rozwiązanie sprawdza się lepiej w danej sytuacji. Omówiłem już wszystkie trzy metody testowania. Nadszedł więc czas na trochę ekspe-rymentów w ramach ćwiczenia praktycznego.
Ćwiczenie praktyczne — testowanie warunków Do tego ćwiczenia pobierz skrypt tests-test.sh z repozytorium GitHuba. (Jest to dość długi skrypt, którego kodu źródłowego nie mogę tutaj zamieścić ze względu na ograni-czenia dotyczące formatowania książki). Otwórz skrypt w ulubionym edytorze tekstu i przyjrzyj się strukturze. Zwróć uwagę na operację, która sprawdza istnienie pliku
myfile.txt. Odpowiedni fragment kodu wygląda mniej więcej tak:

#!/bin/bash

[-f myfile.txt] && echo "This file exists." || echo "This file does not exist." Następnie zobaczysz polecenie utworzenia pliku, jeśli jeszcze nie istnieje:
echo "We will now create myfile.txt if it does not exist, and make it with only
read permissions for $USER."
[-f myfile.txt] || touch myfile.txt Dalej znajduje się polecenie, które plikowi myfile.txt nadaje uprawnienia w postaci 400. Zgodnie z nimi użytkownik ma możliwość odczytywania pliku, ale nikt nie ma prawa do jego zapisu. Potem chcesz zweryfikować, czy wszystkie uprawnienia do zapisu zo-stały usunięte. Oto jak przedstawia się odpowiedzialny za to fragment kodu:
chmod 400 myfile.txt
ls -l myfile.txt
echo
echo "We will now see if myfile.txt is writable."
[-w myfile.txt] && echo "This file is writable." || echo "This file is not
writable." Po kilku kolejnych modyfikacjach ustawień uprawnień i testach z nimi związanych zo-baczysz fragment kodu, który sprawdza istnienie katalogu i tworzy go, jeśli jeszcze nie istnieje:
[-d somedir] || echo "somedir does not exist."
[-d somedir] || mkdir somedir && echo "somedir has just been created."
ls -ld somedir Pod koniec skryptu zobaczysz fragment kodu, który testuje stan opcji noclobber, włącza ją, a następnie ponownie sprawdza jej stan. Po przejrzeniu skryptu uruchom go, aby zobaczyć, jaki będzie wynik jego działania. Zadanie dla ambitnych: przepisz ten skrypt do własnego pliku. Dlaczego? Cóż, mały sekret polega na tym, że samodzielne wpisywanie kodu pomaga lepiej zrozumieć przedstawione w nim koncepcje. W następnym kroku utwórz skrypt o nazwie tests-test_2.sh i następującej zawartości:

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 197

#!/bin/bash
echo "We will now compare text strings."
string1="abcd"
string2="efgh"
[[$string1 > $string2]] && echo "string1 comes after string2 alphabetically." ||
echo "string1 comes before string2 alphabetically."

echo
echo "We will now compare numbers."
num1=10
num2=9
[[$num1 -gt $num2]] && echo "num1 is greater than num2." || echo "num1 is less
than num2." Nadaj skryptowi uprawnienia do wykonywania, a następnie uruchom go, aby zobaczyć wygenerowane dane wyjściowe. Zmień wartości zmiennych string1, string2, num1 i num2, po czym ponownie uruchom skrypt i przeanalizuj otrzymany wynik. Koniec ćwiczenia. W następnym podrozdziale bliżej przyjrzysz się zmiennym.

Zmienne w skryptach Już trochę opowiedziałem o zmiennych w skryptach i pokazałem przykłady ich użycia. Ale to nie wszystko, jest jeszcze kilka aspektów, o których warto wspomnieć.
Tworzenie i usuwanie zmiennych Jak wcześniej wyjaśniłem, czasami konieczne lub po prostu wygodniejsze jest definio-wanie zmiennych w skryptach. Możesz także definiować, przeglądać i usuwać zmienne bezpośrednio z poziomu powłoki. Oto przykład pracy ze zmiennymi:

[donnie@fedora ~]$ car=Ford
[donnie@fedora ~]$ echo $car
Ford
[donnie@fedora ~]$ unset car
[donnie@fedora ~]$ echo $car
[donnie@fedora ~]$ W tym przykładzie zdefiniowałeś zmienną car i przypisałeś jej wartość Ford. Pierwsze polecenie echo wyświetla aktualną wartość zmiennej. Natomiast drugie potwierdza po-myślne usunięcie zmiennej za pomocą polecenia unset.

Zmienne i poziomy powłoki Gdy umieszczasz wiersz shebang, taki jak #!/bin/bash lub #!/bin/sh, na początku skryptu, wówczas nowa nieinteraktywna powłoka potomna zostanie uruchomiona za każdym razem, gdy uruchomisz ten skrypt. Po zakończeniu jego działania także uru-chomiona przez niego powłoka kończy działanie. Powłoka potomna dziedziczy wszystkie
Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

198 Linux. Zostań mistrzem skryptów powłoki

zmienne, które zostały wyeksportowane z powłoki nadrzędnej. Jednak powłoka nad-rzędna nie dziedziczy żadnych zmiennych po powłoce potomnej. Przekonasz się o tym, gdy w powłoce nadrzędnej przypiszesz zmiennej car wartość Volkswagen w następujący sposób:
[donnie@fedora ~]$ export car="Volkswagen"
[donnie@fedora ~]$ echo $car
Volkswagen
[donnie@fedora ~]$ Następnie utwórz skrypt o nazwie car_demo.sh i następującej zawartości:
#!/bin/bash
echo \$car is set to $car
export car=Toyota
echo "The $car is very fast."
echo \$car is set to $car Nowemu plikowi nadaj uprawnienia do wykonywania, a następnie uruchom skrypt. Otrzymasz pokazane tutaj dane wyjściowe:
[donnie@fedora ~]$./car_demo.sh
$car is set to Volkswagen
The Toyota is very fast.
$car is set to Toyota
[donnie@fedora ~]$ Zwróć uwagę, jak wartość zmiennej car (tutaj Volkswagen) została dziedziczona po po-włoce nadrzędnej. Dzieje się tak z powodu użycia polecenia export — gwarantuje ono, że wartość zmiennej będzie dostępna dla powłoki potomnej, w której został urucho-miony skrypt. Spróbuj raz jeszcze, ale tym razem bez eksportowania zmiennej:
[donnie@fedora ~]$ unset car
[donnie@fedora ~]$ car=Studebaker
[donnie@fedora ~]$./car_demo.sh
$car is set to
The Toyota is very fast.
$car is set to Toyota
[donnie@fedora ~]$ Aby rozwiązanie zadziałało, najpierw trzeba usunąć zmienną car za pomocą polecenia

unset. Po użyciu tego polecenia wartość zmiennej nie będzie dłużej eksportowana. Gdy teraz uruchomisz skrypt, nie znajdzie on wartości zmiennej car, zdefiniowanej w po-włoce nadrzędnej. Dlaczego to jest ważne? Chodzi o to, że czasami będziesz tworzyć skrypty, które z kolei będą wywoływać inne skrypty, co w efekcie prowadzi do uruchomienia kolejnej po-włoki potomnej. Jeśli chcesz, aby zmienne były dostępne dla powłoki potomnej, musisz je wyeksportować.
Rozróżnianie wielkości liter W nazwach zmiennych rozróżniana jest wielkość liter. Oznacza to, że zmienna o nazwie
car jest zupełnie inna niż zmienne o nazwach Car czy CAR.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 199

Zmienne środowiskowe mają nazwy zapisane wyłącznie wielkimi literami. Dobrą prak-tyką jest natomiast używanie małych liter lub różnej wielkości liter w nazwach zmien-nych programistycznych. Co ciekawe, powłoki Linux i Unix nie wymuszają tej reguły dla zmiennych programistycznych. Warto jednak jej przestrzegać, ponieważ pomaga to uniknąć przypadkowego nadpisania wartości ważnej zmiennej środowiskowej.
Uwaga

Z przykrością muszę stwierdzić, że w internecie można znaleźć poradniki dotyczące
skryptów powłoki, w których autorzy zachęcają do tworzenia nazw zmiennych
wyłącznie wielkimi literami. Niedawno natrafiłem na jeden z takich poradników.
Wprawdzie w większości przypadków autor proponuje tworzenie zmiennych o na-
zwach, które nie kolidują ze zmiennymi środowiskowymi, ale w jednym nakazuje
utworzyć zmienną USER i przypisać jej pewną wartość. Nie muszę dodawać, że USER
to nazwa już istniejącej zmiennej środowiskowej. Zatem przypisanie jej nowej war-
tości spowoduje nadpisanie tej, która powinna tam być. Wniosek z tego taki, że
w internecie można znaleźć wiele dobrych poradników, ale niestety jest też sporo
takich, które przekazują błędne informacje.

Zmienne tylko do odczytu Jak już wyjaśniłem, po zadeklarowaniu zmiennej w standardowy sposób można ją usu-nąć lub przypisać jej nową wartość. Istnieje również możliwość zdefiniowania zmien-nej jako tylko do odczytu, co uniemożliwia jej ponowne zdefiniowanie lub usunięcie. Oto jak to działa:
[donnie@fedora ~]$ car=Nash
[donnie@fedora ~]$ echo $car
Nash
[donnie@fedora ~]$ readonly car
[donnie@fedora ~]$ unset car
bash: unset: car: cannot unset: readonly variable
[donnie@fedora ~]$ car=Hudson
bash: car: readonly variable
[donnie@fedora ~]$ Gdy właściwość została zdefiniowana jako przeznaczona tylko do odczytu, jedynym sposobem na zmianę lub usunięcie zmiennej car jest zamknięcie okna terminala.
Uwaga

Cóż, jest to jedyny sposób na pozbycie się zmiennej tylko do odczytu, jeśli nie masz
uprawnień administratora. Natomiast jeżeli posiadasz takie uprawnienia, możesz
użyć debuggera GNU bash (gdb) do usunięcia takiej zmiennej. Jednak wyjaśnie-
nie tego zagadnienia wykracza poza zakres tematyczny rozdziału. (Dokładniejsze
omówienie narzędzia gdb znajdziesz w rozdziale 21., poświęconym debugowaniu
skryptów powłoki).

 To wszystko sprawdza się świetne, o ile chcesz zdefiniować tylko pojedyncze zmienne. Jednak co w sytuacji, gdy potrzebujesz całej listy zmiennych? W takim przypadku przy-dają się tablice. Przyjrzysz się im w następnym podrozdziale.
Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

200 Linux. Zostań mistrzem skryptów powłoki

Tablice Tablica pozwala zebrać listę elementów w jednej zmiennej. Najprostszym sposobem utworzenia tablicy jest przypisanie wartości jednemu z jej indeksów, jak pokazuję w kolejnym przykładzie:
nazwa[indeks]=wartość W tym przypadku nazwa to nazwa tablicy, zaś indeks to położenie elementu w tablicy. (Pamiętaj, że indeks musi być liczbą). Natomiast wartość to konkretna wartość przypi-sana danemu elementowi tablicy. Numeracja elementów w tablicy zaczyna się od 0. Zatem zapis nazwa[0] odwołuje się do pierwszego elementu tablicy. Aby utworzyć tablicę indeksowaną, użyj polecenia

declare z opcją -a:
[donnie@fedora ~]$ declare -a myarray
[donnie@fedora ~]$ Teraz utwórz listę, która zostanie wstawiona do tablicy:
[donnie@fedora ~]$ myarray=(item1 item2 item3)
[donnie@fedora ~]$ Wprawdzie możesz sprawdzić wartość dowolnego elementu tablicy, ale istnieje spe-cjalny sposób, aby to zrobić. Oto jak to wygląda:
[donnie@fedora ~]$ echo ${myarray[0]}
item1
[donnie@fedora ~]$ echo ${myarray[1]}
item2
[donnie@fedora ~]$ echo ${myarray[2]}
item3
[donnie@fedora ~]$ Zwróć uwagę na umieszczenie konstrukcji myarray[x] w nawiasie klamrowym. Aby wyświetlić całą listę elementów tablicy, użyj znaku * lub @ zamiast numeru in-deksu, jak pokazuję w kolejnym przykładzie:
[donnie@fedora ~]$ echo ${myarray[*]}
item1 item2 item3
[donnie@fedora ~]$ echo ${myarray[@]}
item1 item2 item3
[donnie@fedora ~]$ Aby po prostu policzyć liczbę elementów tablicy, wystarczy wstawić znak # przed jej nazwą:
[donnie@fedora ~]$ echo ${#myarray[@]}
3
[donnie@fedora ~]$ echo ${#myarray[*]}
3
[donnie@fedora ~]$ W ten sposób przedstawiłem podstawy pracy z tablicami. Ćwiczenie zamieszczone w następnym punkcie pozwoli zająć się czymś bardziej praktycznym.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 201

Ćwiczenia praktyczne — praca z tablicami
1. Aby zobaczyć, jak tworzy się tablice, rozpocznij od zdefiniowania skryptu ip.sh o następującej zawartości:

#!/bin/bash
echo "IP Addresses of intruder attempts"
declare -a ip
ip=(192.168.3.78 192.168.3.4 192.168.3.9)
echo "ip[0] is ${ip[0]}, the first item in the list."
echo "ip[2] is ${ip[2]}, the third item in the list."
echo "*****************************"
echo "The most dangerous intruder is ${ip[1]}, which is in ip[1]."
echo "*****************************"
echo "Here is the entire list of IP addresses in the array."
echo ${ip[*]}

2. Plikowi nadaj uprawnienia do wykonywania i uruchom go.
$ chmod u+x ip.sh
$./ip.sh

3. Utwórz katalog /opt/scripts/ przeznaczony do przechowywania plików z danymi, które będą potrzebne Twoim skryptom. Możesz to zrobić w następujący sposób:
$ sudo mkdir /opt/scripts

4. W katalogu /opt/scripts/ utwórz plik o nazwie banned.txt. (Pamiętaj, że w tym katalogu będziesz musiał użyć sudo w trakcie uruchamiania edytora tekstu). W nowym pliku umieść następującą zawartość:
192.168.0.48
24.190.78.101
38.101.148.126
41.206.45.202
58.0.0.0/8
59.107.0.0/17
59.108.0.0/15
59.110.0.0/15
59.151.0.0/17
59.155.0.0/16
59.172.0.0/15

5. W katalogu domowym utwórz skrypt o nazwie attackers.sh, który zbuduje tablicę zabronionych adresów IP zamieszczonych na liście pochodzącej z utworzonego wcześniej pliku tekstowego. Następnie w skrypcie attackers.sh umieść następującą zawartość:
#!/bin/bash
badips=$(cat /opt/scripts/banned.txt)
declare -a attackers
attackers=($badips)
echo "Here is the complete list: "
echo ${attackers[@]}
echo
echo "Let us now count the items in the list."
num_attackers=${#attackers[*]}

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

202 Linux. Zostań mistrzem skryptów powłoki

echo "There are $elements IP addresses in the list."
echo
echo "attackers[2] is ${attackers[2]}, which is the third address in the list."
exit

6. Skryptowi attackers.sh nadaj uprawnienia do wykonywania i uruchom go.
$ chmod u+x attackers.sh
$./attackers.sh

7. Zmodyfikuj skrypt, aby elementy o indeksach 0, 5 i 8 zostały wyświetlone na ekranie, a następnie ponownie uruchom skrypt. (Już wcześniej wyjaśniłem, jak to zrobić). Koniec ćwiczenia. Kilka słów wyjaśnienia na temat tego skryptu. Przede wszystkim w drugim wierszu zostało użyte podstawienie polecenia cat, aby zawartość pliku banned.txt przypisać do zmiennej badips. (Wiem, że ciągle pokazuję przykłady podstawienia polecenia, ale jesz-cze nie wyjaśniłem w pełni tej koncepcji. Nie martw się, ponieważ zrobię to za chwilę). Jednak to wciąż nie jest tablica. Utworzona jest oddzielnie, za pomocą polecenia
declare -a. Następnie w wierszu attackers= znajduje się odwołanie do wartości zmien-nej badips, która została później użyta do utworzenia tablicy attackers. Ewentualnie można pominąć użycie zmiennej pośredniej i utworzyć tablicę bezpośrednio, z wykorzy-staniem podstawienia polecenia cat, jak możesz to zobaczyć w skrypcie attackers_2.sh:

#!/bin/bash
declare -a badips
badips=($(cat /opt/scripts/banned.txt))
echo "Here is the complete list: "
echo ${badips[@]}
echo
echo "Let us now count the items in the list."
elements=${#badips[*]}
echo "There are $elements IP addresses in the list."
echo
echo "badips[2] is ${badips[2]}, which is the third address in the list."
exit Obie metody działają, ale omówiona powyżej jest nieco bardziej przejrzysta.
Uwaga

W rzeczywistym scenariuszu można jeszcze dodać kod odpowiedzialny za auto-
matyczne utworzenie reguły zapory sieciowej, która będzie blokowała wszystkie
adresy wymienione w pliku banned.txt. Jednak wówczas jest wymagane zastoso-
wanie technik, których jeszcze nie omówiłem. Dlatego takie rozwiązanie zaprezen-
tuję nieco później.

 W następnym podrozdziale zajmiesz się wykorzystaniem zmiennych.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 203

Rozwijanie zmiennych
Rozwijanie zmiennych, nazywane również rozwijaniem parametrów, pozwala po-włoce testować lub modyfikować wartości zmiennej, która jest używana w skrypcie. Odbywa się to za pomocą specjalnych modyfikatorów ujętych w nawiasy klamrowe i poprzedzonych znakiem dolara (${zmienna}). Jeśli dana zmienna nie jest zdefiniowana w powłoce bash, zostanie rozwinięta do pustego ciągu tekstowego. Najlepszym sposo-bem na zrozumienie sposobu działania tego mechanizmu jest przeanalizowanie kilku prostych przykładów.
Przypisywanie wartości
do niezainicjalizowanej zmiennej Najpierw pokażę przykład zdefiniowania zmiennej cat o wartości w postaci imienia mojego 16-letniego szarego kociaka. Następnie wykonasz test, aby sprawdzić, czy zmienna cat rzeczywiście ma przypisaną wartość:

[donnie@fedora ~]$ cat=Vicky
[donnie@fedora ~]$ echo ${cat-"This cat variable is not set."}
Vicky
[donnie@fedora ~]$ Teraz usuń wartość zmiennej cat i ponownie wykonaj test. Zobaczmy, jaki będzie efekt:
[donnie@fedora ~]$ unset cat
[donnie@fedora ~]$ echo ${cat-"This cat variable is not set."}
This cat variable is not set.
[donnie@fedora ~]$ Co się więc stało? Otóż, znak -, który znajduje się między elementami cat i This cat

variable is not set, sprawdza, czy zmienna cat ma przypisaną wartość. Jeśli nie ma, wówczas ciąg tekstowy umieszczony po znaku - zostaje użyty w miejsce wartości zmiennej. Jednak ta podstawiona wartość nie jest faktycznie przypisywana zmiennej, co widać w kolejnym przykładzie:
[donnie@fedora ~]$ echo $cat
[donnie@fedora ~]$ Teraz zmiennej cat przypisz wartość null i spróbuj ponownie:
donnie@fedora:~$ cat=
donnie@fedora:~$ echo ${cat-"This cat variable is not set."}
donnie@fedora:~$ Tym razem otrzymujesz dane wyjściowe w postaci pustego wiersza, ponieważ zmienna

cat została zdefiniowana. Jednak przypisaną jej wartością jest null. Spróbuj jeszcze raz, przy czym użyj znaków :- zamiast - w następujący sposób:
donnie@fedora:~$ echo ${cat:-"This cat variable is not set."}
This cat variable is not set.
donnie@fedora:~$

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

204 Linux. Zostań mistrzem skryptów powłoki

Dzieje się tak, ponieważ umieszczenie dwukropka przed znakiem minus powoduje, że zmienne, którym przypisano wartość null, są traktowane jak zmienne niezdefiniowane. Na tym kończę temat zmiennych niezdefiniowanych. Czasami może zachodzić potrzeba pracy ze zmiennymi, które mają już przypisane wartości. Tym zajmiesz się w następ-nym punkcie.
Przypisywanie wartości do zmiennej zbioru Możesz też postąpić odwrotnie i podstawić wartość w miejsce zmiennej, która ma już przypisaną wartość. Przykład takiego rozwiązania wygląda następująco:

[donnie@fedora ~]$ car="1958 Edsel Corsair"
[donnie@fedora ~]$ echo ${car+"car is set and might or might not be null"}
car is set and might or might not be null
[donnie@fedora ~]$ W tym przypadku konstrukcja z użyciem znaku + powoduje, że następujący po nim ciąg tekstowy zostaje podstawiony w miejsce przypisanej wartości zmiennej. Warto zau-ważyć, że w tym ciągu tekstowym nie ma żadnych znaków specjalnych, które wymaga-łyby znaków cytowania, więc są one opcjonalne. Niemniej jednak dobrą praktyką jest używanie — dla bezpieczeństwa — znaków cytowania. Należy również pamiętać, że taka operacja podstawienia nie zmienia faktycznie przypisanej wartości zmiennej car, co można zaobserwować w kolejnym przykładzie:
[donnie@fedora ~]$ echo $car
1958 Edsel Corsair
[donnie@fedora ~]$ Jak właśnie pokazałem na przykładzie operatora –, operator + traktuje zmienne o war-tości null jako zdefiniowane. Natomiast jeśli chcesz takie zmienne uznawać za niezde-finiowane, wówczas użyj operatora :+. Gdy utworzysz zmienną i pozostawisz ją z war-tością null, będzie to wyglądać mniej więcej tak:
[donnie@fedora ~]$ computer=
[donnie@fedora ~]$ echo ${computer:+"computer is set and is not null"}
[donnie@fedora ~]$ W przypadku wartości null polecenie echo nie generuje żadnych danych wyjściowych. Akurat korzystam z komputera Dell, więc zmiennej computer przypisz teraz wartość

Dell, jak pokazuję poniżej:
[donnie@fedora ~]$ computer=Dell
[donnie@fedora ~]$ echo ${computer:+"computer is set and might or might not be null"}
computer is set and might or might not be null
[donnie@fedora ~]$ Jak już wcześniej wspomniałem, omówione właśnie operatory podstawiają wartość zmiennej w zależności od tego, czy ma ona przypisaną wartość. Jednak nie zmienią one faktycznej wartości zmiennej. Czasami może zachodzić potrzeba zmiany wartości zmiennej i taką sytuację omówię w następnym punkcie.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 205

Przypisywanie wartości zmiennej Kolejna sztuczka pozwala przypisywać wartość niezainicjalizowanej zmiennej przy użyciu operatorów = oraz :=. Zacznij od przypisania wartości zmiennej town:
donnie@fedora:~$ unset town
donnie@fedora:~$ echo $town
donnie@fedora:~$ echo ${town="Saint Marys"}
Saint Marys
donnie@fedora:~$ echo $town
Saint Marys
donnie@fedora:~$ Teraz zobacz, czy możesz przypisać inną wartość tej zmiennej:
donnie@fedora:~$ echo ${town="Kingsland"}
Saint Marys
donnie@fedora:~$ echo $town
Saint Marys
donnie@fedora:~$ Jak już wcześniej pokazałem, użycie tego operatora bez poprzedzającego go dwukropka powoduje, że zmienna o wartości null jest traktowana jako zdefiniowana. Spójrz na kolejny przykład:
donnie@fedora:~$ unset town
donnie@fedora:~$ town=
donnie@fedora:~$ echo ${town="Saint Marys"}
donnie@fedora:~$ Aby zobaczyć, jak działa operator :=, utwórz zmienną armadillo o wartości null, a na-stępnie przypisz jej wartość domyślną w następujący sposób:
[donnie@fedora ~]$ armadillo=
[donnie@fedora ~]$ echo ${armadillo:=Artie}
Artie
[donnie@fedora ~]$ echo $armadillo
Artie
[donnie@fedora ~]$

Artie to tymczasowe imię, jakie nadałem pancernikowi, który niedawno zaczął w nocy odwiedzać mój ogród. Jednak jeszcze nie wiem, czy ten pancernik to samiec czy samica, więc nie jestem pewien, czy Artie będzie odpowiednim imieniem. Jeśli okaże się, że to samica, być może zmienię imię na Annie. Spróbuj więc powtórzyć poprzednie ćwicze-nie, ale z pancernikiem o imieniu Annie. Następnie zobaczysz, czy można użyć przykła-dowej zmiennej, aby zmienić jej wartość z powrotem na Artie:
[donnie@fedora ~]$ armadillo=Annie
[donnie@fedora ~]$ echo ${armadillo:=Artie}
Annie
[donnie@fedora ~]$ echo $armadillo
Annie
[donnie@fedora ~]$ Zmienna armadillo miała już przypisaną wartość Annie, dlatego, jak widzisz, polecenie

echo ${armadillo:=Artie} nie przyniosło żadnego efektu, poza wyświetleniem warto-ści, która wcześniej była przypisana zmiennej.
Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

206 Linux. Zostań mistrzem skryptów powłoki

Co w sytuacji, jeśli nie chcesz podstawiać wartości zmiennej, a jedynie wyświetlić ko-munikat błędu? Warto przyjrzyeć się temu bliżej.
Wyświetlanie komunikatu błędu Nie zawsze chcesz wykonywać podstawienie wartości lub przypisanie wartości dla niezdefiniowanej zmiennej. Czasami w takiej sytuacji wystarczające będzie po prostu wyświetlenie komunikatu błędu (za pomocą standardowego strumienia błędów). Do tego celu można wykorzystać konstrukcję :? w następujący sposób:

[donnie@fedora ~]$ dog=
[donnie@fedora ~]$ echo ${dog:?The dog variable is unset or null.}
bash: dog: The dog variable is unset or null.
[donnie@fedora ~]$ Spróbuj to ponownie zrobić z psem o imieniu Rastus. Tak wabił się owczarek angielski, którego miała moja babcia, gdy byłem dzieckiem. Niezbędne polecenia przedstawiają się następująco:
[donnie@fedora ~]$ dog=Rastus
[donnie@fedora ~]$ echo ${dog:?The dog variable is unset or null.}
Rastus
[donnie@fedora ~]$ Prawdopodobnie myślisz sobie, że operacja wygląda dokładnie tak samo jak w pierw-szym przykładzie, w którym za pomocą znaku - wartość niezdefiniowanej zmiennej

cat zastąpiłem odpowiednim komunikatem. Cóż, po części masz rację. Różnica polega na tym, że konstrukcja oparta na znaku - podstawia wartość pojawiającą się na stan-dardowym wyjściu, podczas gdy oparta na znakach :? podstawia komunikat, który po-jawia się na standardowym wyjściu błędów. Ponadto jeśli w skrypcie powłoki użyjesz konstrukcji :? w połączeniu z niezdefiniowaną zmienną, spowoduje to zakończenie działania skryptu. Wypróbuj to samodzielnie. W tym celu utwórz skrypt o nazwie ex.sh i następującej za-wartości:
#!/bin/bash
var=
: ${var:?var is unset, you big dummy}
echo "I wonder if this will work." Do tej pory pokazałem, jak używać polecenia echo do podstawiania zmiennych i wy-świetlania danych wyjściowych. Ta konkretna konstrukcja poprzez użycie znaku : za-miast polecenia echo pozwala na samo testowanie zmiennej bez wyświetlania jakich-kolwiek wyników. Gdy teraz uruchomisz ten skrypt, zobaczysz, że kończy on działanie przed wykonaniem ostatniego polecenia echo:
[donnie@fedora ~]$./ex.sh
./ex.sh: line 3: var: var is unset, you big dummy
[donnie@fedora ~]$ Chwileczkę! Czy ja właśnie nazwałem siebie wielkim głupkiem (ang. big dummy)? No cóż. W każdym razie zmień skrypt, aby zmienna miała przypisaną wartość, jak widać na przykładzie skryptu ex_2.sh:

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 207

#!/bin/bash
var=somevalue
: ${var:?"var is unset, you big dummy"}
echo "I wonder if this will work with a value of "$var"." Teraz skrypt wykonuje się do końca, co możesz zobaczyć tutaj:
donnie@fedora:~$./ex_2.sh
I wonder if this will work with a value of somevalue.
donnie@fedora:~$ Podsumowując, użycie dwukropka zamiast polecenia echo zapobiega wyświetlaniu wartości zmiennej w konstrukcji ${var:?"var is unset, you big dummy"}. Możesz zmienić ten sposób działania — wystarczy z powrotem zastąpić dwukropek poleceniem echo, jak pokazuję w kodzie pliku ex_3.sh:
#!/bin/bash
var=somevalue
echo ${var:?"var is unset, you big dummy"}
echo "I wonder if this will work with a value of "$var"." Zobacz, jaki będzie wynik tej zmiany:
donnie@fedora:~$./ex_3.sh
somevalue
I wonder if this will work with a value of somevalue.
donnie@fedora:~$ Tym razem wartość zmiennej var została wyświetlona.
Uwaga

Jak właśnie pokazałem na przykładzie operatorów ? i +, poprzedzenie znaku ?
dwukropkiem powoduje, że taki operator traktuje zmienną utworzoną z wartością
null jako niezdefiniowaną. Natomiast pominięcie dwukropka spowoduje, że tego
rodzaju zmienna będzie uznana za zdefiniowaną.

 W następnym podrozdziale przejdę do omówienia przesunięć zmiennych.
Używanie przesunięć zmiennych Ostatni typ rozwijania zmiennych, który zamierzam przedstawić, dotyczy podstawia-nia tylko fragmentu ciągu tekstowego. Ten mechanizm wykorzystuje przesunięcie
zmiennej i może być nieco trudniejszy do zrozumienia bez konkretnego przykładu. Gdy definiujesz zmienną, ma ona określoną wielkość, czyli liczbę znaków. Konstrukcja
${zmienna:przesunięcie} używa przesunięcia, czyli liczby znaków od określonego miejsca. Jeśli przesunięcie wynosi 4, konstrukcja pominie pierwsze cztery znaki i wyświetli tylko znaki począwszy od piątego. Dodanie parametru długość w konstrukcji
${zmienna:przesunięcie:długość} pozwala również określić, ile znaków chcesz użyć. Na początek utwórz zmienną tekstową o wartości MailServer w następujący sposób:

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

208 Linux. Zostań mistrzem skryptów powłoki

[donnie@fedora ~]$ text=MailServer
[donnie@fedora ~]$ echo $text
MailServer
[donnie@fedora ~]$ Załóżmy teraz, że chcesz zobaczyć tylko tekst rozpoczynający się od piątego znaku. Możesz użyć przesunięcia w pokazany tutaj sposób:
[donnie@fedora ~]$ echo ${text:4}
Server
[donnie@fedora ~]$ Świetnie, to działa. Teraz załóżmy, że chcesz wyświetlić tylko pierwsze cztery litery. Użyj więc przesunięcia i długości w następujący sposób:
[donnie@fedora ~]$ echo ${text:0:4}
Mail
[donnie@fedora ~]$ Takie wywołanie oznacza, że odczyt danych rozpoczyna się od pozycji następującej po zerowej i obejmuje tylko pierwsze cztery znaki. Możesz również wyodrębnić fragment tekstu z dowolnego miejsca ciągu tekstowego, jak pokazuję w kolejnym przykładzie:
[donnie@fedora ~]$ echo ${text:4:5}
Serve
[donnie@fedora ~]$ W tym przykładzie dane są odczytywane począwszy od piątego znaku i obejmują pięć kolejnych. Przedstawię teraz znacznie praktyczniejsze zastosowania omawianej konstrukcji. Załóżmy, że masz zmienną location, która zawiera nazwę miasta i stanu w USA wraz z odpowiadającym mu kodem pocztowym. Powiedzmy, że z podanego ciągu tekstowego chcesz wyodrębnić sam kod pocztowy. Oto jak możesz to zrobić:
[donnie@fedora ~]$ location="Saint Marys GA 31558"
[donnie@fedora ~]$ echo "Zip Code: ${location:14}"
Zip Code: 31558
[donnie@fedora ~]$ Zamiast definiować przesunięcie poprzez odliczanie od początku ciągu tekstowego, można również użyć liczby ujemnej i tym samym wyodrębnić tylko ostatni fragment danych. Ponieważ kod pocztowy składa się z pięciu cyfr, można użyć wartości -5 w na-stępujący sposób:
[donnie@fedora ~]$ echo "Zip Code: ${location: -5}"
Zip Code: 31558
[donnie@fedora ~]$ Aby zapewnić poprawne działanie tego mechanizmu, zawsze pamiętaj o pozostawie-niu spacji między dwukropkiem i myślnikiem. Ponadto ponieważ nazwy miast mogą mieć różną długość, ta metoda będzie lepszym rozwiązaniem, jeśli chcesz wyodrębniać kody pocztowe z całej listy lokalizacji. I to tyle jeśli chodzi o przesunięcia. Teraz zajmiesz się dopasowywaniem wzorców.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 209

Dopasowanie wzorca Kolejna sztuczka związana z interpretacją zmiennych dotyczy dopasowywania wzorców. Rozpoczniesz od utworzenia zmiennej pathname w przedstawiony tutaj sposób:
[donnie@fedora ~]$ pathname="/var/lib/yum"
[donnie@fedora ~]$ Załóżmy teraz, że z tej ścieżki dostępu chcesz usunąć nazwę katalogu najniższego po-ziomu. Możesz to zrobić za pomocą znaków % i *, jak pokazuję w kolejnym przykładzie.
[donnie@fedora ~]$ echo ${pathname%/yum*}
/var/lib
[donnie@fedora ~]$ Znak % nakazuje powłoce pominięcie końcowego fragmentu ciągu tekstowego, który został dopasowany do wzorca. W tym przypadku gwiazdka na końcu nie jest konieczna, ponieważ ciąg tekstowy yum akurat znajduje się na końcu ścieżki. Zatem ten sam wynik uzyskasz także bez użycia gwiazdki. Jednak jeśli chcesz pominąć dwa najniższe po-ziomy ścieżki, musisz skorzystać z gwiazdki, aby dopasowanie wzorca odbyło się pra-widłowo. Spójrz, oto co mi chodzi:
[donnie@fedora ~]$ echo ${pathname%/lib}
/var/lib/yum
[donnie@fedora ~]$ echo ${pathname%/lib*}
/var
[donnie@fedora ~]$

Uwaga

Jak widać, bez użycia gwiazdki dopasowanie wzorca nie zadziałało. Natomiast
z gwiazdką wszystko działa poprawnie. Dlatego nawet jeśli gwiazdka nie jest ab-
solutnie konieczna, najlepiej ją dodać dla pewności.

 Z drugiej strony czasami może pojawić się potrzeba wyodrębnienia nazw katalogów niższego poziomu. Aby to zrobić, wystarczy zamienić znak % na # w następujący sposób:
[donnie@fedora ~]$ echo ${pathname#/var}
/lib/yum
[donnie@fedora ~]$ echo ${pathname#/var/lib}
/yum
[donnie@fedora ~]$ Na zakończenie tego punktu przedstawię jeszcze jedną ciekawą sztuczkę. Tym razem pokażę, jak dopasować wzorzec, a następnie podstawić coś innego. Najpierw utwórz zmienną string w następujący sposób:
[donnie@fedora ~]$ string="Hot and Spicy Food"
[donnie@fedora ~]$ echo $string
Hot and Spicy Food
[donnie@fedora ~]$ Wszystko działa dobrze, przy czym załóżmy, że nie chcesz umieszczać spacji między słowami. Zamiast tego użyjesz znaku podkreślenia (_), jak pokazuję w kolejnym przy-kładzie:

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

210 Linux. Zostań mistrzem skryptów powłoki

[donnie@fedora ~]$ echo ${string/[[:space:]]/_}
Hot_and Spicy Food
[donnie@fedora ~]$ To nie zadziałało najlepiej, ponieważ zastąpiona została tylko pierwsza spacja. Aby za-stąpić wszystkie wystąpienia, po ciągu tekstowym musisz dodać kolejny ukośnik w taki sposób:
[donnie@fedora ~]$ echo ${string//[[:space:]]/_}
Hot_and_Spicy_Food
[donnie@fedora ~]$ To wygląda znacznie lepiej. Ale co tak naprawdę się tu dzieje? Cóż, używamy konstruk-cji /wzorzec_do_zastąpienia/, aby wykonać podstawienie. Cokolwiek umieścisz między dwoma ukośnikami, zostanie zastąpione. Możesz podać pojedynczy znak, klasę zna-ków lub inny wzorzec, który chcesz zastąpić. Na końcu, między ostatnim ukośnikiem i zamykającym nawiasem klamrowym, umieść znak, którym chcesz zastąpić wzorzec. Wprawdzie na temat rozwijania zmiennych można powiedzieć znacznie więcej, ale tu-taj zaprezentowałem tylko najbardziej praktyczne przykłady. Jeśli chcesz dowiedzieć się więcej, odnośniki do wartych uwagi zasobów znajdziesz na końcu rozdziału. Skoro już omówiłem podstawianie wzorca, w następnym podrozdziale przejdę do pod-stawiania poleceń.

Podstawianie poleceń We wcześniejszych ćwiczeniach praktycznych dotyczących zliczania zalogowanych użytkowników i korzystania z tablic pokazałem kilka przykładów zastosowania tech-niki podstawiania poleceń, ale jeszcze nie wyjaśniłem jej dokładnie. Najwyższy czas to nadrobić. Podstawianie poleceń to niezwykle przydatne narzędzie, z którego będziesz często ko-rzystać. Naprawdę. Za jego pomocą można zrobić wiele ciekawych rzeczy. Polega ono na wykorzystaniu wyniku polecenia powłoki w innym poleceniu lub przypisaniu go jako wartości zmiennej. Polecenie, którego wynik działania chcesz wykorzystać, umieszczasz w konstrukcji $(). Oto prosty przykład:
[donnie@fedora ~]$ echo "This machine is running kernel version $(uname -r)."
This machine is running kernel version 6.5.5-200.fc38.x86_64.
[donnie@fedora ~]$ W tym przypadku wynik działania polecenia uname -r, które pokazuje wersję aktualnie uruchomionego jądra Linuksa, został użyty w miejsce konstrukcji podstawienia polecenia. Teraz utwórz skrypt o nazwie command_substitution_1.sh i następującej zawartości:
#!/bin/bash
[[! -d Daily_Reports]] && mkdir Daily_Reports
cd Daily_Reports
datestamp=$(date +%F)
echo "This is the report for $datestamp" > daily_report_$datestamp.txt

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 211

Wyjaśnię teraz sposób jego działania. W drugim wierszu skrypt sprawdza, czy istnieje katalog Daily_Reports. Jeśli go nie ma, zostanie utworzony. W czwartym wierszu kon-strukcja podstawienia polecenia służy do utworzenia zmiennej datestamp razem z war-tością w postaci bieżącej daty. Ta wartość jest zwracana przez polecenie date +%F i bę-dzie zapisana w formacie rok-miesiąc-dzień (np. 2023-10-03). W ostatnim wierszu komunikat wraz z dzisiejszą datą zostaje zapisany do pliku, którego nazwa również zawiera tę datę. Spójrz na przykład użycia tego skryptu:
[donnie@fedora ~]$ ls -l Daily_Reports/
total 4
-rw-r--r--. 1 donnie donnie 34 Oct 3 15:30 daily_report_2023-10-03.txt
[donnie@fedora ~]$ cat Daily_Reports/daily_report_2023-10-03.txt
This is the report for 2023-10-03
[donnie@fedora ~]$ Niezłe, co? Uwierz mi, będziesz często stosować tego typu rozwiązania podczas two-rzenia skryptów przeznaczonych do automatycznego generowania raportów.
Wskazówka

Polecenie date oferuje wiele różnych opcji formatowania. Aby się z nimi zapoznać,
wystarczy wyświetlić stronę podręcznika systemowego dla tego polecenia (man date).

 Ale chwileczkę, brakuje tutaj ważnego elementu. Co stanie się w sytuacji, gdy raport na dzisiaj został już utworzony? Czy chcesz go nadpisać? Nie, nie w tym przypadku. Utwórz więc skrypt o nazwie command_substitution_2.sh, który zanim utworzy nowy raport, to najpierw sprawdzi, czy dzisiejszy raport już ist-nieje. Takie rozwiązanie wymaga dodania tylko niewielkiej liczby nowych poleceń, jak pokazuję w kolejnym fragmencie kodu:
#!/bin/bash
[[! -d Daily_Reports]] && mkdir Daily_Reports
cd Daily_Reports
datestamp=$(date +%F)
[[! -f daily_report_$datestamp.txt]] && echo "This is the report for
$datestamp" > daily_report_$datestamp.txt || echo "This report has already been
done today."

Uwaga

Ostatnie polecenie, które wygląda jak trzy wiersze, w rzeczywistości znajduje się
w jednym wierszu zawijającym się na stronie drukowanej książki.

 A teraz przygotuj się na to, co zobaczysz po uruchomieniu zmodyfikowanej wersji skryptu:
[donnie@fedora ~]$./command_substitution_2.sh
This report has already been done today.
[donnie@fedora ~]$ Dla zabawy przyjrzyj się kilku innym ciekawym przykładom.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

212 Linux. Zostań mistrzem skryptów powłoki

Utwórz skrypt o nazwie am_i_root_1.sh i umieść w nim następujący kod:
#!/bin/bash
test $(whoami) != root && echo "You are not the root user."
test $(whoami) == root && echo "You are the root user." Polecenie whoami zwraca nazwę użytkownika, który je uruchamia. Oto jak to wygląda, gdy uruchamiam je najpierw bez sudo, a następnie z sudo:
[donnie@fedora ~]$ whoami
donnie
[donnie@fedora ~]$ sudo whoami
root
[donnie@fedora ~]$ Jak widać, uruchomienie polecenia whoami z użyciem sudo pokazuje, że wykonującym je użytkownikiem jest root. Pierwsze polecenie wykorzystuje operatora != do sprawdze-nia, czy użytkownikiem nie jest root. Natomiast drugie polecenie używa operatora ==, aby sprawdzić, czy użytkownikiem jest root. Teraz uruchom skrypt i zobacz, co się stanie:
[donnie@fedora ~]$./am_i_root_1.sh
You are not the root user.
[donnie@fedora ~]$ sudo ./am_i_root_1.sh
[sudo] password for donnie:
You are the root user.
[donnie@fedora ~]$ Skrypt działa, co oznacza, że jesteś już całkiem niezły w tworzeniu skryptów. Ale mo-żesz być jeszcze lepszy, gdy uprościsz nieco kod. Zatem zmodyfikuj skrypt do następu-jącej postaci:
#!/bin/bash
test $(whoami) != root && echo "You are not the root user." || echo "You are the
root user." W tym skrypcie zamiast dwóch poleceń mamy tylko jedno. Jednak w obu przypadkach wynik jest identyczny. Zamiast umieszczać polecenie w konstrukcji $(), możesz również ująć je w apostrofy:

[donnie@fedora ~]$ datestamp=`date +%F`
[donnie@fedora ~]$ echo $datestamp
2023-10-03
[donnie@fedora ~]$ Wprawdzie ta metoda działa, ale jest przestarzała i nie polecam jej stosowania. Najwięk-szy problem polega na tym, że jeśli dane polecenie zawiera znaki specjalne, które po-włoka może błędnie zinterpretować, musisz pamiętać o ich odpowiednim zabezpiecze-niu za pomocą ukośnika. Natomiast podczas używania nowszej konstrukcji $() nie musisz się tym aż tak przejmować. Wspominałem o tej metodzie tylko dlatego, że mo-żesz nadal natknąć się na skrypty, w których jest ona stosowana. Na tym zakończę omawianie tematu podstawiania poleceń. W następnym podrozdziale dowiesz się, jak podejmować decyzje w kodzie skryptów.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 213

Konstrukcje warunkowe i pętle Dotychczas przedstawiałem wiele technik i konstrukcji programistycznych, które po-zostają charakterystyczne dla skryptów powłoki. Natomiast w tym podrozdziale omó-wię kilka konstrukcji, które są powszechne w większości języków programowania. Rozpocznę od zaprezentowania innego sposobu podejmowania decyzji w programie.
Konstrukcja warunkowa if-then Chociaż konstrukcje decyzyjne && i || sprawdzają się w prostych skryptach, w przy-padku bardziej złożonych operacji, takich jak testowanie wielu warunków jednocze-śnie, warto rozważyć użycie konstrukcji if-then. W pierwszym przykładzie utworzysz skrypt o nazwie am_i_root_2.sh, którego zawartość będzie przedstawiała się następująco:

#!/bin/bash
if [$(id -u) == 0]; then
 echo "This user is root."
fi
if [$(id -u) != 0]; then
 echo "This user is not root."
 echo "This user's name is $(id -un)."
fi

Uwaga

Zwróć uwagę, że każdy blok decyzyjny rozpoczyna się od słowa kluczowego if
i kończy słowem kluczowym fi (tak, to if zapisane wspak). Warto również zazna-
czyć, że — w przeciwieństwie do niektórych języków programowania — w skryp-
tach powłoki bash wcięcia nie są wymagane. Niemniej jednak stosowanie wcięć
znacznie poprawia czytelność kodu.

 Zamiast używać polecenia whoami, tym razem korzystam z polecenia id, które oferuje więcej opcji. (Dodatkowe informacje na ich temat znajdziesz na stronach podręcznika systemowego dla obu poleceń). Jeśli chodzi o resztę, zamiast podejmować próbę szcze-gółowego wyjaśniania poszczególnych wierszy kodu, pozwolę Ci po prostu przestudio-wać ten skrypt i przekonać się samodzielnie, na czym polega jego działanie. Dla mnie to będzie łatwiejsze, zaś dla Ciebie mniej nużące. Poza tym — wierzę w Twoje umie-jętności. A teraz zobacz, co się stanie po uruchomieniu tego skryptu:
[donnie@fedora ~]$./am_i_root_2.sh
This user is not root.
This user's name is donnie.
[donnie@fedora ~]$
[donnie@fedora ~]$ sudo ./am_i_root_2.sh
This user is root.
[donnie@fedora ~]$

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

214 Linux. Zostań mistrzem skryptów powłoki

Gdy testujesz więcej niż tylko jeden warunek dla pewnej decyzji, bardziej właściwe jest użycie jednej konstrukcji if-then-elif zamiast dwóch oddzielnych if-then. Tym sa-mym poprawisz czytelność kodu i dzięki temu każdy, kto go czyta, będzie mógł łatwiej zrozumieć sposób jego działania. Utwórz skrypt am_i_root_3.sh, w którym wykorzy-stasz tę technikę. Jego zawartość powinna przedstawiać się następująco:
#!/bin/bash
if [$(id -u) == 0]; then
 echo "This user is root."
elif [$(id -u) != 0]; then
 echo "This user is not root."
 echo "This user's name is $(id -un)."
fi Słowo kluczowe elif jest tutaj skrótem od else if. Poza tym wszystko działa podobnie jak w poprzednim skrypcie. Po uruchomieniu otrzymasz dokładnie taki sam wynik jak wcześniej. Warto również zwrócić uwagę na możliwość sprawdzania wielu warunków za pomocą więcej niż tylko jednej klauzuli elif. Ewentualnie możesz skorzystać z konstrukcji if-then-else. Utwórz skrypt am_i_root_4.sh o następującej zawartości:
#!/bin/bash
if [$(id -u) == 0]; then
 echo "This user is root."
else
 echo "This user is not root."
 echo "This user's name is $(id -un)."
fi Stosowanie klauzuli else może okazać się bardzo przydatne, ponieważ pozwala ona zdefiniować domyślne działanie, które zostanie podjęte, jeśli żaden z warunków w blo-kach if lub elif nie zostanie spełniony. Zapoznaj się teraz z przykładowym skryptem, który wykrywa system operacyjny uruchomiony w danym komputerze:
#!/bin/bash
os=$(uname)
if [[$os == Linux]]; then
 echo "This machine is running Linux."
elif [[$os == Darwin]]; then
 echo "This machine is running macOS."
elif [[$os == FreeBSD]]; then
 echo "This machine is running FreeBSD."
else
 echo "I don't know this $os operating system."
fi Jak widać, ten skrypt potrafi wykrywać systemy operacyjne Linux, macOS lub FreeBSD. Jeśli komputer nie działa pod kontrolą żadnego z nich, wówczas klauzula else na końcu wyświetla domyślny komunikat. Warto również zauważyć, że na końcu poszczegól-nych poleceń if i elif należy umieścić średnik oraz słowo kluczowe then. To nie jest konieczne w przypadku polecenia else. Spójrz na wynik uruchomienia omawianego skryptu w komputerze, który działa pod kontrolą systemu operacyjnego OpenIndiana:

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 215

donnie@openindiana:~$./os-test.sh
I don't know this SunOS operating system.
donnie@openindiana:~$ Oczywiście w tym skrypcie można dodać kolejną klauzulę elif, aby sprawdzić obec-ność systemu SunOS. To w zasadzie wyczerpuje temat konstrukcji warunkowej if-then. W następnym punk-cie przedstawię pętlę, która wykonuje określone operacje podczas oczekiwania na spełnienie pewnego warunku.

Konstrukcja do-while Ta konstrukcja będzie wielokrotnie wykonywała zestaw poleceń, dopóki określony warunek pozostaje prawdziwy. Oto przykład jej użycia:
#!/bin/bash
x=10
while [[$x -gt 0]]; do
 x=$(expr $x 1)
 echo $x
done Ten skrypt while_demo.sh rozpoczyna działanie od przypisania wartości 10 zmiennej x. Dopóki wartość x pozostaje większa od 0, skrypt odejmuje od niej 1 i przypisuje nową wartość zmiennej x za pomocą polecenia expr $x-1. Następnie wyświetla tę wartość. Wynik działania skryptu wygląda następująco:
[donnie@fedora ~]$./while_demo.sh
9
8
7
6
5
4
3
2
1
0
[donnie@fedora ~]$

Uwaga

Warto zauważyć, że w skrypcie while_demo.sh można zastosować skróconą notację
do zmniejszania o 1 wartości zmiennej x w trakcie każdej iteracji pętli. W tym celu
wystarczy wiersz x=$(expr $x - 1) zastąpić następującym:

((x--))

Jest to konstrukcja podobna do tej, którą można spotkać w programach napisa-
nych w językach C lub C++. Należy jednak pamiętać, że nie jest ona przenośna,
co oznacza, że działa poprawnie w powłoce bash, ale niekoniecznie już w innych.
Dlatego jeśli chcesz, aby skrypt działał również w powłokach Bourne’a, dash lub ash,
powinieneś unikać tej skróconej konstrukcji i pozostać przy poleceniu x=$(expr $x - 1).

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

216 Linux. Zostań mistrzem skryptów powłoki

Pętli while możesz również użyć do odczytywania pliku tekstowego wiersz po wierszu. Oto prosty skrypt o nazwie read_file.sh, który odczytuje zawartość pliku /etc/passwd:
#!/bin/bash
file=/etc/passwd
while read -r line; do
 echo $line
done < "$file" Jak widzisz, skrypt rozpoczyna się od utworzenia zmiennej file i przypisania jej war-tości /etc/passwd. Wiersz while definiuje zmienną line, a polecenie read -r przypisuje wartości tej zmiennej. W trakcie każdej iteracji pętli while polecenie read -r odczytuje jeden wiersz pliku, przypisuje go zmiennej line, a następnie wyświetla ten wiersz na standardowym wyjściu (stdout). Po odczytaniu wszystkich wierszy pliku pętla kończy działanie. Ostatnie polecenie zawiera przekierowanie standardowego wejścia, aby pę-tla while odczytywała plik. Normalnie polecenie read dzieli długie wiersze na krótsze i kończy każdą część długiego wiersza ukośnikiem. Opcja -r wyłącza to zachowanie. Możliwe są sytuacje, kiedy będziesz chciał utworzyć pętlę działającą w nieskończo-ność. Taką, która się nie zatrzyma, dopóki jej tego nie nakażesz. (Może też się zdarzyć, że przez przypadek zdefiniujesz tego rodzaju pętlę, ale to zupełnie inna historia. Na razie załóżmy, że chcesz to zrobić celowo). Aby przetestować tego rodzaju pętlę, utwórz skrypt infinite_loop.sh o następującej treści:
#!/bin/bash
while :
do
 echo "This loop is infinite."
 echo "It will keep going until you stop it."
 echo "To stop it, hit Ctrl-c."
 sleep 1
done To dość bezużyteczny skrypt, którego działanie polega jedynie na wyświetlaniu kilku komunikatów. Polecenie sleep 1 powoduje jednosekundowe opóźnienie między po-szczególnymi iteracjami pętli. Oto co się stanie, gdy uruchomisz ten skrypt:
[donnie@fedora ~]$./infinite_loop.sh
This loop is infinite.
It will keep going until you stop it.
To stop it, hit Ctrl-c.
This loop is infinite.
It will keep going until you stop it.
To stop it, hit Ctrl-c.
^C
[donnie@fedora ~]$ Istnieje jeszcze kilka innych sztuczek, które możesz wykonać za pomocą pętli while, ale na razie to wystarczy. W następnym punkcie przyjrzysz się pętli for-in.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 217

Konstrukcja for-in Konstrukcja for-in przetwarza listę i wykonuje polecenie dla jej każdego elementu. W skrypcie car_demo_2.sh wiersz for tworzy zmienną cars. Spójrz na kod tego skryptu:
#!/bin/bash
for cars in Edsel Ford Nash Studebaker Packard Hudson
do
 echo "$cars"
done
echo "That's all, folks!" W trakcie każdej iteracji pętli słowo kluczowe in pobiera nazwę klasycznego samo-chodu z listy i przypisuje ją jako wartość zmiennej cars. Pętla kończy działanie po prze-tworzeniu całej listy. Oto co się dzieje, gdy uruchomisz ten skrypt:
[donnie@fedora ~]$./car_demo_2.sh
Edsel
Ford
Nash
Studebaker
Packard
Hudson
That's all, folks!
[donnie@fedora ~]$ To dość proste, więc spróbuj czegoś innego. Tym razem utworzysz plik list_demo.sh:
#!/bin/bash
for filename in *
do
 echo "$filename"
done Zadaniem tej pętli jest wyświetlenie plików, które znajdują się w bieżącym katalogu, czyli pętla działa podobnie do polecenia ls. Znak wieloznaczny * nakazuje pętli for od-czytanie wszystkich nazw plików niezależnie od ich liczby. W poleceniu echo zmienna

$filename została ujęta w cudzysłów na wypadek, gdyby któraś z nazw plików zawie-rała spacje. Oto co się dzieje, gdy uruchomisz ten skrypt:
[donnie@fedora ~]$./list_demo.sh
15827_zip.zip
2023-08-01_15-23-31.mp4
2023-08-01_16-26-12.mp4
2023-08-02_13-57-37.mp4
. . .
. . .
xargs_test.txt
yad-form.sh
zoneinfo.zip
[donnie@fedora ~]$ Dlaczego ten skrypt działa? Gdy polecenie echo * wydasz w wierszu poleceń, otrzymasz nieuporządkowaną listę plików w katalogu bieżącym. Pętla for-in powoduje, że nazwa każdego pliku jest wyświetlana w oddzielnym wierszu.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

218 Linux. Zostań mistrzem skryptów powłoki

Na tym kończę omówienie pętli for-in. W następnym punkcie przyjrzysz się samej pętli for.
Konstrukcja for Jest podobna do konstrukcji for-in z tą różnicą, że lista jest pobierana z innego źródła. W przypadku pętli for użytkownik podaje listę jako argument podczas wywoływania skryptu. Utwórz skrypt car_demo_3.sh, aby to przetestować:

#!/bin/bash
for cars
do
 echo "$cars"
done Zmienna cars jest tworzona w wierszu, który zawiera słowo kluczowe for. Jednak nie ma w nim zdefiniowanej listy samochodów. Skąd więc bierze się ta lista? Jest tworzona na podstawie argumentów, które użytkownik wprowadza w powłoce podczas urucha-miania skryptu. Tym razem zamiast nazw klasycznych samochodów użyjesz listy współ-czesnych modeli, jak pokazuję w kolejnym przykładzie:
[donnie@fedora ~]$./car_demo_3.sh Toyota Volkswagen Subaru Honda
Toyota
Volkswagen
Subaru
Honda
[donnie@fedora ~]$ W kolejnym punkcie poznasz polecenie break.

Polecenie break Użyj polecenia break, aby zachować większą kontrolę nad działaniem pętli for-in i while-do. Aby zobaczyć, jak to działa, utwórz skrypt break_demo.sh o następującej za-wartości:
#!/bin/bash
j=0
while [[$j -lt 5]]
do
 echo "This is number: $j"
 j=$((j + 1))
 if [["$j" == '2']]; then
 echo "We have reached our goal: $j"
 break
 fi
done
echo "That's all, folks!" Polecenie while nakazuje skryptowi wykonywanie pętli tak długo, dopóki wartość zmiennej j jest mniejsza niż 5. Konstrukcja j=$((j + 1)) w szóstym wierszu to operator matematyczny, który zwiększa wartość zmiennej j o 1 w trakcie każdej iteracji pętli.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 219

Konstrukcja if-then, która rozpoczyna się w siódmym wierszu, określa, co powinno się stać, gdy wartość zmiennej j jest równa 2. W omawianym przykładzie polecenie break kończy wtedy działanie pętli. Spójrz na przykład uruchomienia tego skryptu:
[donnie@fedora ~]$./break_demo.sh
This is number: 0
This is number: 1
We have reached our goal: 2
That's all, folks!
[donnie@fedora ~]$

Uwaga

Jak już wspomniałem podczas omawiania skryptu while_demo.sh, istnieje możli-
wość zastąpienia wywołania j=$((j + 1)) następującym skrótem:

((j++))

Jednak to jest skrót ściśle związany z powłoką bash i może nie działać w innych.

Wymienione polecenie można zapisać również w postaci j=$(expr j + 1) — ona
także jest przenośna i stosuje postać, którą przedstawiłem podczas omawiania
skryptu while_demo.sh.

(W rozdziale 11. przedstawię więcej informacji na temat przeprowadzania operacji
matematycznych w skryptach powłoki).

 Dla zabawy usuń polecenie break ze skryptu i uruchom go ponownie. Powinieneś otrzy-mać następujące dane wyjściowe:
[donnie@fedora ~]$./break_demo.sh
This is number: 0
This is number: 1
We have reached our goal: 2
This is number: 2
This is number: 3
This is number: 4
That's all, folks!
[donnie@fedora ~]$ Tym razem działanie pętli nie zatrzymuje się na liczbie 2. Skoro skończyliśmy break, możemy kontynuować.

Polecenie continue Polecenie continue również modyfikuje działanie pętli for-in oraz while-do. Tym razem utwórz skrypt for_continue.sh o następującej zawartości:
#!/bin/bash
for cars in Pontiac Oldsmobile Buick Chevrolet Ford Mercury
do
 if [[$cars == Buick || $cars == Mercury]]; then
 continue
 fi
 echo $cars
done

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

220 Linux. Zostań mistrzem skryptów powłoki

W każdej iteracji pętli for inna nazwa klasycznego samochodu jest przypisywana zmiennej cars. Konstrukcja if-then sprawdza, czy wartość zmiennej cars to Buick lub
Mercury. Polecenie continue w bloku if-then powoduje, że pętla pomija te dwie nazwy samochodów, więc polecenie echo ich nie wyświetli. W tym przykładzie widzisz rów-nież inne zastosowanie konstrukcji ||. Gdy jest używana w warunku, wówczas działa jako operator logiczny LUB. Oto jak wygląda wynik działania tego kodu:

[donnie@fedora ~]$./for_continue.sh
Pontiac
Oldsmobile
Chevrolet
Ford
[donnie@fedora ~]$ Teraz spróbuj osiągnąć ten sam efekt przy użyciu pętli while. Utwórz skrypt o nazwie

while_continue.sh i następującej zawartości:
#!/bin/bash
j=0
while [[$j -lt 6]]
do
 j=$((j + 1))
 [[$j -eq 3 || $j -eq 6]] && continue
 echo "$j"
done Tym razem chcesz po prostu pominąć liczby 3 i 6. Oto wynik uruchomienia skryptu:
[donnie@fedora ~]$./while_continue.sh
1
2
4
5
[donnie@fedora ~]$ Dobra, wystarczy tego. W następnym punkcie przejdę do pętli until.

Konstrukcja until Pętla until będzie wykonywana do momentu spełnienia określonego warunku. Można ją wykorzystać na wiele sposobów, na przykład do opracowania gry w zgadywanie. Aby zobaczyć przykład jej zastosowania, utwórz skrypt o nazwie secret_word.sh i na-stępującej zawartości:
#!/bin/bash
secretword=Donnie
word=
echo "Hi there, $USER!"
echo "Would you like to play a guessing game?"
echo "If so, then enter the correct secret word"
echo "to win a special prize."
echo
echo
until [["$word" = "$secretword"]]

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 221

do
 echo -n "Enter your guess. "
 read word
done
echo "Yay! You win a pat on the back!" Zmienna secretWord ma wartość Donnie (hej, to ja!). Z kolei zmienna word nie ma przy-pisanej żadnej wartości. Pętla while będzie wykonywana do momentu wprowadzenia poprawnej wartości zmiennej secretWord. (W tym przypadku polecenie read wstrzy-muje działanie skryptu i czeka na wprowadzenie wartości przez użytkownika). Omó-wiony skrypt działa w następujący sposób:
[donnie@fedora ~]$./secret_word.sh
Hi there, donnie!
Would you like to play a guessing game?
If so, then enter the correct secret word
to win a special prize.
Enter your guess. Vicky
Enter your guess. Cleopatra
Enter your guess. Donnie
Yay! You win a pat on the back!
[donnie@fedora ~]$ Niezłe, prawda? To kolejna sztuczka, którą możesz zaimponować na najbliższej imprezie. No dobrze, przechodzę do następnej konstrukcji.

Konstrukcja case Konstrukcja case pozwala uniknąć stosowania konstrukcji if-then-else. Umożliwia użytkownikowi wprowadzenie ciągu tekstowego, a następnie sprawdza dostarczone dane i obsługuje opcję, którą wskazuje ten ciąg tekstowy. Spójrz na podstawową struk-turę konstrukcji case:
case $variable in
 match_1)
 commands_to_execute
 ;;
 match_2)
 commands_to_execute
 ;;
 match_3)
 commands_to_execute
 ;;
*) Optional Information
 commands_to_execute_for_no_match
 ;;
esac Konstrukcja case jest porównywana z szeregiem wartości aż do znalezienia dopasowania. Wówczas wykonywane są wszystkie polecenia do podwójnego średnika (;;). Następ-nie rozpoczyna się wykonywane poleceń, które zostały zdefiniowane po wierszu pole-cenia esac.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

222 Linux. Zostań mistrzem skryptów powłoki

Jeśli nie zostanie znalezione żadne dopasowanie, wykonywane są polecenia między *) i podwójnym średnikiem. Symbol *) działa podobnie jak klauzula else w konstrukcji
if-then — definiuje domyślne działanie w przypadku, gdy żaden z testowanych wa-runków nie zostanie spełniony. Dla zabawy wypróbuj tę konstrukcję. W tym celu utwórz skrypt term_color.sh, który będzie przedstawiał się następująco:

#!/bin/bash
echo -n "Choose Background Color for Terminal(b-black,g-grey): "
read color
case "$color" in
b)
 setterm -background black -foreground white
 ;;
g)
 setterm -background white -foreground black
 ;;
*)
 echo "I do not understand"
 ;;
esac
exit Ten skrypt pozwala zmienić kolor tła terminala. (Doskonale wiem, że w przypadku opcji

g zostało zdefiniowane tło w kolorze białym. To dlatego, że gdy uruchomisz ten skrypt i wybierzesz opcję g, tło będzie wyglądać bardziej na szare niż białe). Uruchomienie skryptu wygląda następująco:
[donnie@fedora ~]$./term_color.sh
Choose Background Color for Terminal(b-black,g-grey): g
[donnie@fedora ~]$ Uruchom skrypt w terminalu, wybierz opcję g, a powinieneś zobaczyć, jak tło powłoki zmienia kolor na szary. (Jeśli twój terminal ma już ustawione białe tło, wówczas wy-bierz opcję b). Aby zobaczyć, jak całe tło terminala zmienia się na szare, wystarczy wy-dać polecenie clear. Dla jeszcze większej zabawy zmodyfikuj skrypt i dodaj kolejną opcję. Najpierw zmień wiersz polecenia echo na początku:
echo -n "Choose Background Color for Terminal(b-black,g-grey,y-yellow): " Następnie po opcji g dodaj nową opcję y. Jej kod powinien przedstawiać się następująco:
y)
 setterm -background yellow -foreground red
 ;; Aby zobaczyć coś naprawdę brzydkiego, uruchom skrypt ponownie i wybierz opcję y. (Nie martw się jednak, to ustawienie nie jest trwałe). Na rysunku 8.1 pokazuję, jak bę-dzie wyglądać użycie różnych opcji. Wcześniej już wyjaśniłem, jak używać pętli for do wprowadzania argumentów podczas uruchamiania skryptów. W następnym punkcie poznasz inny sposób.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 223

Rysunek 8.1. Wynik działania skryptu term_color.sh

Używanie parametrów pozycyjnych Podczas uruchamiania skryptu powłoki można również podać parametry, które będą wykorzystywane wewnątrz skryptu. Pierwszy podany parametr będzie oznaczony jako $1, drugi jako $2 itd. (maksymalnie do $9). Parametr $0 jest zarezerwowany dla nazwy samego skryptu. Aby zobaczyć, jak to działa w praktyce, utwórz skrypt o nazwie position_demo.sh, któ-rego zawartość będzie przedstawiała się następująco:
#!/bin/bash
position_demo
echo "I have a cat, whose name is $1."
echo "I have another cat, whose name is $2."
echo "I have yet another cat, whose name is $3."
echo
echo
echo "The script that I just ran is $0" Aby uruchomić skrypt, wpisz trzy parametry po nazwie skryptu w następujący sposób:
[donnie@fedora ~]$./position_demo.sh Vicky Cleopatra Lionel

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

224 Linux. Zostań mistrzem skryptów powłoki

I have a cat, whose name is Vicky.
I have another cat, whose name is Cleopatra.
I have yet another cat, whose name is Lionel.
The script that I just ran is ./position_demo.sh
[donnie@fedora ~]$ W danych wyjściowych skryptu zmienne $1, $2 i $3 zostaną zastąpione parametrami, które podałeś w powłoce. Zmienna $0 zostanie rozwinięta do pełnej ścieżki i nazwy skryptu. W skryptach możesz wykorzystać trzy specjalne parametry pozycyjne, które zwiększą funkcjonalność tworzonych skryptów. Oto ich lista:
 $#. Wyświetla liczbę wprowadzonych parametrów.
 $@. Wyświetla wszystkie wprowadzone parametry, każdy w osobnym wierszu.
 $*. Wyświetla wszystkie wprowadzone parametry w jednym wierszu, rozdzielone spacjami. Ciekawą rzeczą, którą można zrobić za pomocą parametru $#, jest sprawdzanie błędów. Aby zobaczyć, co mam na myśli, uruchom ponownie skrypt position_demo.sh, ale tym razem podaj tylko jedno imię jako parametr. Powinieneś otrzymać dane wyjściowe po-dobne do następujących:
[donnie@fedora ~]$./position_demo.sh Vicky
I have a cat, whose name is Vicky.
I have another cat, whose name is .
I have yet another cat, whose name is .
The script that I just ran is ./position_demo.sh
[donnie@fedora ~]$ Jak widzisz, skrypt nie ostrzegł o tym, że nie podano poprawnej liczby parametrów. Zmodyfikuj go nieco, aby to naprawić. Nowa postać skryptu position_demo_2.sh przed-stawia się więc następująco:
#!/bin/bash
position_demo
if [[$# -ne 3]]; then
 echo "This script requires three arguments."
 exit 1
fi
echo "I have a cat, whose name is $1."
echo "I have another cat, whose name is $2."
echo "I have yet another cat, whose name is $3."
echo
echo
echo "The script that I just ran is $0" Uruchom go z trzema parametrami, a otrzymasz taki sam wynik jak w przypadku pierw-szej wersji skryptu. Następnie uruchom go ponownie, ale tym razem podaj tylko jeden parametr. Teraz powinieneś zobaczyć coś takiego:
[donnie@fedora ~]$ vim position_demo_2.sh
[donnie@fedora ~]$./position_demo_2.sh Vicky
You entered 1 argument(s).
This script requires two arguments.
[donnie@fedora ~]$

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 225

To wygląda znacznie lepiej. Zaprezentuję kolejną sztuczkę. Spójrz na wynik działania polecenia date bez określania żadnych opcji formatowania:
[donnie@fedora ~]$ date
Fri Oct 6 03:24:39 PM EDT 2023
[donnie@fedora ~]$ W wyniku wykonania polecenia date otrzymasz siedem następujących pól:
 dzień tygodnia,
 miesiąc,
 dzień miesiąca,
 godzina,
 przyrostek AM lub PM,
 strefa czasowa,
 rok. Teraz utwórz skrypt position_demo_3.sh, który każde pole danych wyjściowych polece-nia date będzie traktował jako parametr pozycyjny. Kod tego skryptu przedstawia się następująco:
#!/bin/bash
set $(date)
echo $*
echo "Day, First Argument: $1"
echo "Month, Second Argument: $2"
echo "Date, Third Argument: $3"
echo "Time, Fourth and Fifth Arguments: $4, $5"
echo "Time Zone, Sixth Argument: $6"
echo "Year, Seventh Argument: $7"
echo "$2 $3, $7" W drugim wierszu pokazałem kolejne zastosowanie polecenia set, którego jeszcze nie omawiałem. Wcześniej było używane z opcją -o na potrzeby określania opcji powłoki. Tym razem użyjesz set bez żadnych opcji, ale z argumentem $(date). Oto co mówi strona podręcznika systemowego powłoki bash na temat takiego użycia polecenia set:

Bez podania opcji polecenie wyświetla nazwy i wartości wszystkich zmiennych
powłoki w formacie, który można wykorzystać jako dane wejściowe do ustawienia
lub zresetowania aktualnie zdefiniowanych zmiennych. W tym przypadku polecenie set przetwarza wynik działania $(date) i formatuje go w spo-sób, który umożliwia wykorzystanie poszczególnych pól jako parametrów pozycyjnych. W trzecim wierszu mamy do czynienia z prawdziwą magią. Parametr pozycyjny $* wy-świetla w jednym wierszu wszystkie pola $(date). Zadaniem pozostałych poleceń echo jest po prostu wyświetlenie tekstu, a następnie wartości określonego pola lub pól. Oto jak to wygląda w praktyce:

[donnie@fedora ~]$./position_demo_3.sh
Fri Oct 6 03:46:28 PM EDT 2023
Day, First Argument: Fri

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

226 Linux. Zostań mistrzem skryptów powłoki

Month, Second Argument: Oct
Date, Third Argument: 6
Time, Fourth and Fifth Arguments: 03:46:28, PM
Time Zone, Sixth Argument: EDT
Year, Seventh Argument: 2023
Oct 6, 2023
[donnie@fedora ~]$ Skrypt działa zgodnie z oczekiwaniami i wygląda całkiem fajnie. Dodaj go do listy sztu-czek przeznaczonych do wypróbowania na następnej imprezie. Myślę, że to wyczerpuje temat parametrów pozycyjnych. W następnym podrozdziale przejdę do kodów wyjścia.

Kody wyjścia Prawdopodobnie widziałeś już kilka przykładów użycia polecenia exit, które może za-kończyć działanie skryptu w normalny sposób lub spowodować jego wcześniejsze za-kończenie w przypadku wystąpienia błędu. Czego jeszcze nie wyjaśniłem, to kwestii kodów wyjścia. Istnieją dwie ogólne kategorie kodów wyjścia:
 Standardowe kody wyjścia powłoki. Każda powłoka ma własny zestaw zdefiniowanych kodów wyjścia. (Dla uproszczenia w tym rozdziale omówię jedynie kody wyjścia stosowane w powłoce bash).
 Niestandardowe kody wyjścia. Istnieje możliwość samodzielnego zdefiniowania kodów wyjścia przeznaczonych do różnych celów. Rozpocznę od omówienia standardowych kodów wyjścia.

Standardowe kody wyjścia powłoki Gdy program lub skrypt kończą działanie z powodzeniem, zwracają kod wyjścia równy 0. W przeciwnym razie kod wyjścia będzie liczbą niezerową z zakresu od 1 do 255. Aby się o tym przekonać, użyj polecenia find do przeszukania katalogu /etc/ w celu znalezienia pliku passwd. Zrób to w następujący sposób:
[donnie@fedora ~]$ find /etc -name passwd
find: '/etc/audit': Permission denied
find: '/etc/cups/ssl': Permission denied
. . .
. . .
/etc/pam.d/passwd
find: '/etc/pki/rsyslog': Permission denied
find: '/etc/polkit-1/localauthority': Permission denied
find: '/etc/polkit-1/rules.d': Permission denied
. . .
. . .
find: '/etc/credstore.encrypted': Permission denied
/etc/passwd
[donnie@fedora ~]$

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 227

Jak widać, polecenie find znalazło plik, ale jednocześnie wygenerowało wiele błędów
Permission denied (pol. odmowa dostępu) ze względu na to, że próbowało sprawdzić katalogi, do których nie ma dostępu użytkownik ze zwykłymi uprawnieniami. Teraz w następujący sposób sprawdź kod wyjścia tego polecenia:

[donnie@fedora ~]$ echo $?
1
[donnie@fedora ~]$ Zmienna specjalna ? zwraca kod wyjścia ostatnio wykonanego polecenia. W tym przy-padku wynosi on 1, co oznacza, że wystąpił jakiś błąd. Konkretnie chodziło o to, że po-lecenie find nie uzyskało dostępu do niektórych katalogów, aby przeprowadzić w nich wyszukiwanie. Spróbuj więc ponownie, ale tym razem użyj polecenia sudo:
[donnie@fedora ~]$ sudo find /etc -name passwd
[sudo] password for donnie:
/etc/pam.d/passwd
/etc/passwd
[donnie@fedora ~]$ echo $?
0
[donnie@fedora ~]$ Tym razem otrzymujesz kod wyjścia 0, co oznacza, że nie wystąpiły żadne błędy. W większości przypadków zobaczysz kod wyjścia 0 lub 1. Pełna lista kodów wyjścia, które możesz napotkać, obejmuje:
 1 — błędy ogólne,
 2 — nieprawidłowe użycie wbudowanych poleceń powłoki,
 126 — brak możliwości wykonania żądanego polecenia,
 127 — polecenie nie zostało znalezione,
 128 — nieprawidłowy argument dla polecenia exit,
 128+n — krytyczny sygnał błędu n,
 130 — skrypt przerwany przez naciśnięcie klawiszy Ctrl+C. Można zademonstrować działanie niektórych innych kodów. Zacznij od utworzenia skryptu o nazwie exit.sh i następującej zawartości:
#!/bin/bash
exit n Od razu widać błąd. Polecenie exit wymaga argumentu liczbowego i nie zadziała z ar-gumentem tekstowym. Jednak udaj, że nie zauważyłeś tego błędu, i spróbuj uruchomić skrypt. Oto co otrzymasz w wyniku:
[donnie@fedora ~]$./exit.sh
./exit.sh: line 2: exit: n: numeric argument required
[donnie@fedora ~]$ echo $?
2
[donnie@fedora ~]$ Kod wyjścia 2 oznacza nieprawidłowe użycie wbudowanego polecenia powłoki.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

228 Linux. Zostań mistrzem skryptów powłoki

Wspomniane wbudowane polecenie powłoki to po prostu polecenie, które nie ma własnego pliku wykonywalnego, ponieważ jest zintegrowane z plikiem wykonywal-nym powłoki bash. Można pomyśleć, że w omawianej sytuacji powinien być wyświe-tlony kod wyjścia 128 z powodu podania nieprawidłowego argumentu dla polecenia
exit. Jednak tak to nie działa. (Szczerze mówiąc, nie jestem pewien, co musiałbym zro-bić, aby otrzymać kod 128. Ale to nie stanowi problemu). Aby zobaczyć pełną listę po-leceń wbudowanych, wystarczy zajrzeć na stronę podręcznika systemowego, wyświe-tlaną po wydaniu polecenia man builtins. Kod wyjścia 126 zwykle oznacza, że nie masz uprawnień do uruchomienia danego po-lecenia. Na przykład załóżmy, że zapomniałeś ustawić uprawnienia do wykonywania skryptu, co widać tutaj:

[donnie@fedora ~]$ ls -l somescript.sh
-rw-r--r--. 1 donnie donnie 0 Oct 7 16:26 somescript.sh
[donnie@fedora ~]$ Zobacz, co się stanie, gdy spróbujesz uruchomić ten skrypt:
[donnie@fedora ~]$./somescript.sh
bash: ./somescript.sh: Permission denied
[donnie@fedora ~]$ echo $?
126
[donnie@fedora ~]$ Kod wyjścia 127 zostanie wygenerowany, gdy spróbujesz wykonać nieistniejące po-lecenie:
[donnie@fedora ~]$ donnie
bash: donnie: command not found
[donnie@fedora ~]$ echo $?
127
[donnie@fedora ~]$ Moje imię oczywiście nie jest poprawnym poleceniem powłoki. Kod 128+n oznacza, że wystąpił jakiś krytyczny błąd. Litera n oznacza dodatkową cyfrę dodawaną do 128. Na przykład jeśli uruchomisz polecenie i przerwiesz jego wykony-wanie za pomocą kombinacji klawiszy Ctrl+C, otrzymasz kod 128+2, czyli 130. (Dwójka w tym przypadku wskazuje na konkretny rodzaj błędu o znaczeniu krytycznym). W skryptach powłoki możesz używać standardowych kodów wyjścia do obsługi róż-nych sytuacji. Aby to zobaczyć w praktyce, utwórz skrypt o nazwie netchk.sh i następu-jącej zawartości:
#!/bin/bash
if [[$# -eq 0]]; then
 site="google.com"
else
 site="$1"
fi
ping -c 2 $site > /dev/null
if [[$? != 0]]; then
 echo $(date +%F) . . . Network Failure!
 logger "Could not reach $site."
else

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 229

 echo $(date +%F) . . . Success!
 logger "$site is reachable."
fi Ten skrypt oczekuje, że wywołasz go z argumentem w postaci nazwy hosta, nazwy do-meny lub adresu IP. W pierwszej konstrukcji if-then na początku skryptu widać, że jeśli nie podasz argumentu, skrypt domyślnie użyje domeny google.com. W przeciw-nym razie użyje podanego przez Ciebie argumentu. Następnie spróbuje wykonać pole-cenie ping do wskazanej domeny. Jeśli jego wykonanie się powiedzie, kod wyjścia bę-dzie równy 0. Jeśli się nie powiedzie — będzie to inna wartość. W drugiej konstrukcji if-then widać, że jeśli kod wyjścia jest różny od 0, skrypt wy-świetli komunikat o błędzie sieci i umieści odpowiedni wpis w pliku dziennika syste-mowego (w systemie Fedora ten wpis trafi do pliku /var/log/messages). W przeciwnym razie wyświetli komunikat o sukcesie. Oto jak wygląda przykładowy wynik uruchomie-nia skryptu:
[donnie@fedora ~]$./netchk.sh
2023-10-07 . . . Success!
[donnie@fedora ~]$./netchk.sh www.donnie.com
ping: www.donnie.com: Name or service not known
2023-10-07 . . . Network Failure!
[donnie@fedora ~]$ Niewiele więcej jest do powiedzenia na temat standardowych kodów wyjścia. Zatem w następnym punkcie poznasz kody wyjścia definiowane przez użytkownika.

Kody wyjścia zdefiniowane przez użytkownika Można określić własne kody wyjścia — wystarczy podać argument liczbowy dla pole-cenia exit. Jest to przydatne, gdy zachodzi potrzeba przekazania konkretnego kodu wyjścia do programu zewnętrznego. Doskonałym przykładem jest narzędzie do moni-torowania sieci Nagios.
Uwaga

Nagios to narzędzie, które potrafi monitorować praktycznie każdy rodzaj urządze-
nia w sieci. Może nadzorować różne typy serwerów, stacji roboczych, routerów,
przełączników, a nawet drukarek. Tym, co czyni go tak wyjątkowym, jest modu-
łowa konstrukcja, która umożliwia pracę z wtyczkami. Jeśli musisz monitorować
konkretne urządzenie i okaże się, że nie ma odpowiedniej wtyczki, możesz po pro-
stu przygotować własną. Wtyczki można tworzyć w różnych językach programo-
wania. Mogą one mieć również postać skryptów powłoki.

 Na serwerze lub stacji roboczej, którą chcesz monitorować, możesz zainstalować agenta monitorującego Nagios i utworzyć skrypt powłoki do generowania kodów wyjścia oczekiwanych przez Nagios. Aby poznać sposób działania takiego rozwiązania, przyj-rzyj się poniższemu fragmentowi kodu, który jest częścią większego skryptu:
#!/bin/bash
os=$(uname)

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

230 Linux. Zostań mistrzem skryptów powłoki

quantity=$(cut -f3 -d: /etc/passwd | grep -w 0 | wc -l)
if [$os == Linux]; then
 if [$quantity -gt 1]; then
 echo "CRITICAL. There are $quantity accounts with UID 0."
 exit 2
 else
 echo "OKAY. There is only one account with UID 0."
 exit 1
 fi Ten skrypt analizuje plik /etc/passwd, aby sprawdzić, czy istnieje więcej niż jeden użyt-kownik z identyfikatorem UID równym 0. Jest to istotne, ponieważ wymieniony iden-tyfikator nadaje kontu uprawnienia użytkownika root. W systemie Linux nigdy nie po-winno być więcej niż jedno konto z identyfikatorem UID o wartości 0. W kodzie konstrukcji if-then widać, że jeśli skrypt znajdzie więcej niż jedno takie konto, wów-czas wygeneruje kod wyjścia 2. W przeciwnym razie wygeneruje kod wyjścia 1. Ten kod wyjścia wraz z odpowiadającym mu poleceniem echo są przekazywane do agenta monitorującego Nagios. Następnie ten agent przekaże dane wyjściowe polece-nia echo do serwera Nagios, który z kolei wyświetli komunikat w panelu Nagios. (Cały skrypt przedstawię w dalszej części rozdziału). To w zasadzie wszystko, jeśli chodzi o kody wyjścia. W następnym podrozdziale do-wiesz się nieco więcej na temat polecenia echo.

Więcej informacji o poleceniu echo Już poznałeś najprostszy sposób użycia polecenia echo, które służy do wyświetlania ko-munikatów na ekranie lub zapisywania tekstu do pliku. Teraz przyjrzysz się różnym opcjom formatowania dostępnym dla tego polecenia. Jeśli użyjesz opcji -n, zapobiegniesz tworzeniu nowego wiersza na końcu wyświetla-nego tekstu. Spójrz na poniższy przykład:
[donnie@fedora ~]$ echo -n "The fat cat jumped over the skinny dog."
The fat cat jumped over the skinny dog.[donnie@fedora ~]$ Tej opcji użyj w połączeniu z -e, a zyskasz dostęp do opcji, które wykorzystują ukośnik. Na przykład jeśli chcesz wstawić pionowy znak tabulacji do wiersza tekstu, użyj opcji

-e w połączeniu z \v w następujący sposób:
[donnie@fedora ~]$ echo -e "The fat cat jumped\v over the skinny dog."
The fat cat jumped
 over the skinny dog.
[donnie@fedora ~]$ Aby wstawić tabulator poziomy, użyj opcji \t, na przykład tak:
[donnie@fedora ~]$ echo -e "The fat cat jumped\t over the skinny dog."
The fat cat jumped over the skinny dog.
[donnie@fedora ~]$

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 231

Natomiast jeśli chcesz wstawić ukośnik \ do tekstu, użyj po prostu dwóch kolejnych ukośników w ten sposób:
[donnie@fedora ~]$ echo -e "The fat cat jumped over the thin\\skinny dog."
The fat cat jumped over the thin\skinny dog.
[donnie@fedora ~]$ Nie jesteś ograniczony tylko do wyświetlania wiadomości tekstowych. Możesz również użyć znaku wieloznacznego, aby wyświetlić listę plików znajdujących się w bieżącym katalogu, jak pokazuję w kolejnym przykładzie:
[donnie@fedora ~]$ echo *
1 15827_zip.zip 18.csv 2023-08-01_15-23-31.mp4 2023-08-01_16-26-12.mp4 2023-
08-02_13-57-37.mp4 2023-10-25_price.txt 21261.zip 4-2_Building_an_Alpine_
Container.bak 4-2_Building_an_Alpine_Container.pptx 46523.zip 48986.zip 50645.
zip 54586.zip 70604.zip access_log_parse.sh access_log_parse.txt actorfile_10.
txt actorfile_11.txt actorfile_1.txt actorfile_2.txt actorfile_4.txt
actorfile_5.txt actorfile_6.txt actorfile_7.txt actorfile_8.txt actorfile_9.
txt add_fields.awk add-repos.sh addresses.txt alignment_1.txt alignment_2.txt
alma9_default.txt alma9_future.txt alma_link.t
. . .
. . .
donnie@fedora:~$ Możesz również wyświetlić komunikat wraz z listą plików, na przykład w taki sposób:
[donnie@fedora ~]$ echo -e "These are my files:\n" *
These are my files:
 15827_zip.zip 2023-08-01_15-23-31.mp4 2023-08-01_16-26-12.mp4
. . .
. . .
test.txt yad-form.sh zoneinfo.zip
[donnie@fedora ~]$ Przy odrobinie wyobraźni będziesz w stanie wykorzystać te opcje formatowania, aby poprawić wygląd danych wyświetlanych na ekranie oraz dokumentów tekstowych.
Uwaga

Niestety, mimo że te opcje formatowania dla polecenia echo są bardzo ciekawe,
nie działają one dobrze w niektórych powłokach innych niż bash, na przykład
w dash. W rozdziale 19., poświęconym przenośności skryptów powłoki, pokażę,
jak rozwiązać ten problem za pomocą polecenia printf zamiast echo.

 To by było na tyle, jeśli chodzi o polecenie echo. W następnym podrozdziale przejdziesz do rzeczywistych przykładów, w których użyto omówione wcześniej techniki.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

232 Linux. Zostań mistrzem skryptów powłoki

Kilka rzeczywistych przykładów
omówionych technik W tej części pokażę kilka praktycznych zastosowań dla technik, które dotychczas zo-stały omówione. A właściwie to zamiast tylko pokazywać, pozwolę Ci samodzielnie wy-próbować je w ciekawych i praktycznych ćwiczeniach.
Ćwiczenie praktyczne — stosowanie
konstrukcji if-then To jest prawdziwy przykład z życia wzięty. Kilka lat temu opracowałem ten skrypt jako wtyczkę do systemu monitorowania sieci Nagios. Chodziło o to, aby upewnić się, że złośliwi hakerzy nie dodali nieuprawnionego konta z identyfikatorem UID 0 do pliku
/etc/passwd w komputerach z systemami Linux i FreeBSD. Dzieje się tak, ponieważ każde konto z identyfikatorem UID o wartości 0 w pliku passwd ma pełne uprawnienia użytkownika root. Na pewno nie chcesz, aby jakiekolwiek nieautoryzowane konta miały takie uprawnienia. Problem polega na tym, że w komputerach z Linuksem powinno być tylko jedno konto użytkownika o identyfikatorze UID 0, zaś w systemie FreeBSD są dwa takie konta. (Jedno nosi nazwę toor i ma ustawioną powłokę bash jako domyślną. Drugie konto to
root, które ma ustawioną powłokę csh jako domyślną). Potrzebny jest więc skrypt, który będzie działał w obu tych systemach operacyjnych. (Pamiętaj, że podczas tego ćwicze-nia będziesz modyfikować plik passwd, więc najlepiej jest wykonać je w maszynie wir-tualnej, a nie na rzeczywistym serwerze produkcyjnym). Zwróć uwagę, że kody wyjścia 1 i 2, które otrzymasz podczas wykonywania skryptu, są oczekiwane przez Nagios, aby wskazać stan OKAY lub CRITICAL. Pamiętaj też, że możesz dodać więcej bloków elif, jeśli chcesz sprawdzać inne systemy UNIX lub podobne. (W rzeczywistości zobaczysz, że właśnie dodałem kod przeznaczony do sprawdzania systemów macOS i OpenIndiana). Po tym wstępie przechodzimy do skryptu.

1. Niestety skrypt jest zbyt długi, aby go tutaj w całości przedstawić. Dlatego przejdź do repozytorium z materiałami do książki w serwisie GitHub i pobierz skrypt UID-0_check.sh. Przenieś go do maszyny wirtualnej z Linuksem. Otwórz skrypt w edytorze tekstu i przeanalizuj kod.
2. Uruchom skrypt, aby zobaczyć wygenerowane dane wyjściowe. Powinieneś zobaczyć następujący komunikat:

[donnie@fedora ~]$./UID-0_check.sh
OKAY. There is only one account with UID 0.
[donnie@fedora ~]$

3. OSTRZEŻENIE: Jak wcześniej wspomniałem, to ćwiczenie należy wykonać
w maszynie wirtualnej, a nie w komputerze produkcyjnym. W maszynie wirtualnej z systemem Linux utwórz nowe konto użytkownika. W tym celu skorzystaj z odpowiedniego polecenia tworzenia użytkowników

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 233

w danej dystrybucji Linuksa. Otwórz plik /etc/passwd w edytorze tekstu i zmień wartość identyfikatora UID nowego użytkownika na 0. Pole identyfikatora UID jest trzecim polem w każdym wierszu pliku passwd. Na przykład w tym wierszu identyfikator UID użytkownika Vicky wynosi 1001:
vicky:x:1001:1001::/home/vicky:/bin/bash Zmiana tej wartości na 0 spowoduje, że wiersz będzie przedstawiał się następująco:
vicky:x:0:1001::/home/vicky:/bin/bash

4. Zapisz plik i uruchom skrypt ponownie. Teraz powinieneś zobaczyć komunikat podobny do następującego:
[donnie@fedora ~]$./UID-0_check.sh
CRITICAL. There are 2 accounts with UID 0.
[donnie@fedora ~]$

5. Usuń nowo utworzone konto użytkownika.
6. Utwórz maszynę wirtualną z systemem FreeBSD i zainstaluj w niej pakiety sudo oraz bash, tak jak to wyjaśniłem na początku książki. Skopiuj skrypt UID-0_check.sh do tej maszyny i powtórz kroki od 3. do 5. Tym razem dwa konta są oznaczone jako OKAY, natomiast trzy jako CRITICAL. W ten sposób masz potwierdzenie, że fragment kodu elif [$os == FreeBSD]; then na końcu skryptu poprawnie wykrywa system operacyjny i wykonuje przeznaczony dla niego kod. Koniec ćwiczenia.

Ćwiczenie praktyczne — analiza dziennika
dostępu serwera Apache W tym ćwiczeniu pokażę, jak potężny może być jednowierszowy skrypt powłoki. Jed-nak opracowanie takiego polecenia może być dość skomplikowane i dlatego wyjaśnię, jak je zbudować krok po kroku. Na każdym etapie pracy upewnisz się o poprawności jego działania i dopiero wtedy przejdziesz do następnego etapu. Jeśli jesteś gotowy, zaczynajmy.

1. Przygotuj maszynę wirtualną z systemem Fedora Server, w której jest użyta sieć mostkowa. (Ten rodzaj sieci będzie potrzebny, aby uzyskać dostęp do maszyny wirtualnej z poziomu innych urządzeń, które znajdują się w Twojej sieci).
2. Zainstaluj i uruchom serwer WWW Apache w następujący sposób:

$ sudo dnf install httpd
$ sudo systemctl enable --now httpd

3. Otwórz port 80 w zaporze sieciowej maszyny wirtualnej w następujący sposób:
$ sudo firewall-cmd --permanent --add-service=http
$ sudo firewall-cmd --reload

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

234 Linux. Zostań mistrzem skryptów powłoki

4. W jak największej liczbie innych urządzeń w Twojej sieci uruchom przeglądarkę internetową i wpisz adres IP maszyny wirtualnej. Ten adres powinien wyglądać mniej więcej tak:
http://192.168.0.10 Pamiętaj, że możesz uzyskać dostęp z poziomu zarówno fizycznych komputerów, jak i innych maszyn wirtualnych, które znajdują się w tej samej sieci. Warto również zaznaczyć, że nie ma potrzeby tworzenia własnej strony internetowej, ponieważ domyślna strona testowa serwera Fedora będzie wystarczająca na potrzeby tego ćwiczenia.

5. Wyświetl dziennik dostępu serwera Apache za pomocą następującego polecenia:
$ sudo less /var/log/httpd/access_log Zwróć uwagę, że każdy wiersz rozpoczyna się od adresu IP maszyny, która uzyskała dostęp do tej strony internetowej. Oto przykład:
192.168.0.25 [06/Oct/2023:16:44:15 -0400] "GET /poweredby.png
HTTP/1.1" 200 5714 "http://192.168.0.10/" "Mozilla/5.0 (Windows NT 10.0;
Win64; x64; rv:109.0) Gecko/20100101 Firefox/118.0"

6. Jak widać, źródłowy adres IP znajduje się w pierwszym polu, a poszczególne pola są oddzielone spacjami. Aby wyświetlić tylko listę źródłowych adresów IP, możesz użyć polecenia cut — w jego wywołaniu wskaż spację jako separator i wybierz tylko pierwsze pole. Polecenie i wynik jego wywołania wyglądałyby mniej więcej tak:
[donnie@fedora-server ~]$ sudo cut -d" " -f1 /var/log/httpd/access_log
::1
192.168.0.16
192.168.0.16
192.168.0.27
. . .
. . .
192.168.0.25
192.168.0.25
192.168.0.9
192.168.0.8
192.168.0.8
192.168.0.8
192.168.0.8
[donnie@fedora-server ~]$ Otrzymasz listę adresów IPv4 maszyn, które uzyskały dostęp do tego serwera, z jednym wyjątkiem. Tym wyjątkiem jest adres IPv6 na początku listy, który jest adresem localhost komputera działającego pod kontrolą systemu Fedora Server. (Prawdopodobnie nie zobaczysz tego adresu IPv6, chyba że wyświetlisz stronę testową z poziomu samej maszyny wirtualnej).

7. Do tej pory wszystko idzie dobrze. Udało się wyodrębnić pierwsze pole z danych dziennika serwera Apache. Teraz dodasz drugą część polecenia, która posortuje dane wyjściowe, aby filtr uniq zadziałał poprawnie w następnym kroku. Oto jak to wygląda zmodyfikowana wersja polecenia:
[donnie@fedora-server ~]$ sudo cut -d" " -f1 /var/log/httpd/access_log | sort

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 235

Jeżeli użyjesz polecenia sort bez opcji -n, lista nie zostanie posortowana w odpowiedniej kolejności liczbowej. Jednak na tym etapie nie ma to znaczenia.
8. Kolejnym krokiem jest usunięcie z danych wyjściowych powtarzających się adresów IP oraz zliczenie, ile razy każdy z nich występuje w pliku źródłowym. Oto jak wygląda zmodyfikowane polecenie:

[donnie@fedora-server ~]$ sudo cut -d" " -f1 /var/log/httpd/access_log | sort |
uniq -c

 1 ::1
 11 192.168.0.16
 4 192.168.0.25
 4 192.168.0.27
 4 192.168.0.8
 1 192.168.0.9
[donnie@fedora-server ~]$

9. Teraz przeprowadzisz sortowanie według liczby wystąpień każdego adresu IP w odwrotnej kolejności liczbowej. Zrobisz to w następujący sposób:
[donnie@fedora-server ~]$ sudo cut -d" " -f1 /var/log/httpd/access_log | sort |
uniq -c | sort -nr

 11 192.168.0.16
 4 192.168.0.8
 4 192.168.0.27
 4 192.168.0.25
 1 192.168.0.9
 1 ::1
[donnie@fedora-server ~]$

10. Skoro masz pewność, że polecenie działa poprawnie, utwórz skrypt o nazwie
ipaddress_count.sh i następującej zawartości:
#!/bin/bash
cut -d" " -f1 /var/log/httpd/access_log | sort | uniq -c | sort -nr Pamiętaj, że do jego uruchomienia są wymagane uprawnienia administratora (sudo).

11. Na koniec nieco ulepszysz przykładowy skrypt. Dodaj kod, który zapisze dane wyjściowe do pliku tekstowego z nazwą zawierającą znacznik czasu. Gotowy skrypt będzie przedstawiał się następująco:
#!/bin/bash
timestamp=$(date +%F)
echo "These addresses have accessed this webserver as of $timestamp." >
ipaddress_list_$timestamp.txt
cut -d" " -f1 /var/log/httpd/access_log | sort | uniq -c | sort -nr >>
ipaddress_list_$timestamp.txt Oczywiście istnieją inne programy, które wykonują bardziej kompleksową analizę plików dziennika serwera WWW. Jednak dzięki omówionemu tutaj skryptowi możesz szybko sprawdzić, kto uzyskuje dostęp do Twojego serwera. Koniec ćwiczenia. Możesz teraz przejść do ostatniego ćwiczenia.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

236 Linux. Zostań mistrzem skryptów powłoki

Ćwiczenie praktyczne — testy beta nowego
dysku twardego Ostatni przykład dotyczy doświadczenia, które miałem kilka lat temu. Wtedy to firma Western Digital zaprosiła mnie do udziału w testach beta nowego modelu dysku twar-dego. Moim zadaniem było jedynie utrzymanie dysku w ciągłym działaniu przez cały czteromiesięczny okres testów, a następnie zebranie danych z dziennika BIOS-u dysku po zakończeniu testów. Jednak postanowiłem pójść o krok dalej i napisałem skrypt po-włoki, który codziennie automatycznie zbierał dane o wydajności dysku. Podobnie jak w przypadku poprzednich ćwiczeń także to wykonaj w swojej maszynie wirtualnej z systemem Fedora Server.

1. Aby zbierać dane o wydajności dysku, musisz zainstalować kilka pakietów. Zrobisz to za pomocą następującego polecenia:
$ sudo dnf install sysstat smartmontools

2. Uruchom usługę sysstat i upewnij się, że jest aktywna. W tym celu wydaj przedstawione tutaj polecenia:
$ sudo systemctl start sysstat
$ systemctl status sysstat

3. Do zbierania danych wykorzystasz komponent sar z pakietu sysstat. Jednak zanim jakiekolwiek dane będą dostępne, minie kilka minut. W międzyczasie możesz wygenerować trochę aktywności na dysku twardym poprzez przeprowadzenie aktualizacji systemu. Zrób to w następujący sposób:
$ sudo dnf -y upgrade

4. Zapoznaj się ze stroną podręcznika systemowego man dla polecenia sar i zwróć uwagę na typy danych, które można zbierać za pomocą różnych jego opcji. Niektóre z tych opcji zostały użyte w skrypcie powłoki. Ten skrypt jest zbyt obszerny, aby go tutaj w całości przedstawić. Dlatego pobierz plik hard_drive.sh z repozytorium w serwisie GitHub. Otwórz plik w edytorze tekstu i przeanalizuj. Wszystkie koncepcje użyte w tym skrypcie zostały już omówione, więc powinieneś być w stanie zrozumieć sposób jego działania.
5. Ostatnie polecenie w skrypcie to smartctl i wymaga ono uprawnień sudo. Dlatego będziesz musiał użyć sudo, aby uruchomić skrypt, na przykład w taki sposób:

$ sudo ./hard_drive.sh Uzbrój się w cierpliwość, ponieważ wykonanie tego zadania zajmie kilka minut. Pamiętaj też, że wirtualny dysk maszyny wirtualnej nie jest rozpoznawany przez
smartmontools. Dlatego w raporcie pojawią się pewne komunikaty ostrzegawcze.

6. Po zakończeniu działania skryptu zajrzyj do raportu, który został wygenerowany w katalogu Drive_Reports.
7. Możesz również uruchomić ten skrypt w swoim fizycznym komputerze z Linuksem. Powinien działać na większości dystrybucji, o ile masz zainstalowane pakiety sysstat i smartmontools oraz uruchomioną usługę sysstat.

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 237

Koniec ćwiczenia. To już wszystko w tym rozdziale. Poniżej znajdziesz krótkie podsumowanie, a następ-nie możesz przejść do następnego rozdziału.
Podsumowanie W tym rozdziale omówiłem ogromną ilość materiału i mam nadzieję, że Cię nim nie przytłoczyłem. Moim celem było przedstawienie kompleksowego przeglądu koncepcji i technik, których można użyć do tworzenia funkcjonalnych skryptów powłoki. Zaczą-łem od wyjaśnienia technik charakterystycznych dla skryptów powłoki, a następnie przeszedłem do technik wspólnych dla większości języków programowania. Tak naprawdę to jeden z najfajniejszych aspektów poznawania tematu tworzenia skryptów powłoki. Jest to o wiele łatwiejsze do opanowania niż języki programowania wyższego poziomu — takie jak C, Java czy Rust — a jednocześnie niezwykle przydatne. Co więcej, ucząc się skryptów powłoki, poznajesz również konstrukcje i koncepcje, które mają zastosowanie w tych językach. Dlatego jeśli planujesz w przyszłości nau-czyć się innego języka programowania, nauka skryptów powłoki może być świetnym przygotowaniem. Pomimo że przedstawiłem ogromną ilość materiału, to jeszcze nie koniec. W następ-nym rozdziale zaprezentuję kilka dodatkowych sposobów filtrowania i przeprowadza-nia operacji na tekście. Do zobaczenia!
Pytania

1. Który z poniższych fragmentów kodu przedstawia najczęściej preferowany sposób podstawiania poleceń?
A. `polecenie`
B. %(polecenie)
C. "polecenie"
D. $(polecenie)

2. Jak utworzyć tablicę imion?
A. set array=names
names=(Vicky Frank Cleopatra Katelyn)

B. array=names
names=(Vicky Frank Cleopatra Katelyn)

C. array names
names=(Vicky Frank Cleopatra Katelyn)

D. declare names
names=(Vicky Frank Cleopatra Katelyn)

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

238 Linux. Zostań mistrzem skryptów powłoki

E. declare -a names
names=(Vicky Frank Kleopatra Katelyn)

3. Jak sprawdzić kod wyjścia ostatnio wykonanego polecenia?
A. echo $#
B. echo $?
C. echo $$
D. echo $!

4. Chcesz zdefiniować pętlę, która odczyta listę imion, a następnie zapisze te imiona do innego pliku tekstowego. Jednak chcesz pominąć dwa z tych imion. Które z poniższych poleceń spowoduje, że Twój skrypt zrobi to poprawnie?
A. break
B. skip
C. continue
D. stop

5. Chcesz porównać dwie wartości liczbowe, aby sprawdzić, czy są równe. Którego z następujących operatorów użyjesz?
A. =
B. -eq
C. ==
D. -ne

Lektura uzupełniająca
 Artykuł What is the Bash Shebang and How to Use it na stronie

https://www.rosehosting.com/blog/what-is-the-bash-shebang/.
 Artykuł An introduction to parameter expansion in Bash na stronie

https://opensource.com/article/17/6/bash-parameter-expansion.
 Sekcja Shell Parameter Expansion (w podręczniku powłoki bash) na stronie

https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter
-Expansion.html.

 Artykuł Introduction to if na stronie https://tldp.org/LDP/Bash-Beginners
-Guide/html/sect_07_01.html.

 Artykuł Bash while Loop na stronie https://linuxize.com/post/bash-while-loop/.
 Artykuł How to Find Most Used Disk Space Directories and Files in Linux na stronie

https://www.tecmint.com/find-top-large-directories-and-files-sizes-in-linux/.
 Artykuł Standard Exit Status Codes in Linux na stronie

https://www.baeldung.com/linux/status-codes.
 Artykuł How to Use the sar Command on Linux na stronie

https://www.howtogeek.com/793513/how-to-use-the-sar-command-on-linux/.
Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Rozdział 8  Podstawowa konstrukcja skryptu powłoki 239

Odpowiedzi
1. d
2. e
3. b
4. c
5. b

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Skorowidz 633

Skorowidz

A ACL, access control list, 513, 516, 518 agent użytkownika, user agent, 377 akcja, 370 algorytm yescrypt, 463 aliasy, 102 powłoki PowerShell, 620 analiza dzienników zdarzeń, 286 argumenty powłoki, 43 atak typu cross-site scripting, XSS, 286 typu directory traversal, 383 wstrzykiwania kodu JavaScript, 286 z wykorzystaniem dowiązań symbolicznych, 536 audyt, 454 AWK, 368 analiza dzienników dostępu, 374 dane wejściowe z poleceń, 387 deklarowanie zmiennych, 398 działania, 370 implementacje, 369 konstrukcje warunkowe, 397 określanie generacji procesora, 401 pętla for, 405 pętla while, 398 rekordy wielowierszowe, 410 struktura skryptu, 395 sumowanie liczb w wierszu, 399 tablice, 405 wyrażenia regularne, 385 wyszukiwanie użytkowników, 372 wzorce, 370 zmienne wbudowane, 384, 398
B bashdb, 579 debugowanie skryptu, 580 instalacja, 580 uzyskiwanie pomocy, 582 bashizm, 486 bezpieczeństwo, 476 skryptów powłoki, 509 ścieżek dostępu, 553 biblioteki funkcji, 304 busybox, 369

C CGI, Common Gateway Interface, 549 ciąg tekstowy opcji, 443 tekstowy trybu pliku, 51 cron, 147, 176, 183
D dane dynamiczne, 340 statyczne, 335 Debian edytor domyślny, 97 pliki konfiguracyjne globalne, 96 pliki konfiguracyjne użytkowników, 97 debugger powłoki bash, Patrz bashdb debugowanie skryptów powłoki, 560, 568, 580 deskryptor pliku, 79 dopasowywanie wzorców, 209 dostęp do skryptów, 510 dowiązanie symboliczne, 51, 98, 188, 483 drukowanie, 181 dystrybucja, 26 dzienniki dostępu, 374
E edytor tekstowy, 32 domyślny, 97 gedit, 35 kwrite, 35 leafpad, 35 nano, 32 Notatnik, 35 vim, 32, 34, 98 WordPad, 35 eksportowanie zmiennej, 71 emulator terminala, 27 EOF, end of file, 350
F Fedora pliki konfiguracyjne globalne, 93 pliki konfiguracyjne użytkowników, 94

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

634 Linux. Zostań mistrzem skryptów powłoki

filtrowanie tekstu narzędzie grep, 272 narzędzie sed, 243 wyrażenia regularne, 240 filtry strumieni tekstowych, 107–183 formularz, 417, 426 FreeBSD, 467 funkcja, 294 eval, 546 alternatywy, 551 bezpieczne użycie, 547 niebezpieczny sposób użycia, 548 wstrzykiwanie poleceń, 546 printf, 407 funkcje definiowanie, 296 matematyczne, 616 powłoki, 99 przekazywanie parametrów, 299 przekazywanie wartości, 300 trygonometryczne, 324 tworzenie, 298 w skryptach powłoki, 298 wywoływanie, 298 zastosowanie, 306
G gawk, 369 globbing plików, 593, 594, 600 gniazda, 51 graficzny interfejs użytkownika, 35, 416, 423, 430
H harmonogram systemd, 176, 183 hasła, 539 szyfrowanie, 540 here document, 334 użycie z danymi dynamicznymi, 340 statycznymi, 335 wykorzystanie funkcji, 343 hiperłącze, 31 historia poleceń, 59
I identyfikator UID, 462 ImageMagick, 354 graficzny interfejs użytkownika, 423 instalacja, 356 przetwarzanie wsadowe plików, 363

skrypty Freda, 364 wyświetlanie obrazów, 357 zmiana wielkości obrazu, 359 instalacja gsed w systemie FreeBSD, 244 gsed w systemie macOS, 245 gsed w systemie OpenIndiana, 245 oprogramowania, 181 interfejs graficzny, 35, 416, 423, 430 logowania poprzez SSH, 435 programistyczny aplikacji, API, 307 inżynieria społeczna, 555
J język AWK, 368 programowania interpretowany, 36 kompilowany, 36
K kalendarz, 418 katalog, 51 domowy, 543, 544 tymczasowy /tmp/, 535 klasy znaków, 167 kody wyjścia standardowe, 226 użytkownika, 229 komunikat błędu, 206 konfiguracja globalna, 93 listy kontroli dostępu, 513, 516, 518 sudo, 510 konstrukcja $(), 210, 212 [. . .], 487 [[. . .]], 486 case, 221 case-esac, 305, 329 do-while, 215 for, 218 for-in, 217 if-elif-else, 455 if-then, 193, 213, 232 if-then-elif, 214 if-then-else, 214, 463, 465 until, 220 kotwice pozycyjne, 241, 242 kwalifikatory globbingu, 598

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Skorowidz 635

L liczby całkowite, 313, 318 zmiennoprzecinkowe, 319, 407 lista kontroli dostępu, ACL, 513, 516, 518 rozwijana, 419 literały, 241
M makro, 69 mawk, 369 mechanizm cron, 147, 176, 183 sudo, 37, 510 menedżer plików, 421 metaznaki, 62, 241 kotwice pozycyjne, 241 modyfikatory, 241–243 zestawy znaków, 241, 242 moduł datetime, 606 mathfunc, 605 modyfikatory, 241–243
N nadpisywanie pliku, 78 narzędzie, Patrz także polecenie bc, 319 używanie plików programu, 324 używanie w skryptach powłoki, 327 używanie w trybie interaktywnym, 320 checkbashisms, 494–497 date, 606 dialog automatyczny wybór narzędzia, 431 tworzenie interfejsu logowania, 435 tworzenie interfejsu użytkownika, 428 tworzenie okna dialogowego, 428 tworzenie widżetów, 433 dtrace, 524 dtruss, 524 expect automatyzacja odpowiedzi, 348 jawne hasło, 351 find, 47 firewall, 471 grep, 272 analiza plików, 278 wyszukiwanie z użyciem składni rozszerzonej, 280

wyszukiwanie bez rozróżniania wielkości liter, 275 wyszukiwanie ciągu tekstowego, 272 wyszukiwanie numerów, 278 wyszukiwanie pełnych wyrazów, 274 wyszukiwanie powtarzających się słów, 280 wyszukiwanie słów na literę p, 281 wyszukiwanie słów zawierających cyfry, 282 znak specjalny ^, 279 znaki powrotu karetki, 276 mktemp, 537 octal dump, 150 Regex101, 285 RegexBuddy, 284 RegexMagic, 284 sed dodawanie wiersza tekstu, 259, 261 dodawanie wierszy do pliku, 265 kopiowanie wierszy z pliku, 267 modyfikowanie listy, 249, 250 modyfikowanie tekstu, 247 modyfikowanie wierszy w pliku, 266 operacje sekwencyjne, 261 przenośność, 244 skrypty złożone, 268 usuwanie elementów z listy, 256 usuwanie pustych wierszy, 258 używanie polecenia q, 263 używanie polecenia r, 265 używanie polecenia w, 264 w skryptach powłoki, 270 zastępowanie tekstu, 246, 267 zastępowanie wyrazów, 253 zmiana wiersza tekstu, 262 zmiana wystąpień słów, 262 shall, 504–506 shc, 520, 545 deszyfrowanie plików binarnych, 527 instalacja, 520 niewykrywalne pliki binarne, 524 testowanie, 520 zaciemnianie skryptów, 520 shellcheck, 498 wybór powłoki, 499 strace, 524 strings, 457 truss, 524 UnSHc, 528 xargs, 474 xdialog, 568 automatyczny wybór narzędzia, 431 tworzenie interfejsu logowania, 435 tworzenie interfejsu użytkownika, 430 xtrace, 571, 581
Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

636 Linux. Zostań mistrzem skryptów powłoki

narzędzie, Patrz także polecenie yad menedżer plików, 416 narzędzie do weryfikacji plików, 421 programowanie przycisków formularza, 426 tworzenie formularzy, 417 tworzenie interfejsu użytkownika, 416, 423 tworzenie rozwijanej listy, 419 nawias klamrowy, 54, 200, 397 kwadratowy, 192 nawk, 369 nazwane potoki, 51 numer rekordu, number of record, 384
O obliczanie wyrażeń, 314, 316, 318, 603 obrazy wyświetlanie właściwości, 359 zmiana wielkości, 359 opcja allexport, 100, 101 noclobber, 78, 84, 100 opcje powłoki, 98 operator &&, 192 :=, 205 ||, 192 <, 80 <<, 334 =, 205 ==, 391, 488 >, 77, 84 >|, 77 >>, 77, 81 2>, 81 2>>, 81, 83 dodawania, +, 314 dzielenia, /, 314 logiczny AND, I, &&, 49, 345 logiczny OR, LUB, ||, 49, 345 mnożenia, *, 314 negacji, !, 192 odejmowania, -, 314 reszty z dzielenia, %, 314 stderr, 81 stdin, 80 stdout, 80 trójargumentowy, ?:, 408 oprogramowanie CUPS, 181

P pakiet gsed, 244 openssl, 540 pandoc, 341 snap, 612 sshpass, 540 parametr pozycyjny, 92, 223, 299 TTL, 454 pętla do-while, 215 for, 44, 218, 405, 472 for-in, 217 until, 220 until-do, 328 while, 216, 398, 418, 419 pętle działające w nieskończoność, 565 plik .bash_logout, 95, 97 .bash_profile, 95 .bashrc, 95, 97, 104 .profile, 97 /etc/bashrc, 93 /etc/profile, 93 pliki, 51 .csv, 377, 380 .json, 377 .tsv, 380 binarne, 527 CSV, 289 deszyfrowanie, 527 graficzne, 363 konfiguracyjne powłoki, 89, 92 użytkowników, 94, 97 w Debianie, 96 w Fedorze, 93 niewykrywalne programów, 524 programu bc, 324 rozszerzone dopasowywanie, 593 tymczasowe tworzenie, 536, 537 zabezpieczanie, 534 używanie deskryptora, 79 wykonywalne zabezpieczanie, 544 zapobieganie nadpisywaniu, 78 podpowłoka, 195 podręcznik systemowy, 28 sekcje, 29 podstawianie poleceń, 210 wzorca, 210
Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Skorowidz 637

polecenia historia, 59 interaktywne wykonywanie, 44 jednoliterowe, 41 łączenie, 45 narzędzie find, 47 opcje, 41 pełnowyrazowe, 41 podstawianie, 210 PowerShell, 623 rekurencyjne wykonywanie, 56 sekwencje, 45 struktura, 40 typu cmdlet, 620 warunkowe wykonywanie, 46 polecenie a, 258 alias, 103 apropos, 30 awk, 368–392, 370, 395–412, 464 bash, 70 bc, 320–331 break, 218, 583 c, 261 cat, 72, 73, 109–114, 202 clear, 102 cls, 102 continue, 219 convert, 362, 425 convert -flop, 361 convert -resize, 359, 364 cp, 54 curl, 308 cut, 115, 116 d, 255, 257 date, 211, 317, 561 declare -f, 297 declare -F, 295 declare -i, 318 display, 357 echo, 68, 197, 230, 568 problemy z przenośnością, 491 z wyrażeniami matematycznymi, 316 egrep, 280 env, 482 eval, 546 examine, 581 exit, 227, 229 expand, 136 expect, 348–351 export, 71 expr, 314, 315 fgrep, 283 fi, 193 find, 83, 226 opcje wyszukiwania, 47–53 wykonywanie wielu operacji, 53

firewall-cmd, 472 fmt, 160–162, 179 getopt, 442 getopts, 441, 443–450 grep, 272–284 head, 146–149 identify, 359 info info, 31 join, 119–121, 132 last, 470 less, 71 lp, 182 lpr, 182 ls, 28, 41, 103, 594 ls -d, 595 ls -l, 51, 72 ls -ld, 595 man, 28 man -aw, 29 man -f, 29 man -k, 30 mktemp -d, 539 mlr --ojson, 377 mlr --p2c, 376 nl, 139–145 nmap, 460 od, 150, 152–154 p, 264 passwd, 466 paste, 117, 118 ping, 459 pr, 175–180 print, 324, 391 printf, 29, 407–410 ps, 388, 389 ps aux, 387 q, 263 r, 265 return, 301 rm -f, 538 s, 248, 250, 255 scale, 320 sed, 243–72 set, 99, 225 set +o, 100 set -e, 576–579 set -o, 100 set -u, 574, 575 shellcheck, 498–504 shellcheck -s, 500 shopt, 91 sleep, 216, 570 sort, 122–132, 379, 382 sort -t, 379 source, 304 split, 163, 164
Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

638 Linux. Zostań mistrzem skryptów powłoki

polecenie sudo, 37, 50 tac, 114, 115 tail, 148, 149 tee, 84, 85 touch, 561 tr, 80, 165–172 tr -d, 276 truss, 545 unalias, 105 unexpand, 138 uniq, 155–158, 278, 279 uniq -c, 376 unset, 197 vi, 34 w, 264 wc, 159, 160 whatis, 29 which, 104 whoami, 212, 213 xargs, 172–175, 475 zcat, 287 zmodload, 605 pomoc, 28, 624 porty filtrowane, filtered, 456 otwarte, open, 456 zamknięte, closed, 456 POSIX, 483, 493 potoki, 71 PowerShell, 26, 611 powłoka, 25 bash, 25–27, 481 cechy specyficzne, 486 dowiązanie symboliczne, 483 konfiguracja środowiska, 482 pliki konfiguracyjne, 89, 92 sesje, 91 bez logowania, 91 csh, 467, 588 drukowanie plików tekstowych, 181 interaktywna, 91 logowania, 91 nieinteraktywna, 91 posh, 494 PowerShell, 611 aliasy, 620 funkcje matematyczne, 616 instalacja, 612, 613 polecenia, 614 polecenia typu cmdlet, 620 pomoc, 624 programowanie obiektowe, 619 przegląd poleceń, 623 skrypty, 619, 625 uruchamianie, 613

poziomy, 197 sh, 187, 467 standardowe kody wyjścia, 226 ustawianie opcji, 98 zmienne, 197 zsh, 25, 26, 588 cechy skryptów, 590 globbing plików, 593, 594, 600 instalacja, 588 moduły zewnętrzne, 604 podstawianie wartości, 590 tablice, 601 zamiana wielkości liter, 592 zastępowanie ciągów tekstowych, 591 powłoki różnice, 485 zgodność z POSIX, 493 procesy, 389 programowanie obiektowe, OOP, 619 projekt dokumentacji Linuksa, 31 przekierowanie wejścia-wyjścia, 76 przesunięcie zmiennej, 207 pułapka, trap, 538
R regex, 241 rekord, 370 rekurencyjne wykonywanie poleceń, 56 root, 461, 467, 512 rozszerzenie .ps1, 619 .sh, 619 rozszerzone dopasowywania wzorców, extended globbing, 594 rozwijanie katalogów, 596 plików, 597 zmiennych, 203, 590
S secure shell, SSH, 188 sesje powłoki, 91 SGID, Set Group Identity, 530 silnik pdflatex, 341 skanowanie portów, 456 składnia here document, 334, 340, 343 skrypty analiza dziennika dostępu, 233 analiza dzienników zdarzeń, 286 audyt konta użytkownika root, 461, 467 automatyzacja instalacji repozytoriów, 288 narzędzie expect, 348 składnia here document, 334

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

Skorowidz 639

bezpieczeństwo, 509 blokowanie adresów IP, 471 debugowanie, 560, 580 dla zapory sieciowej, 471 Freda dla ImageMagick, 364 identyfikacja systemu operacyjnego, 454 informacje o procesorze, 627 konwersja rozszerzeń plików, 355 modyfikowanie wielu plików, 286 monitorowanie aktywności użytkownika, 469 Tecmint, 448 opcje, 441 parametry pozycyjne, 223 powłoki, 32 PowerShell, 619, 625 zsh, 590 przenośne, 480 przeprowadzanie audytu, 454 rozróżnianie wielkości liter, 198 sed, 244, 268, 270, 289 skanowanie portów, 456 testowanie dysku twardego, 236 powłok, 486 tworzenie, 186 kopii katalogu, 188 tablic, 200–202 tablic przenośnych, 488 zmiennych, 197 typowe błędy, 561 usuwanie zmiennych, 197 uzupełnianie pól w pliku, 289 używanie funkcji, 298 warunek testowy konstrukcja if-then, 193 polecenie test, 191 użycie nawiasu kwadratowego, 192 wieloplatformowe, 626 wykorzystanie API CoinGecko, 307, 447 zaciemnianie, 520 zarządzanie dostępem, 510 zestawienie testów, 194, 195 zgodne ze standardem POSIX, 493 zliczanie zalogowanych użytkowników, 189 związane z bezpieczeństwem, 476 słowo kluczowe awk, 396 elif, 214 export, 101 fi, 213 function, 297 in, 217 licensing, 335 source, 304 test, 191 then, 193

sortowanie, 122 naturalne, 376 standard POSIX, 483, 493 standardowy strumień błędów, stderr, 77, 81 wejścia, stdin, 76, 79 wyjścia, stdout, 76, 78 sterownik drukarki, 181 sudo, 37, 510 SUID, Set User Identity, 530 system plików shadow, 463 stron info, 31 systemd, 176, 183 systemy typu BSD, 481 szyfrowanie haseł, 540
Ś ścieżka dostępu, 553 wyszukiwania, 47
T tablice, 405, 472 przenośne, 488 tworzenie, 200–202 w zsh, 601 terminal, 25 testowanie warunków, 191–197 testy, 191 przenośne, 486 zestawienie, 194, 195 token, 334 tworzenie bibliotek funkcji, 304 formularzy, 417 funkcji, 298 graficznego interfejsu użytkownika, 415, 416 niewykrywalnych plików binarnych, 524 plików tymczasowych, 536, 537 przenośnych tablic, 488 rozwijanej listy, 419 skryptów powłoki, 32, 186 tablic, 200–202
U UID, user id numbers, 372 uprawnienia administratora, 37, 510 do plików, 598

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

640 Linux. Zostań mistrzem skryptów powłoki

uprawnienie SGID, 530 SUID, 530 urządzenia blokowe, 51 znakowe, 51 użytkownik root, 461, 467, 512
W wartość null, 203, 204 wbudowane hasła, 524 wejście, 79 widżet, 428, 433 wiersz poleceń ustawianie opcji powłoki, 98 użycie funkcji eval, 546 shebang, 187, 197, 346 właściwości obrazu, 359 wstrzykiwanie poleceń, 546 wyciek danych wrażliwych, 534 wyjście, 78 błędów, 81 wyrażenia matematyczne, 314, 316 regularne, 195, 240, 385 program RegexBuddy, 284 program RegexMagic, 284 w narzędziu grep, 280, 283 wzorzec wyszukiwania, 278–280 zaawansowane, 280 ze stałymi ciągami tekstowymi, 283 wyszukiwanie, 47–53, 272–280 wyszukiwarka internetowa, 32 wyświetlanie komunikatu błędu, 206 wywołania systemowe, 524 wzorce, 209 w AWK, 370
Z zapora sieciowa, 471 zbiory znaków, 241 zmienna środowiskowa DISPLAY, 569, 581 PATH, 553 zmienne całkowite, 318 deklarowanie, 398 dopasowanie wzorca, 209

eksportowanie, 71 niezainicjalizowane, 562, 574 niezdefiniowane, 207 programistyczne, 70 przypisywanie wartości, 203–205 rozwijanie, 203, 590 środowiskowe, 67, 90 tylko do odczytu, 199 używanie przesunięć, 207 w skryptach, 197 wbudowane języka AWK, 384 wynikowe, 302 zdefiniowane, 207 znak #, 104, 187, 200 $, 68, 70, 339, 370, 464 %, 209 *, 43, 200, 209, 314, 593 -, 203, 206 ?, 207, 593 @, 200 \, 69, 314, 323 ^, 275, 279, 322, 594 |, 71, 418 ~, 390 +, 204 podkreślenia, 209 zachęty, 68 znaki $@, 300 &&, 46, 192 *), 222 :-, 203 :?, 206 ;;, 221 \", 381 \?, 277 ||, 46, 192 <<-, 334, 336, 337 cudzysłowu, 561 cytowania, 61 używanie, 63 klasy, 167 nowego wiersza, \n, 152 powrotu karetki, \r, 152 , 276 sterujące, 61 używanie, 62 zwykłe, 62

Poleć książkęKup książkę

https://helion.pl/rf/lizomi
https://helion.pl/rt/lizomi

https://program-partnerski.helion.pl

	!5-16_spis
	08
	Blank Page
	Blank Page

