
  i

Learning
eBPF

High performance observability, networking,
and security programming on Linux

www.bpbonline.com

Michael Kehoe

ii 

www.bpbonline.com

First Edition 2025
Copyright © BPB Publications, India
ISBN: 978-93-65898-859

All Rights Reserved. No part of this publication may be reproduced,
distributed or transmitted in any form or by any means or stored in a
database or retrieval system, without the prior written permission of the
publisher with the exception to the program listings which may be entered,
stored and executed in a computer system, but they can not be reproduced
by the means of publication, photocopy, recording, or by any electronic and
mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true and correct to the best of
author’s and publisher’s knowledge. The author has made every effort to
ensure the accuracy of these publications, but the publisher cannot be held
responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of
their respective owners but BPB Publications cannot guarantee the accuracy
of this information.

  iii

Dedicated to

My Mum, Dad, and brother for their
unwavering love, support, and belief in me

iv 

About the Author

Michael Kehoe is a distinguished author, speaker, and senior staff
cloud and reliability architect at Confluent. In his current role, he is
spearheading a comprehensive initiative to revamp the company’s
cloud platform.

Previously, as a senior staff site reliability engineer (SRE) at
LinkedIn, Michael played a pivotal role in orchestrating LinkedIn’s
seamless transition to the Microsoft Azure platform. His expertise in
reliability engineering was instrumental in ensuring the platform’s
stability and performance. During his tenure at LinkedIn, Michael
led critical initiatives in incident response, disaster recovery, visibility
engineering, and reliability principles. He was also embedded with
the profile, traffic, and espresso (KV Store) teams. Having successfully
overseen the construction of LinkedIn’s final physical data center,
Michael assumed a pivotal role in shaping the infrastructure blueprint
for LinkedIn’s expansion into Microsoft Azure.

  v

About the Reviewers

v	Yusheng Zheng is a software engineer, researcher, and open-
source advocate with a strong passion for eBPF and large language
models (LLMs). As the creator of the eunomia-bpf project,
Yusheng has been actively involved in advancing lightweight
eBPF development frameworks, exploring their potential beyond
Linux and integrating them with emerging technologies. She has
spoken at major conferences, including KubeCon, eBPF Summit,
and the Linux Plumbers Conference. When not immersed in code,
she shares her insights and learnings on her blogs and enjoys
collaborating on innovative projects with fellow developers and
researchers.

v	Hudson Coutinho: Working as a DevOps engineer since 2018,
he has participated in strategic projects for large national and
international companies, dedicating myself to building and
improving robust and scalable DevOps architectures.

Throughout their career, they have executed several migrations
to the cloud, created environments in Kubernetes, created micro-
services in Docker, implemented complete CI/CD pipelines, and
optimized internal processes, always with a keen eye for efficiency
and security.

As head of DevOps, Hudson has led DevOps teams and
multidisciplinary teams, guiding them to achieve results that
are always based on agile principles and focused on automation,
seeking continuous improvement.

vi 

Acknowledgement

First and foremost, I extend my heartfelt appreciation to my family and
friends for their unwavering support and encouragement throughout
this journey. Their love and encouragement have been a constant
source of motivation.

I am immensely grateful to BPB Publications and the team for their
guidance and expertise in bringing this book to fruition. Their support
and assistance were invaluable in navigating the complexities of the
publishing process.

I would also like to acknowledge the reviewers, technical experts,
and editors who provided valuable feedback and contributed to the
refinement of this manuscript. Their insights and suggestions have
significantly enhanced the quality of the book.

Last but not least, I want to express our gratitude to the readers who
have shown interest in this book. Your support and encouragement
have been deeply appreciated.

Thank you to everyone who has played a part in making this book a
reality.

  vii

Preface

In today's complex computing environment, having a deep
understanding of system behavior is a necessity. Maintaining
performance, efficiency, security, and reliability, demands deep insights
into the inner workings of our infrastructure. Traditional monitoring
and debugging tools, while useful, are often unhelpful when faced
with the scale and intricacy of modern systems. These tools often
operate at a high level, providing aggregate metrics that do not provide
information about individual processes, network interactions, or
kernel events. They can also introduce significant overhead, impacting
the very systems they are supposed to observe. This is where extended
Berkeley Packet Filter (eBPF) fills these gaps, offering a revolutionary
approach to system observability.

eBPF is the evolution of the classic Berkeley Packet Filter (cBPF)
which was originally created in the 1990’s. It allows for user-defined,
sandboxed bytecode to be executed by the kernel. eBPF represents
a paradigm shift in how we can interact with and use the kernel,
opening up unprecedented possibilities for innovation in areas such as
observability, networking, and security. This book will move beyond
theoretical concepts and demonstrate the practical applications of
eBPF, providing concrete examples of how to leverage eBPF for a wide
range of applications.

Divided into ten chapters, this book provides a complete guide to the
eBPF ecosystem. We start by exploring the foundations of classic BPF,
understanding its history, and examining its core architecture. From
there, we observe the evolution of eBPF, detailing its history, features,
and the key advancements that distinguish it from its predecessor.

Chapter 3 provides a deep dive into eBPF programming concepts,
covering essential elements such as the bpf() system call, program
types, attach types, maps, and helper functions. Chapter 4 then
explores the diverse array of libraries and frameworks available for

viii 

eBPF development, ranging from libbpf and BCC to language-specific
options like ebpf-go and Aya.

Chapter 5 guides you through writing your first eBPF programs
using different programming languages and frameworks, providing
hands-on experience and practical examples. Chapter 6 explains the
crucial aspects of eBPF portability and deployment, introducing BPF
Type Format (BTF) and Compile Once, Run Everywhere (CO-RE) for
building and deploying eBPF programs at scale.

The next three chapters take the theoretical knowledge that has been
learned so far and demonstrate the practical applications of eBPF.
Chapter 7 focuses on eBPF observability, focusing on tracing and
analyzing system behavior with minimal overhead. Chapter 8 explores
eBPF networking, covering a wide range of program types and their
use cases in multiple levels of the Linux network stack including load-
balancing, traffic shaping, and socket filtering. Chapter 9 examines the
security applications of eBPF, discussing how it can be leveraged for
implementing controls and monitoring system activity.

Finally, Chapter 10 provides a look into the future of eBPF, detailing
the growing open-source ecosystem, standardization efforts, and
emerging trends.

Whether you are a software engineer, a network engineer, a security
professional, or simply curious about this emerging technology, This
book will be a valuable resource for anyone seeking to understand,
explore, and master the eBPF ecosystem.

Chapter 1: Classic Berkeley Packet Filter - This chapter provides a
comprehensive introduction to the classic Berkeley Packet Filter
(cBPF), tracing its evolution from its origins in the 1990s as a high-
performance network filtering tool. It explores the architecture of
cBPF, including its components like the network tap, packet filter, and
pseudo-machine, and how they interact to efficiently process network
packets. The chapter also delves into the implementation of cBPF in
Linux, providing code examples and demonstrating its original uses.
It also discusses early applications of cBPF such as tcpdump, and the

  ix

modernization efforts like JIT compilation and seccomp-bpf that laid
the groundwork for the emergence of extended BPF (eBPF).

Chapter 2: Extended Berkeley Packet Filter - This chapter explores
the evolution of the Berkeley Packet Filter (BPF) to eBPF. It details
the history of eBPF, highlighting the challenges and motivations
behind its development. The chapter explores the key features of eBPF,
emphasizing its efficiency, versatility, and safety advantages over
traditional kernel modules. It also provides a comparative analysis
of eBPF and cBPF architectures, outlining the advancements in the
instruction set, register size, and program loading capabilities. The
chapter concludes by examining the differences in virtual machine
implementations, the role of the eBPF verifier and JIT compiler, and
the functionalities of eBPF helpers and maps.

Chapter 3: eBPF Programming Concepts - This chapter provides an
overview of eBPF programming concepts, focusing on the key elements
involved in writing eBPF programs. It begins by introducing the bpf()
system call, the primary interface for user-space interaction with the
eBPF subsystem. It then explains each eBPF program type, exploring
the different categories and their specific purposes, along with the
corresponding attach types that determine where these programs hook
into the kernel. The chapter also examines eBPF maps, detailing their
role as efficient key-value stores for inter-process communication, and
the various map types available. Additionally, it explores eBPF helper
functions and discusses other program primitives such as loops, tail
calls, and return codes.

Chapter 4: eBPF Programming Libraries and Frameworks - This
chapter explores various libraries and frameworks available for eBPF
program development. It discusses the advantages and disadvantages
of writing raw BPF bytecode and then introduces libbpf, a core library
offering high-level and low-level APIs for interacting with eBPF
programs and maps. The chapter also covers the integration of eBPF
with the perf profiling tool, enabling advanced tracing capabilities.
Furthermore, it examines BCC, a popular framework with a rich
collection of tools and examples, and bpftrace, which provides a high-
level language for simplified eBPF program creation. Additionally,

x 

the chapter explores several Go and Rust libraries like gobpf, ebpf-
go, libbpfgo, libbpf-rs, and Aya, offering diverse options for eBPF
development in different programming languages. Finally, it touches
upon eBPF for Windows, demonstrating the growing cross-platform
support for eBPF.

Chapter 5: Writing Your First eBPF Program - This chapter provides
a practical guide to writing your first eBPF programs using various
programming languages and frameworks. It starts by outlining the
necessary steps to set up your development environment, including
configuring kernel settings for eBPF functionality. Then, it dives into
programming with BCC in Python, demonstrating how to write a simple
"Hello World" program using kprobesand a more complex example
utilizing maps and helper functions to count syscalls. The chapter
also explores writing eBPF programs in C with libbpf, showcasing
the process of creating, loading, and attaching BPF programs, along
with using maps and helpers. Furthermore, it provides examples of
eBPF development in Go using ebpf-go and in Rust using libbpf-rs,
highlighting the unique features and functionalities of each framework.
Finally, the chapter concludes with a discussion on best practices for
writing efficient and safe eBPF programs.

Chapter 6: eBPF Portability and Deploying - This chapter focuses
on the practical aspects of deploying eBPF programs in production
environments, with a particular emphasis on portability and
scalability. It introduces BPF Type Format (BTF), a metadata format
crucial for program introspection and portability, and Compile Once,
Run Everywhere (CO-RE), a technology that allows eBPF programs
to be compiled once and run across different kernel versions without
recompilation. The chapter also provides an overview of bpftool, a
command-line utility for managing and interacting with eBPF programs
and maps. It then delves into different deployment approaches,
contrasting the naive method using BCC with the more robust CO-RE-
based approach for production systems. Finally, the chapter discusses
deployment frameworks like systemd and bpfman, highlighting their
features and capabilities for managing eBPF programs at scale, and

  xi

concludes by emphasizing the importance of feature compatibility,
privilege management, unit testing, and staggered deployments for
successful production implementation.

Chapter 7: eBPF Observability - This chapter explores the use of eBPF
for observability, detailing how its high-performance, low-overhead
characteristics enable deep insights into kernel and application
behavior. It introduces various eBPF program types designed for
observability, including kprobes, uprobes, tracepoints, and perf events,
each with its own strengths and use cases. The chapter also examines
libbpf tracing macros that simplify eBPF program development and
discusses the advantages and disadvantages of using eBPF for tracing
compared to other methods. Finally, it provides guidance on selecting
the appropriate eBPF program type based on specific needs and
performance considerations.

Chapter 8: eBPF Networking - This chapter provides a comprehensive
overview of eBPF's applications in networking, showcasing its
versatility and capabilities in enhancing network functionality and
performance. It explores 18 different eBPF program types, each
designed to address specific networking tasks, ranging from socket
filtering and traffic control to XDP programming and segment
routing offering practical guidance on their usage. It also provides
code examples and further references to aid in understanding and
implementing these program types effectively.

Chapter 9: eBPF Security - This chapter focuses on the application
of eBPF for security purposes, exploring its ability to provide
comprehensive system visibility and implement security controls.
It introduces various eBPF program types designed for security
monitoring and enforcement, such as controlling cgroup device access,
managing sysctl parameters, filtering network traffic within cgroups,
and implementing mandatory access control (MAC) policies. The
chapter also examines the strengths of eBPF as a security tool and
discusses popular open-source eBPF security projects like Falco,
Tetragon, Suricata-eBPF, and Pulsar, highlighting their functionalities
and contributions to enhancing system security.

xii 

Chapter 10: eBPF Open Source Projects and the Future of eBPF - This
chapter explores the growing open-source landscape surrounding eBPF,
highlighting key projects and future trends. It begins by examining
various language-specific projects that facilitate eBPF program
development in C, Go, Python, Rust, and WebAssembly. The chapter
then delves into notable open-source projects that leverage eBPF for
observability, networking, and security, showcasing the versatility and
impact of eBPF across different domains. Finally, it discusses the future
of eBPF, including standardization efforts, security enhancements, and
the expansion of eBPF to new platforms like Windows, emphasizing
the continued growth and evolution of the eBPF ecosystem.

  xiii

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/jbp4kb7
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Learning-eBPF.
In case there's an update to the code, it will be updated on the existing
GitHub repository.
We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow
best practices to ensure the accuracy of our content to provide with an
indulging reading experience to our subscribers. Our readers are our
mirrors, and we use their inputs to reflect and improve upon human
errors, if any, that may have occurred during the publishing processes
involved. To let us maintain the quality and help us reach out to any
readers who might be having difficulties due to any unforeseen errors,
please write to us at :
errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by
the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade
to the eBook version at www.bpbonline.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in
touch with us at :
business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and
receive exclusive discounts and offers on BPB books and eBooks.

xiv 

Piracy
If you come across any illegal copies of our works in any form
on the internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are
interested in either writing or contributing to a book, please
visit www.bpbonline.com. We have worked with thousands of
developers and tech professionals, just like you, to help them
share their insights with the global tech community. You can
make a general application, apply for a specific hot topic that we
are recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book,
why not leave a review on the site that you purchased it from?
Potential readers can then see and use your unbiased opinion to
make purchase decisions. We at BPB can understand what you
think about our products, and our authors can see your feedback
on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the
Authors:

https://discord.bpbonline.com

  xv

Table of Contents

 1. Classic Berkeley Packet Filter ... 1
 Introduction ... 1
 Structure ... 2
 Objectives ... 2
 Introduction to BPF .. 2
 Before BPF, a history ... 2
 BPF architecture .. 3
 Network tap ... 4
 Filter .. 4
 libpcap .. 6
 BPF pseudo-machine ... 6
 Instruction set and addressing modes ... 7
 Features of BPF ... 9
 BPF on Linux ... 10
 Early BPF usage .. 14
 Modernizing BPF before eBPF .. 15
 JIT .. 15
 Seccomp-BPF ... 15
 BPF+ .. 18
 Conclusion ... 20

 2. Extended Berkeley Packet Filter ... 21
 Introduction ... 21
 Structure ... 21
 Objectives ... 22
 Introducing eBPF .. 22
 History of eBPF ... 22
 Need of eBPF ... 24

xvi 

 Features of eBPF ... 25
 eBPF use cases ... 26
 eBPF concepts ... 26
 eBPF architecture .. 28
 Differences between BPF and eBPF ... 29
 Virtual machine ... 30
	 eBPF	verifier .. 32
 eBPF JIT compiler.. 33
 eBPF helpers .. 33
 eBPF maps ... 33
 Conclusion ... 34

 3. eBPF Programming Concepts ... 35
 Introduction ... 35
 Structure ... 36
 Objectives ... 36
 bpf() system call .. 36
 int cmd ... 37
 union bpf_attr *attr ... 40
 unsigned int size .. 41
 Return values .. 41
 Error numbers ... 42
 eBPF program types ... 43
 BPF attach types.. 47
 Map types .. 49
 BPF_MAP_TYPE_HASH .. 50
 BPF_MAP_TYPE_ARRAY ... 51
 BPF_MAP_TYPE_PROG_ARRAY .. 51
 BPF_MAP_TYPE_PERF_EVENT_ARRAY 51
 BPF_MAP_TYPE_PERCPU_HASH .. 51
 BPF_MAP_TYPE_PERCPU_ARRAY 51

  xvii

 BPF_MAP_TYPE_STACK_TRACE ... 52
 BPF_MAP_TYPE_CGROUP_ARRAY 52
 BPF_MAP_TYPE_LRU_HASH .. 52
 BPF_MAP_TYPE_LRU_PERCPU_HASH 52
 BPF_MAP_TYPE_LPM_TRIE .. 52
 BPF_MAP_TYPE_ARRAY_OF_MAPS 52
 BPF_MAP_TYPE_HASH_OF_MAPS 53
 BPF_MAP_TYPE_DEVMAP ... 53
 BPF_MAP_TYPE_SOCKMAP ... 53
 BPF_MAP_TYPE_CPUMAP .. 53
 BPF_MAP_TYPE_XSKMAP .. 53
 BPF_MAP_TYPE_SOCKHASH ... 54
 BPF_MAP_TYPE_CGROUP_STORAGE 54
 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY 54
 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE 54
 BPF_MAP_TYPE_QUEUE ... 54
 BPF_MAP_TYPE_STACK .. 54
 BPF_MAP_TYPE_SK_STORAGE ... 55
 BPF_MAP_TYPE_DEVMAP_HASH 55
 BPF_MAP_TYPE_STRUCT_OPS .. 55
 BPF_MAP_TYPE_RINGBUF ... 55
 BPF_MAP_TYPE_INODE_STORAGE 55
 BPF_MAP_TYPE_TASK_STORAGE 55
 BPF_MAP_TYPE_BLOOM_FILTER 56
 BPF_MAP_TYPE_USER_RINGBUF 56
 Map-specific helpers .. 56
 Other BPF helpers... 57
 Program arguments.. 59
 Loops .. 59
 Tail calls .. 60
 Sleepable programs .. 60

xviii 

 Program return codes .. 61
 bpftool .. 61
 Conclusion ... 62

 4. eBPF Programming Libraries and Frameworks 63
 Introduction ... 63
 Structure ... 63
 Objectives ... 64
 BPF bytecode ... 64
 C and libbpf ... 65
 Perf .. 66
 BCC ... 67
 bpftrace .. 67
 ply ... 68
 gobpf... 68
 ebpf-go ... 69
 libbpfgo .. 69
 eBPF for Windows .. 70
 libbpf-rs .. 70
 Aya .. 71
 BumbleBee ... 71
 eunomia-bpf .. 71
 bpftime ... 72
 Conclusion ... 72

 5. Writing Your First eBPF Program ... 73
 Introduction ... 73
 Structure ... 73
 Objectives ... 74
 Setting up your development environment 74
 Programming in Python with BCC .. 75

  xix

 Installing prerequisites .. 75
 Programming with BCC ... 76
 Displaying data .. 76
	 Writing	your	first	program	with	BCC 77
 Using maps and helpers with BCC .. 78
 Writing eBPF programs with C and libbpf 80
 Installing prerequisites .. 80
	 Writing	your	first	program	with	libbpf 81
 Using maps and helpers with libbpf .. 83
 Writing eBPF Go programs with ebpf-go 87
 Install prerequisites ... 87
	 Writing	your	first	program ... 88
 Using maps and helpers with ebpf-go ... 90
 Installing prerequisites .. 92
	 Writing	your	first	libbpf-rs	program ... 92
 Using maps and helpers with libbpf-rs .. 94
 BPF headers ... 96
 Best practices ... 97
 Conclusion ... 97

 6. eBPF Portability and Deploying .. 99
 Introduction ... 99
 Structure ... 99
 Objectives ... 100
 BPF Type Format .. 100
 CO-RE .. 101
 Reading data in a BPF CO-RE application 102
 Handling kernel changes and feature mismatch 103
 BPFtool ... 103
 Loading and managing BPF programs 104
 Querying BPF programs ... 105

xx 

 Inspecting BPF maps ... 106
 Verifying BPF programs .. 107
 Dumping BPF program disassembly .. 107
 Attaching BPF programs .. 108
 BPF deployment approaches .. 108
 The naive method ... 108
 A better way ... 109
 BPF deployment frameworks ... 109
 systemd .. 110
 RestrictFileSystems .. 110
 RestrictNetworkInterfaces ... 110
 IPIngressFilterPath and IPEgressFilterPath 110
 DeviceAllow ..111
 BPFProgram ..111
 Deploying your application with bpftool and systemd111
 bpfman ... 112
 greggd .. 112
 Notes for fleet-wide deployment ... 113
 Feature compatibility ... 113
 Privileges and compatibility .. 113
 CAP_BPF ... 114
 BPF program types and capatabilities.................................. 114
 Unit testing ... 116
 Staggered deploys .. 121
 Conclusion ... 122

 7. eBPF Observability ... 123
 Introduction ... 123
 Structure ... 123
 Objectives ... 124
 Introduction to eBPF observability .. 124

  xxi

 Observability program types .. 125
 Using eBPF for tracing ... 125
 libbpf tracing macros ... 126
 BPF_PROG ... 126
 BPF_PROG2 ... 127
 BPF_KPROBE .. 127
 BPF_KRETPROBE ... 127
 BPF_KSYSCALL and BPF_KPROBE_SYSCALL 128
 BPF_UPROBE .. 128
 BPF_URETPROBE .. 128
 BCC macros ... 128
 Kprobe programs .. 128
 Kprobe/Kretprobe ... 129
 ksyscall/kretsyscall ... 132
 uprobe/uretprobe .. 132
 USDTs ... 133
 kprobemulti/ kretprobemulti .. 135
 Tracepoint programs .. 135
 Raw tracepoint programs .. 138
 Raw tracepoint writeable programs .. 139
 Perf event programs ... 140
 Picking the right program type .. 142
 Conclusion ... 142

 8. eBPF Networking .. 143
 Introduction ... 143
 Structure ... 143
 Objectives ... 144
 Introduction to eBPF network programmability 144
 Socket filter programs .. 146
 Traffic Classifier programs .. 148

xxii 

 Traffic classifier action programs ... 151
 Writing programs .. 152
 XDP programs ... 153
 cgroup socket programs .. 157
 Lightweight tunnel programs ... 158
 Segment routing programs ... 161
 Socket option programs ... 163
 Socket SKB programs ... 165
 Socket message programs ... 168
 cgroup socket address programs ... 170
 Socket reuseport programs ... 172
 Flow dissector programs ... 174
 cgroup socket option programs .. 176
 Socket lookup programs .. 177
 Netfilter programs .. 180
 Conclusion ... 182

 9. eBPF Security ... 183
 Introduction ... 183
 Structure ... 183
 Objectives ... 184
 Introduction to eBPF security tooling 184
 eBPF security program types .. 185
 cgroup device controls ... 185
 Monitoring cgroup sysctl controls ... 187
 Firewalls for container networks ... 190
 BPF for Linux Security Modules .. 191
 Open source eBPF security projects ... 193
 Conclusion ... 194

  xxiii

 10. eBPF Open Source Projects and the Future of eBPF 195
 Introduction ... 195
 Structure ... 195
 Objectives ... 196
 Introduction to eBPF’s open source projects 196
 Language projects ... 196
 Notable open source projects .. 198
 Observability ... 198
 Networking .. 199
 Security.. 199
 The future of eBPF .. 200
 eBPF foundation .. 200
 Standardization (IETF) ... 201
 Signing programs .. 201
	 BPF	firewalls ... 202
 eBPF security... 203
 eBPF on Windows ... 203
 Conclusion ... 204

 Index ...205-210

xxiv 

Classic Berkeley Packet Filter  1

Chapter 1
Classic Berkeley

Packet Filter

Introduction
Berkeley Packet Filter (BPF) (originally known as Berkeley Software
Distribution (BSD) Packet Filter) is a framework originally built
around high-performance network filtering and packet capture. It
utilizes a central processing unit (CPU) register-based filter evaluator
that runs as a pseudo-machine inside a Unix-based kernel.

Today, the extended Berkeley Packet Filter (eBPF) is much more
than that. It provides low-level observability and high-performance
network capabilities on Linux, macOS, and Windows systems,
becoming an essential tool for network administrators, security
researchers, and software developers. Before we jump into eBPF, it is
important to understand the underlying mechanisms behind eBPF,
and its evolution over time.

This chapter will introduce BPF, examine the events that led up to its
creation in 1992, and explain the architecture of how it works. In this
section, we will exclusively evaluate the original implementation of
BPF, now known as the classic Berkeley Packet Filter (cBPF).

2  Learning eBPF

Structure
In this chapter, we will go through the following topics:

•	 Introduction to BPF
•	 Before BPF, a history
•	 BPF architecture
•	 BPF on Linux
•	 Early BPF usage
•	 Modernizing BPF before eBPF

Objectives
In this chapter, you will learn the beginnings of cBPF and why it was
created, as the architecture of the original BPF virtual machine (VM).
Then you will learn how to write basic cBPF packet filter programs on
Linux as well as write basic Seccomp-BPF programs. Finally, you will
learn about the efforts to modernize cBPF before the eventual creation
of eBPF.

Introduction to BPF
If you think you are new to cBPF, you may not realize that you have
likely used cBPF before in the form of tcpdump filters. The BPF
specification provides a raw interface (as opposed to copying packets
across kernel/ user-space boundaries) to data link layers (Layer 2 of the
OSI model) in a protocol-independent fashion. All packets on the (L2)
network, even those destined for other hosts, are accessible through
this mechanism. cBPF allows running user space code (filters) against
raw network interfaces inside a sanity-checking virtual machine.

BPF was first implemented in BSD as the BSD Packet Filter, it was later
implemented in Linux which was known as Linux Packet Filter or
Berkeley Packet Filter. Once BPF was optimized and extended in 2014, the
original implementation became known as classic BPF, or cBPF for short.

Before BPF, a history
As Steven McCanne and Van Jacobson, the creators of BPF note in their
1992 paper A New Architecture for User-level Packet Capture (https://
www.tcpdump.org/papers/bpf-usenix93.pdf), until the creation of

Classic Berkeley Packet Filter  3

BPF, each flavor of Unix (NIT, SunOS, Uiltrix, SGI were popular at
the time) provided different facilities for kernel packet filtering. Even
with the significantly slower network speeds in the early 1990s, these
implementations were still considered sub-optimal and warranted
improvements.

McCanne and Van Jacobson's USENIX paper in 1992 described BSD
Packet Filter which was a new kernel architecture for packet capture.
BPF offered significant performance improvements over the existing
packet capture facilities (see Figure 8 of the paper).

The original BPF implementation (known as BSD Packet Filter) was
implemented in BSD Unix, starting in version 4.3 and SunOS in version
3.5. It was not until 1999, in Linux Kernel version 2.1.75, that the Linux
Socket Filter, aka BPF, was released.

BPF architecture
This section covers the implementation of BPF as described in McCanne
and Van Jacobson's USENIX paper. As we will go on to discuss, various
platforms have implemented BPF with some variety.

BPF works by a user defining a filter (that is program) which is
converted to BPF bytecode and then passed to the BPF virtual machine
in kernel space for execution by an interpreter as seen in Figure 1.1.
This allows the filter to be run in kernel-space safely which removes
the need for copying all packets across from kernel-space to user-space.

Figure 1.1: The BPF filter lifecycle

BPF has three main components (displayed in Figure 1.2):

•	 Network tap: Collects copies of packets from the network
device drivers and delivers them to listening applications

•	 Packet filter: Decides if a packet should be accepted and how
to copy it to the application

•	 The BPF pseudo-machine: The in-kernel VM that runs the
BPF filter (i.e. program)

Figure 1.2 illustrates the original BPF architecture and the division
between user-space, kernel-space, and the network:

4  Learning eBPF

Figure 1.2: The BPF architecture (source: BSD Packet Filter)

Network tap
While a BPF filter (program) is running and the packet arrives at the
network interface, instead of being processed via the unix protocol
stack (e.g. TCP or UDP), it is first processed by the BPF pseudo-
machine. BPF feeds the packet to the user-defined filter(s), aka the
BPF filter, where if the filter accepts the packet, it is copied over to
the buffer associated with that filter. This is an optimization over all
packets having to be copied from kernel-space to user-space and then
filtered.

The program listening in user-space reads the packets in the buffer and
processes/displays them in the manner that the user-space application
defines. The packet then proceeds to be processed by the network stack
as normal.

Filter
Until the creation of BPF, there were several filter models in existence:
CMU/ Stanford Packet Filter (CSPF), NIT in SunOS, Ultrix Packet
Filter in DEC Ultrix and snoop in SGI IRIX. CSPF was one of the more
prevalent filter models.

BPF utilizes a control flow graph (CFG) filter displayed in Figure 1.3,
which removes redundant evaluations that are present in the CSPF

Classic Berkeley Packet Filter  5

filter. Each node in the graph is a comparison predicate with two final
targets (true/false). This is easier to model on registers. There is a one-
time overhead to order/optimize the graph.

Figure 1.3: Simple CFG of a ip or arp filter (source: BSD Packet Filter)

While the above example is simple, you can see in this more complex
filter example, shown in Figure 1.4.

You can see in this example, there is a maximum of 5 evaluation
operations.

If this same filter were to be written using CSPF, there would be a
minimum (and maximum) of 7 evaluation operations (as shown in
Figure 1.4):

Figure 1.4: CFG of a host foo filter (source: BSD Packet Filter)

