JavaScript
Masterclass

A comprehensive guide to mastering
JavaScript programming

Yanko Belov

www.bpbonline.com

ii
First Edition 2024

Copyright © BPB Publications, India
ISBN: 978-93-55517-074

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in
any form or by any means or stored in a database or retrieval system, without the prior written
permission of the publisher with the exception to the program listings which may be entered,
stored and executed in a computer system, but they can not be reproduced by the means of
publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but

publisher cannot be held responsible for any loss or damage arising from any information in
this book.

All trademarks referred to in the book are acknowledged as properties of their respective
owners but BPB Publications cannot guarantee the accuracy of this information.

To View Complete E E

BPB Publications Catalogue
Scan the QR Code: E

www.bpbonline.com

11}

About the Author

Yanko Belov, a highly accomplished web development professional, boasts an impressive
career spanning over 13 years. He has honed his skills through extensive education, holding
both a Bachelor’s and Master’s degree in Computer Science, which have provided him
with a strong theoretical foundation and a deep understanding of software engineering
principles.

Yanko’s career has seen him serve as a sought-after consultant for renowned Fortune 500
companies, where he has played a pivotal role in crafting innovative web solutions that
meet the demands of modern businesses. His expertise extends beyond corporate giants,
as he has also been a valued contributor to various startups, assisting them in leveraging
cutting-edge technologies to achieve their goals.

In recognition of his outstanding contributions to the field, Yanko Belov has been
acknowledged as a LinkedIn Top Front-End Development Voice. His insightful posts
and thought leadership have garnered attention and respect within the industry, further
solidifying his reputation as a thought leader in the world of web development.

Throughout his career, Yanko has maintained a consistent track record of designing and
implementing scalable software solutions that not only meet but exceed client expectations.
His dedication to excellence, combined with his passion for staying at the forefront of
industry trends, has made him a trusted resource for businesses and aspiring developers
alike.

iv

/7
0.0

5

S

About the Reviewers

Juan Camilo Gutiérrez Ruiz is a full-stack engineer, more focused on front-end
development. He is currently working mainly with React]S, Redux, Node.js, and
style components. Furthermore, he is focused on designing the architecture for entire
web apps from scratch and restructuring existing ones. He always wants to improve
his skills and learn new ones, such as cloud computing with AWS, to exploit all the
best from this large set of services such as Lambdas, Route 53, S3, etc. He is a devout
catholic, problem solver, puzzle lover, and a passionate JavaScripter; he has had the
opportunity to be involved in projects for large companies such as Google and Hublot.

Rajat Jain, a seasoned professional with eight years in software development, excels
in systems design, architectural innovation, and SDLC. Specializing in software
architecture, he integrates cutting-edge technologies to streamline processes.
Renowned for creating custom components and services, Rajat reduces developers’
repetitive tasks, ensuring the successful delivery of high-performance, secure systems.

As a collaborative team player, he establishes effective customer relationships,
serving as a trusted technical advisor. Proficient in design, implementation, testing,
and performance analysis, Rajat possesses advanced skills in AWS cloud services,
contributing to scalable and efficient solutions.

With experience leading developer teams, Rajat Jain is a valuable asset in software
development. His commitment to delivering solutions and insights helps in offering
readers a deep understanding of the ever-evolving landscape of software development.

Acknowledgement

I want to express my deepest gratitude to my family and friends, especially my wife, for
their unwavering support and encouragement throughout this book’s writing.

I am also grateful to BPB Publications for their guidance and expertise in bringing this
book to fruition. It was a long journey of revising this book, with valuable participation
and collaboration of reviewers, technical experts, and editors.

I would also like to acknowledge the valuable contributions of my colleagues and co-
workers during many years working in the tech industry, who have taught me so much
and provided valuable feedback on my work.

Finally, I would like to thank all the readers who have taken an interest in my book and for
their support in making it a reality. Your encouragement has been invaluable.

vi

Preface

Welcome to JavaScript Masterclass. This comprehensive guide is your passport to
becoming a proficient JavaScript developer.

JavaScriptis a cornerstone of modern web development, and this book is your roadmap to
mastering it. Whether you are a novice or an experienced developer, this book will equip
you with the skills and knowledge needed to excel in JavaScript.

From the core fundamentals to the latest ES2022 features, from object-oriented programming
to asynchronous techniques, and from closures to modules, this book covers it all. We will
provide practical examples and exercises to ensure you not only understand JavaScript
but can also apply it effectively.

Before we begin, a basic understanding of programming concepts will be helpful. However,
we will start with the basics and gradually progress to more advanced topics, making this
book suitable for learners at all levels.

Throughout this journey, we will emphasize best practices, performance optimization,
and writing maintainable code. JavaScript is not just about coding; it is about crafting
elegant, efficient solutions.

So, whether you are a student, a professional, or anyone eager to unlock JavaScript’s full
potential, let us embark on this journey together. By the end of this book, you will have the
confidence and expertise to excel in JavaScript development.

Chapter 1: Fundamentals of JavaScript — This chapter covers the basics of JavaScript,
including its syntax, data types, variables, operators, and control structures. We introduce
the JavaScript language and its key features, such as its dynamic typing system and its
use of functions as first-class objects. We then cover the essential data types in JavaScript,
including numbers, strings, booleans, arrays, and objects, as well as the operators and
control structures used to manipulate and control them. We also discuss best practices
for organizing and writing JavaScript code, including using comments, indentation, and
whitespace. By the end of this chapter, readers will have a solid understanding of the core
concepts and syntax of JavaScript and will be ready to move on to more advanced topics.

Chapter 2: The Latest Features in JavaScript — This chapter covers the latest features in
JavaScript as of ECMAScript 2022 (ES2022), including new syntax and language features
that allow developers to write more concise and expressive code. We introduce the key

vii

features of ES2022, including private class fields, class static initialization blocks, and
numeric separators. We then dive deeper into more commonly used features such as
arrow functions, destructuring, the spread operator, and optional chaining. Next, we cover
how these features work, how to use them effectively, and any caveats to be aware of.
Additionally, we discuss the benefits and drawbacks of using these new features and how
to ensure cross-browser compatibility. By the end of this chapter, readers will be familiar
with the latest and greatest features in JavaScript and ready to use them in their projects.

Chapter 3: Object-oriented Programming in JavaScript — This chapter focuses on
Object-Oriented Programming (OOP) in JavaScript, covering the creation of objects using
object literals, constructor functions, and ES2015 classes. It also discusses encapsulation,
prototypal inheritance, and private properties/ methods. OOP is a popular programming
paradigm that promotes modularity and reusability, making it an essential topic for
any JavaScript developer to understand. This chapter comprehensively introduces OOP
principles in JavaScript, helping readers to write more maintainable and scalable code. By
the end of the chapter, readers will have a solid understanding of how to create and work
with objects using different techniques and will be able to apply OOP principles to their
own JavaScript projects.

Chapter 4: Asynchronous JavaScript — This chapter covers the essential concepts of
asynchronous programming in JavaScript, including callback functions, promises, async/
await, and event-driven programming. Asynchronous programming is a crucial skill for
any modern web developer. It enables us to write more responsive and efficient applications
to handle long-running tasks without blocking the main thread. We will explore different
techniques for managing asynchronous operations in JavaScript and discuss how to work
with APIs and libraries that use asynchronous programming patterns. This chapter also
covers common pitfalls and best practices for working with asynchronous code, helping
readers to write more maintainable and robust applications.

Chapter 5: Functions, Closures, and Modules — This chapter provides a deep dive
into functions, closures, and modules, which are essential building blocks for writing
efficient and modular code in JavaScript. Functions are at the heart of JavaScript, and
this chapter explains how to define and call functions, as well as how to pass arguments
and return values. It also covers advanced topics like higher-order functions and function
composition. Closures are a powerful concept in JavaScript that allows functions to access
variables in their lexical scope, even after the scope has been exited. This chapter explains
how closures work and how they can be used to create private variables and functions.
Finally, this chapter covers modules, which are a way to organize code into reusable and

viii

maintainable units. It explains how to use the module pattern in JavaScript and how to
work with the ES2015 module syntax.

Chapter 6: “this” Keyword — The ‘this” keyword is a fundamental concept in JavaScript
that can be confusing and tricky to work with. This chapter explores how ‘this’ can be used
in JavaScript, including object methods, constructors, and event handlers. We will cover
how ‘this’ is determined in different contexts, such as in global scope or inside a function,
and how it can be explicitly bound using methods like call, apply, and bind. We will also
discuss the common pitfalls and best practices for working with ‘this” in JavaScript code.
By the end of this chapter, readers will have a solid understanding of the “this” keyword
and how to use it effectively in their JavaScript projects.

Chapter 7: Coercion — Coercion is a fundamental concept in JavaScript that involves the
automatic conversion of values between different data types. Understanding coercion is
crucial for writing flexible and reliable JavaScript code. In this chapter, we will explore
the concept of coercion, its importance in dynamic typing languages like JavaScript,
and common scenarios where coercion occurs. We will delve into implicit and explicit
type conversion and discuss the best practices and potential pitfalls associated with it.
Furthermore, we will examine coercion rules in various contexts, such as arithmetic
operations, string concatenation, comparison operators, and logical operations. We will
also cover truthy and falsy values and how they interact with coercion.

Chapter 8: Advanced Objects — This chapter is dedicated to exploring more complex
concepts related to JavaScript objects. It covers topics such as property descriptors, which
allow for fine-grained control over object properties, as well as object cloning and deep
copying, which can be important when working with complex object structures. The
chapter also delves into object sealing and freezing, which restrict the ability to modify
objects. By the end of this chapter, readers will have a deeper understanding of how to use
JavaScript objects in more advanced ways.

Chapter 9: React and Vue - This chapter is a comprehensive guide to some of the most
popular and powerful front-end frameworks and libraries in modern web development.
This chapter provides an overview exploration of each of these technologies, covering
everything from their basic architecture and syntax to their advanced features and best
practices.

React and Vue are two of the most widely used frontend frameworks in the industry, each
with its own unique strengths and weaknesses.

ix

Chapter 10: Testing and Debugging — This chapter covers a range of techniques and
tools for testing and debugging JavaScript applications, including unit testing, integration
testing, debugging techniques, and best practices for error handling. By mastering the
techniques and tools covered in this chapter, readers will be able to create robust and high-
quality software that meets the needs of users and stakeholders.

Chapter 11: Beyond Tools and Extensions — This chapter covers a range of topics that go
beyond the usual tools and extensions, such as code optimization and performance tuning.
It also includes guidance on choosing the right tools for your specific project and team, as
well as best practices for collaboration and code reviews. By mastering the techniques and
practices covered in this chapter, readers will be able to take their JavaScript development
skills to the next level.

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/jtg5ixt

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/JavaScript-Masterclass.
In case there’s an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at https://
github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to
ensure the accuracy of our content to provide with an indulging reading experience to our
subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve
upon human errors, if any, that may have occurred during the publishing processes
involved. To let us maintain the quality and help us reach out to any readers who might be
having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’
Family.

Did you know that BPB offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.bpbonline.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at :

business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical articles,

sign up for a range of free newsletters, and receive exclusive discounts and offers
on BPB books and eBooks.

xi

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

xii

Table of Contents

1. Fundamentals of JavaScript....... 1
INErOAUCHON. ..ot 1
SEIUCHUTE....viiiii e 1
ODJECHIVES. ...t 2
Overview of JavaSCript......cociiiiiiiiiiiii 2

JavaScript as a Scripting IANGUAGEccvevevvcericieiiieieiciiieccee e 3
JavaScript in web developmentccccovovvviveveiiieieieiiiiiiisee 3
Features of JavaScript........ccooiiiiiiiiiii 4
Dynamic tYPIng ... 4
First=Class fUNCHONS.........cccccvvviviieiiiiiiicitititc e 5
Object-oriented Programmingccocoovveueucciiiiiiiiiiieisiecies s 6
Prototypal iNREritanceccccccciiiiiiiiiiiiiiciciccc 7
ASYNCHTONOUS PYOJYAMMIIILG «.ovvevvvvieieieicicctee ettt 7
JavaScript syntax and CONVENEIONSc.ccoveveveiiiiiirieiiiiiiicisicieieeccs s 8
CaSE SENSIEIVIEY ...vvvveceiiiicie et 8
Variables and case SeNSItivitY............coovveuririeiiiniiiiiiiiciciceeeiecccce e 8
Functions and case Sensitivityc.cccovveiiiiiiiiiiiiniiiiiiiiciciss e 8
Objects and case SENSTHUILYc.cvuvveveueieieiiiiiiiicceee s 9
Importance of consistent capitalization............cccoveivivviiniiiiniieiniiciniicccs 9
Statements and SEMICOIONS.cccvueuiiiiiiiiiiiiiicicicci e 9
Basic StALEMENESc.ccvviiiiiiiiiiiciicc s 10
Semicolons and automatic semicolon MSertion.........co.evveuerevrueievceieriieiereieiernnns 10
Code blocks and curly DYACES.............c.cccvvvvivieuciiiiiiiciciicicccc 12
Code blocks with control structures And 100PS............cccovvvveeieieieiiiiiiiccicieieieieina, 12
Code blocks with function definitionsccceeeveiviiiceeiciiiiiiiicceesse 12
Code DIOCKS ANA SCOPE.......c.ceveivveiiieiiiiiiiicisieetseetse s 13
Keywords and 1eserved WOrdScccovoveeiceeieieiiiiiiiiccceee e 13
KEYTWOTAS ... 13
ReServed WOrds.cccvoviiiiiiiiiiiiiiiiiiciccccc 14
Contextual KeYWOTS...........cvuvuveeveiiiiiiiiiiicicieieieieie e 14

Identifiers and NamMing CONVENFIONSccccvvieiviiieieiriciciiiiiieee e 14

Data types in JAUASCIIPEoovovviiieieieiiiiieiiictcise e 16
INUIIDETS ...t 16
INAN oo 17
Infinity and -INfINTEY c.....coovvviiiiecc 18
SEPITIS vttt s 19
BOOLEAMS ...t 20
ATTAYS oottt e 22
ODBJECES ..ottt s 24
Null and UNAefined..............ccocvviiiiiiiiiiiciiiiiiiiiic 27
SYMBOIS ..o s 28

Variables in JaVaSCIiptccccvviiniiiiiiiiicinc e 30

Declaring VAriAbIEscccvviviiiiiiiiiiiiiiiiiicicici s 30
Variable ROTSEITG........c.cvovviurieieieieieieicicccce e 32

Assigning values t0 VATIADIEScccccvoviviviviiiiiiiiiciiicic e 32

Scope and lifetime of VATIADIEScccccvvvvvciiiiiiiiiiiiiiciciccecc 32

Global and 10cal DATIADIEScccccviiviiiiiiiiiiciciiiiic s 33

Operators In JaVaSCIIPt......cccviiiniiiiiiiiicc e 33

AFIERINEHIC OPETALOTS .ottt 34

Increment and decrement OPErALOTS.......cccveveviviioiciiieieieieieeieseeccce s 34

COMPATISON OPETALOTS ..ot 35
Equality and inequalityy OPerators..............ccccocvviviviviiiiiiiiiiiiicicicscecccc 35
Strict equality and strict inequality OPEratorscocovvvvvvvvcieeeisisiciccciciciies 36
Comparison operators: <, >, <=, ANA >=.....cccccvvvvivviciiniiiieiiieiiiectse s 36

LOGICAL OPOTALOTS ... 37
Short-circuit €DAIUALIONcccoovviviiiiiciiiiiiiiiiisc s 37

ASSIGNMENE OPETATOTS ...ttt 38
Basic assignment OPEratorc.ccvvviiiviivieiiiiiiiiciiise s 38
Compound assignment OPErAtOTS.........cooveururreeisieieiiiiiiieieieieie e 38

TETNATY OPCTALOT ..ot 39

Type-related OPeratOrs........ccovuiieiviiuiiiiiiiiicieiec s 40
EYPEOF OPETALOT ... s 40
INSEANCEOf OPETALOT ...t 41

Control structures in JavaScriptcccoceiiiiiiiiiices 42

CONAIEIONALS ... 42

I SEAEEIIEHE ..o 43

xiv

CISE SEALETNEILE ... 43

ElSe if SEALEMENT ...t 44
SWItCH SEALEMENT ...t 45

LOOPS .t 46
JOT LOOP ..ot s 46

WHILE TOOP......coiiiiiiiiiiiiii 46
A0...WHILE LOOP ... 47
JOTe T LOOP .. 48
JOTlOf LOOP oo 48

Loop control SEAtEIMENESc.cvvveiiieiiiicicicieiciciciccce s 49
break SEAtEIMENL.............cooviviiiiiiiieieiicci 49
CONEINUC SEALETHENE ..o 49
COMIMENES....ouiiiiiiiiiii b 50
Single-1i1e COMMENESc.cvvviuiieieiiiiiiiiiicicii s 50
MUulti-line COMMENES.........coovvvviiiiiiiiiiiiiiiicicccc e 51
Indentation and WhiteSpace..........cccccuiiiniiiiiiiiciiicic s 51
Indentation styles (tabs VErSUS SPACES)ccccvuviriviviiiniiiiieiiisieiiiecieteee 51
Readability and maint@inability ..o 52
CONCIUSION. ... 53
Points t0 T@MEMDETc.cooviiiiiiiiiiii s 53
Multiple ChOICe QUESHONS.cvuiiieiiciiciciicei et 54
ADISIWETS .ttt 56
2. The Latest Features in JavaScript 57
INtrOdUCHON. ..o 57
SEIUCHUTE ...t 57
ODJECLIVES. ...ttt 58
Importance of updating JavaScript features............ccccoeiiiiiiiiiiiiiiie 58
Embracing modern development practicesc.couevcccmucieinisiiiiicinicieseesisessicans 58
Enhanced productivity.........cccovcoiieiiiiiiiiiiiiicisisetsieet s 58
Improved code readabilityccccocoiviiiiiiiiiiiiiiiiiiiiicici 59
Performance Optimization............cccovvrueueeiniciiiiiiiiccee s 59
Compatibility with modern web standards and frameworks...........cccooevvvveivincininnen. 59
Access to new language constructs and patterns..........cccccvcvvvviiiiiiiiccicciiiiiinns 59
Career growth and marketabilitycococvveveiiiiiiiiiciineeeecee e 59

ES2022 Key fEAtUTIES........oiuieiiiiiiiiccc e 60

Private class fields and Methodscccvvvvviiiioiciiiieiecciiccce s 60
Syntax and USAZe eXAMPIES..........c.ccccvvvvoiiieiiiieiiiiiciiset s 60
BETESIES ... 61

Class static initialization DIOCKScccoovrueueiriiisiiiiiiiciciece e 62
Syntax and USAZe eXAMPIES..........cccovvvvioiiieiiiiiiiiiciiset s 63
BETESIES ..o 63

NUMETIC SEPATALOTS ...ttt 64
Syntax and USAZe eXAMPIES..........c.cocvvvviciieiiiiiiiiiiciiscet s 64
BETESIES ...t 65

Most used ES2015+ fEatUIescccuiiiiiiciiiiiiiicciccccc e 66

Block-scoped variables: let And CONSEccouvviviiiiniiciiiiiiiieciieitsesec 66

ATTOW fUNCHIONS ..ot 67

Template [IETALScccovvueuruiieieieicicicicccce s 67
SYREAX oottt 67
BETESIES ...t 67

TagGed teMMPIALES.........vveveieiiiieieeetc e 68
SYREAX oottt s 68

CLASSES ...ttt s 69

Promises and async/await .. 70

Enhanced 0bject [Iteralscoccovvviiiiiiiiiciiiiiiiiiiciccc st 70
SYNEAX oottt 70
BEHESIES ..ottt 71

Default PATATNELETSc.cvviviiiiiiiiiiiiciiiiieie et 72
SYNEAX oottt s 72
BEHESIES ..ottt 73
USAGE EXATNPLES ...ttt 73

RSt PATAINELETS. ..ot 74
SYNMEAX oo 74
BOMESIES .t 74
USAZE EXAMPIES ... 75

DSETUCUTING ..evvvvvieieieietctt et 75
Syntax and USAZe eXAMPIES..........c.cocccvvviciieiiiiiiiiciitset s 75
BETESIES ... 76

The SPread OPerAtOrccvueveveveieieiiiiiiicicicieie ettt 79

Syntax and USAZe eXAMPIES..........c.ccccvvvvoiiieiiiieiiiiiciiset s 79

xvi

BEHESIES ..ottt 80
Optional CHATNINGc.cvviviiiiiiiiiieiiie s 82
Syntax and usage eXamples...............cccvcvviiiiiiiniiiciiiiiii s 82
BEHESIES ..ottt 83
Map, Set, WeakMap, and WeakSet.............ccccevvivviniiciniiiiiniiciiiiiiiiscicecieca 84
MOP oo 84
SO ottt 85
WEAKIMIAP ...ttt s 86
WBAKSEL ...t 86
Iterators and iterabIescocvoviiicueiiiciciciciicce s 87
SYREAX ittt s 87
BEHESIES ..o 88
Considerations for evaluating the latest features............cccccoocuniiininiccinicininiccnicenes 89
PTOS oo 89
Improved developer productivity..........cccccccccviiiiiiiiiiiiniiiiiiiciccc e 89
Enhanced language capabilities............cccocvvueurnieiiiciiiiiiiiiieieicieieiesiscccee e 89
Better performance and optimizationccocevivvivinniiiieiciiniiiecises 89
Compatibility with mModern DYOWSErS...........ccccvvviviiiiiiiiieiiiiiicicicccccccc 89
FUuture-proofing Codecocouvvemmiinininiiiiiiicicicieiectcscc e 90
COMIS 1ttt 90
Compatibility with older DIOWSers.cccccviviiiiiiiiiiiiiciiicicicccccc 90
Learning curve and doCUMENTALIONccccvveveueieieiiiiiiiiiccee e 90
Maintenance and long-term SUPPOTTEcocvviriviiiiieiiiiiiiiieiisec e 90
Cross-browser COMpPatibility........c.cccovvvvieiiiiiiciiiiiiiiiiciiccccc e 90
Project requirements and target AUAIENICEccvevvveviiieccciiicciciiicce, 91
Team skillset and familiarityccocccevvivinniiniiiiniiiiiice s 91
Long-term maintenance and SUPPOTt...........cccvvviviiieiiininiiiiiiiiiiiiisecccciea 91
Community adoption and best Practices..............cccvvevcvreeiceieiiiiiiccceeee, 91
Ensuring cross-browser cOMpatiDilityccccvvveivivciininiiniiiiciiicciscicec 91
Strategies for ensuring cross-browser compatibilityc.cccvvvvvviviiiiiccicccnnnnnn, 91
Research browser SUPPOTt..........cccueueveieieiiiiiiiicieieie et 91
Use feature AeteCtionccovviveiiiviiiiiniciiiiiiiieciseit st 92
Implement progressive enHANCEMENLEcccccvvvvviiciiiiiiiiiiiicicicisecccc 92
Test across MUILIPLE DIOWSETScucueveveveieiiiiicicicieieieieicis s 92

Transpiling and PolYfilliNngcccccovviviviiiiiiiiiiiiciiiee s 92

THANSPILING w.ovvvviiciciciee et 92
POIYFIIIING ..ot 92

Tools and resources for compatibility testing..........cccoviviviiiiinccciiiiiiiiiiciccccccas 93
Browser DeUTOO0IS...........cccccucuvuciiuciiiiiiiiicicicciccct 93
Cross-brotwser teSHNG SCIVICESccvvvrueiiieiiiiiisieiicieicisieet et 93

Test automation t0OIS.............cccoveviiviiiiiciiiciiiiiiiicic e 93
Compatibility LIDFATIESc.cuvveviveiiiiiiiiciciciceeee 93
Community and doCUMENIALIONccovviviiiiniiiiiiiiiisiicect s 93
CONCIUSION. ..ot 94
Points t0 TEMEMDETcocuiiiiiiiiiiii e 94
Multiple chOiCe QUESHONSvuvuviirieiicieiricicic ettt 95
ANISIWETS .ttt 97
3. Object-oriented Programming in JavaScript.......... 99
INErOAUCHON. ...t 99
SEIUCTUT® ...ttt 100
ODJECHIVES. ...ttt 100
Introduction to object-oriented programming..........ccccceeevivieinneinincinineeneees 100
Principles of object-oriented programmingccccoeevvecciiiiiiiiiiieccciisisieeinas 101
Benefits of object-oriented programming in JavaScript development............................ 101
ODbjects and ClasSescccuviiviriiiniiiiiicc s 102
Objects i JAVASCYIPEc.ovviiiiiiiiiiiiciiiicicicc s 102
Creation of objects using object literals.............c.cocovvevicrvcnciciiiiiiiicccee, 102
Accessing and modifying object propertiescvvcvvcinveininiinineiiieccee, 103
Working with object mMethods..............ccccovvviiviviiiiiiiiiiiiiiciciccccc 103
Classes in JAVASCIIPE.....c.cocueveviiiiiicieieieieic e 104
Introduction to classes as blueprints for 0DJects...........coocvvvvevvivvinivcininciiiinn, 104
Creation of classes using constructor fUnCHons...........cccocvvvvccciiiviiiiciinsiccnnn, 104
Instantiating objects from ClASSES............coccvvurueueieieiiiiiiiiciceeceee e 105
Working with class properties and methods.............ccccooccivvciivviiiiiniiniiciiininne, 105
Prototypes and iNheritance ..o s 106
Prototypes in JAVASCIIPEc.cvoveveiiiiiiiieieieiccce e 106
Prototype chain and prototype-based inheritanceccccccevvvciniveinncinincncnn. 106
Exploring the prototype property.........ccvvvecciiiiiiiiiisisieccciisiseieeeeecns 106
Modifying prototypes and prototype properties............ccuevvvevevvvveinieieiiiisinnnnns 107

Inheritance in JAVASCHIPEcocciviviviiiiiiiiiiicicicit e 108

xviii

Creating parent and child ClASSES.............cccvueueveieiiieiiiiiiciceeceece e, 108
Accessing and overriding inherited properties and methodsccccccvvecinnee. 109
Calling parent class methods from child classes................cccccovcvvviiiiiiiiiiiciccnnn, 110
ES2015 CIaSSESuvuiiiiiiiiiiciciii s 111
Overview of the class syntax introduced in ES2015cccooevvivviviniiniiciiicinne, 111
Defining classes using the class keyword..............ccocovvvvvviiiiiiiiiiinicicccccnn, 111
Creating instances of ES2015 ClASSES...........cocovvvvvvicucicicisieiiiiiiccicieceeeiesnns 111
Working with class properties and methods.............ccooccivvviivviiciiniiiiieiiininne, 112

Class inheritance i ES20T5..........cccoviiiiiiiiiiiiiiiiiciciciciiiic e 113
Extending classes using the extends Keyword.............ccccovveeveieiiivcccccieininnn, 113
Overriding methods in derived ClASSES...........ccccovciviviiiiiniiiiciiiiiiiceciseca 114
Accessing parent class methods using the super keyword...............cccccevvveveviininines 115
ENCapsSulation.........ccouiiiiiiicicic e 116
Inheritance and polymOrphiSm..........ccccvicuieiiiniciniciiecccecc e 116
Inheritance using ES2015 CIASSES.............cccovueuiiiiiiiiiiiiiiisiciciiiiicicicc e 116
Inheritance in ES2015 ClASSES............ccccucuiiiiiiiiiiiiiiciciciciiiccicee e 116
Using the super keyword to call methods in parent classes..........c.cccoeccvvvcnninen. 117
Owerriding inherited methods in derived clASSESccccvvvcciiiiviiiiiiiiicicinn, 118
Polymorphism in JAUASCIIPE.......cccoovviiiiieiiiiciciititcccce s 119
Understanding polymorphRiSHLcccccvcivviiiiiniiiiiiiecisecisece 119
Implementing polymorphism through method 0verriding.............ccccoevvvvevevrininnnes 120
Leveraging polymorphiStL...........ccceeveieviiciiiicieieicieicicccice e 121
Interfaces and abstract classes ..o 122
Interfaces in JAVASCIIPE........c.cccvuiiiiiiiiiiiiiiiicccc 122
Exploring the concept of interfaces in JAUASCIIPtcvuvvveeieiciiiiiiiicciciceiei, 122
Defining and implementing interfaces using classes............ccccvvvvvvvevevirccinincncnn. 122
Abstract classes in JAVASCHIPE.........ccvovviviiiiiniiiiiiiiiiiciccce 123
Understanding abstract classes as blueprints for other classesc.ccccovvvvuce. 123
Creating abstract classes using ES2015 SYNtax.........ccocecvvvvvcivvininccninciniicnnn, 124
Getters and SEHerS.........ccovuiuiiiiiiiiiiic s 125
Getters and setters it 0Dject PrOPETHEs........cvvveviviviiicicicicieisisicicicciccee e 126
Defining getters and setters in JAUASCIIPE........cccovvvivviciiviiiiiiiiiiciciicciei 126
CONCIUSION. ...t 127
Points t0 TEMEMDETcocuiiiiiiiiiiiii e 127

Multiple ChOiCe QUESHONS......cucuviieieieicieirciei ettt 128

ATISWETS ..ttt 130
4. Asynchronous JavaScript vereeeeseeneneanenes 131
INtrOdUCHON. ..o 131
SHUCKUT® ...t 131
ODJECLIVES. ...ttt 132
ASYNChIONOUS JAVASCIIPE c.ecvuvuiiiiiecieiicieiccetce e 132
Choosing asynchronous programmingccoeeeeeiererieemeseisisisisisssssssessiesesesinnns 132
Importance of asynchronous programming in JAvaASCIiPt.......cccvvvvvvcinicininiininne, 133
Benefits of asynchronous programmingcccceeecciiiiniiisiensccisisiisieee e 133
Understanding the €0ent [00P...........ccccvrurueueieieiiiiiiiiicicieieieiciesccee s 133
Callback fUNCHONScocviiiiiiiii e 134
Synchronous versus asynchronous exXeCutioncceeeveeeciciiiiiinissseccisinnas 135
Handling asynchronous tasks with callbacksccccccccovvvvivicvcnnnsicccccnne, 136
Callback hell and its drawbackscccovvveveieieiiiiiiiiiiiieiece e 136
Nesting callbacks and readability iSSUES............ccccccovvvvieiiivciiiiiiiiiiciiiecccca 137
Strategies for managing callback Rellcccccoovvvvcuccinniiiiiiiicceeeeea 137
Error handling with callDacks.............cccoveiviviiiiiniiiniiiiiiiiiiiciiciei s 137
PrOMUISESvviviiiiiiiict s 138
Creating and 1€S0IVING PYOMUISESccvovveururueieieieiiiiicicicieieie e 138
Chaining promises with tHem()c.cccoveviviiiiniiiiiiiiiiiiiiec s 139
Handling errors with .CAtch() ... 139
Improve your code With fiNALIY()ccovveivieiiiiiiiiiiceecccccce s 140
Promise.all and Promise.race..............oveveveievoveiiiiiniiiiiieieieieiciicseee s 141
Combining promises with Async fUnCHonS............ccccccccviiiiiiiiinincciciiciccee e 142
Error handling With Promises.............cccovvvveururieieisisiiiiiicicieeis e 143
ASYIIC/ WAL ..ot 144
Understanding the syntax of async functions............c.cccceecovviiiciiinecicinisisiiininns 144
Using the await keyword to pause eXeCUtioncweeeeveioviccesnsisieicccenenns 144
Error handling With trY/CAECHc.ovveviiecerieiesistcieeeee ettt 145
Sequential and parallel execution with ASYNCIAWALEc..coveereeveeerierieieeierieenn, 146
Sequential eXECULIONcccvcviveveveiiiiiiiicicicteee s 146
Parallel exeCtutionc.ccvvviiviiiieiiiiiiiiicee e 146
ASYNC/ AWAIt VEISUS PIOIMISES «..cuvvevectrreerrieiaeieaesteessesessetesseseeessesessesesesssessesessesseesaees 147
Event-driven programming ..o 147

Event-driven architecture in JAUASCYIPE ..ottt 148

XX

Event emitters and event LiStERers...........covveeeieiniiiiiiiiciciceeeiciccceee e 148
Callback-based event NANAIING..........ccccvvviiviniiiiiiiiiiiiici s 148
Custom events and EventTarget APlcccccovvivvciiiiiiiiiiiiiiicciiccciciccec 150
Working with event-driven libraries and frameworks............c.cocoovvvvvvveeieieiirininnnns 150
Asynchronous inputfoutput operations in event-driven programming....................... 151
Best practices and common pitfallscccocoeiiiiiiiiiiiiiii, 152
Structuring asynchronous COde...........ccuuiiiiniiiicc s 152
Handling errors in asynchronous CoAe............coovcivvvvinviiiieiniiieiiicisiseicieec s 152
Avoiding callback hell and nested promises...........ccovvevveciiiiiiiiiiiieccciiiciieinas 153
Using libraries and utilities for asynchronous operationscccocceveeervvevevcecnnnnnnn. 153
Testing and debugQing asynchronoUs COAe.............ccoovvovvviiinniiiiieiiiiiiiiiecisiecie 154
Performance considerations for asynchronous codeccoovvvvvivvvccniiiiciiinininnns 154
CONCIUSION. ... 155
Points t0 TeMEMDETcooviiiiiiiiiiii s 156
Multiple ChOICe QUESHONScuvuviieiiicieiicieirce e 157
ADISWETS .t 159
5. Functions, Closures, and Modules . . . tereeessnreeesnnenenes 161
INtrOdUCHON. ..o 161
SEIUCHUTE ...t 161
ODJECLIVES. ...ttt 162
FUNCHONS. c..vciiiii e 162
Defitting fUNCHIONSv.vvvviiicicicieieectet e 162
Syntax for function declarationccccoveviviiciniiiiiiiiiiie e 162
Anonymous functions and function expressions............cccvvevveecciciiiiiiiiinienns 163
FUNCHON ROTSHILG «.evvvviite 163
Calling fUNCHIONS ...ocueiieiiiiiciiiiiiciiicic s 163
Invoking functions with parenthesesccocuvvvcciiiiiiiciiniiiicicciene 164
Arguments And PATAINEIETScovviurueieieieiiiiiiscccise e 164
Default PATAINELETSc.couvuiivieiiiiiiiiiiiciiisesct s 164

ReSt PATAINECLETS ..o 165
RetUTTIING DALUCS ... 165
The 1eturmn SEALEIMENTc.cvoviiiiiiiiieieieteicte e 165
Returning multiple VAIUEScccvuvueuiiiiiiiiiiiiiicicicsccc e 166

USING TEHUTT DALUES ... 166

Higher-order fUnCHIONS.cccccoviviiiiiiiiiciiiicicitcecset s 167

Definition and characteristics of higher-order functionscccocoeevvveeininnnn. 167
Passing functions as ArgUmMENts.........c.coeevvveiniieioiieiniieiieeisiseceec s 167
Returning functions from fUnctionscccovevveeiiiniiiininisciccicccssnas 168
FUunction compOSitioncceeeeiiiiiiiieieieieciiitce e 169
Combining functions to create New fUNCHONScccccvvvvirecoiieiiiiieiiiieiiees 169
Pipelines and data transformations..............cccevvevvccciiiiiiiciiiiiccccicccesenes 169
Function composition [IDFaries...............ccovveeeeieieiciiiiiiiccecieisiescccee e 170
CLOSUIES.....coviiiicicit bt 171
Definition and concept of CIOSUTESccccovvveiiiiiiiiiciiiiiiiiiiiiceccc 171
Lexical scoping in JAVASCTIPE........ovvveiiiiiiieieiiiiiciciitce e 172
Working of closures under the HOOG..............cccovvivvciniviiininiiiiciiiecicecsece 172
Creating ClOSUTEScccueuvueuciiiiiiiiiicicic e 172
Using inner functions to create ClOSUTES.............ccccvccuiiiiiiiiiiiiiiicicciiciciea 172
Accessing variables from the OULer SCOPEccccvvivviviiicininiciiiiiiciieicieec 173
Preserving the outer scope with CIOSUTEScccveciiiiiiiiciiiiiiciccciicia 174
Private variables and Methodscccvvviviviiiiciciiciciiicccee s 174
Encapsulating data with ClOSUTESccccoviviiiiniiiiiiiiiiiciiei e 175
Creating private VArIabIEsccccovvvvveveiviiiciciiiiiiciiccc 175
Defining private MethOdsc.cocovvvvvieurieisisiiiiicicccce e 175
Closures and the module PAHETTL.......cccccvvviiviniiiiiiiiiiii s 176
Introduction to the module pattert...........coovvvivieiiivciiiiiiiiiciiiccccca 177
Using closures to implement MOAUIES................ccoveuvueeieieiiiiiiiiiiiciceieeeieesc 177
MOAUIES ... 178
Importance of MOAUIAY COAE............cooovviviiiiiiiiiiiiiiiiciccccc 179
Overview of different module formatscocovviviviiicecsiiiiiciiiccceeee 179
ES2015 MOAUIES ..o 180
Syntax for importing and exporting Modules..............ccccovvvvcciiiiiiiiciiiccnn, 180
Working with default and named exports...........ccceevveviviovcccesssicicicccennes 181
DYNAMIC ITPOTES..c..oovciiiiiiiiiiieiciiieit et 181
Creating modules with the revealing module patterncccccevvvvviviniicicccncne, 182
Managing dependencies with module [0Adersccccvvvvreeeciiiiiiiiicccce, 183
Overview of module l0AAETScccevviviviviiiiiiiiiiiiiics e 184
Resolving module dependencies.................cocovvviviciicciiiiiiiiiiiiiiecccccceiee 184
Bundling and code OptmiZAtIONcocvueueueieieiiieiiiiiicciceecieiesssce e 185

AdVanCed tOPICS ...covviviirieiiiicicc e 185

xxii

Using closures for memoization and CACHINGccccvveieiviiiiicciriciesicisicicccicies 185
Improving performance with MeMOIZALIONcccvvvvvirviniiiiiiciiiiciiecs 185
Caching results With ClOSUTES............ccccvviciciiiiiciiiiiiiiiciicicce e 185
Memoization [IDYATIEScccciiiiiiiiiiiciiiiccccc s 186

Pitfalls and best practices for CLOSUTEScccvvirviiiiiiiiiiiiiciieccie 187
Memory leaks and closure traps............cccvvcciiiiiiiiiiiiiccccccc s 188

CONCIUSION.....oviiiiiiii b 189
Points t0 TeMEMDETcooviiiiiiiiiiiic s 189
Multiple ChOICe QUESHONScucuviieieiiicieicceiece et 190
ADISIWETS .t 193
6. “this” Keyword reereeeeaeeneaeannes 195
INtrOdUCHON. ..o 195
SEUCHUTE ...t 195
ODJECHIVES. ...ttt 196
INtroduction t0 “thiS”ccouiiieiiiieiicece s 196
Default BINding.......cccoviiiiiiiiiicc s 197

GIODAL SCOPE ...t 197

Standalone fUNCHONS ..ot 198

CallDACK fUNCHONS. ..ot 198

IMPLicit PINAING ...voiiiiiiiciicc e 199
Explicit BINAING.......cccoiiiiiiiiiiiiiiiiii s 200
The call() MEtROd...........c.cocvuiiiiiiiiiiiciciiiiicic s 201

The apply() MELROG.c.ccoovuiiiiiiiiiiiiiiiciic e 201

The Dind() Methodc.ccvviiiiiiiiiiiciiiiicicic 202
Differences and when to use each Method................cccoovvveeveiieiniiiiiiiciceeeesenn 202
Arrow functions and lexical binding...........ccccocccceiiininininiiiciiiinecccccces 203
“this’ in event handlers..........ccoociiiiicicccccecc s 204
USING AYTOTW fUNCHONS «.o.vvvvvviiiiicicicicie et 205

Using Function.prototype.bintd()ccccocvvvivviinviiiiiiiiciiieciscccecc 205
Storing ‘this” in @ vVariable...............ccccccvvviiiiiiiiiiiiiiiciiiicc 206

“thiS” IN CONSEIUCTOTS ...uvueiirieiicie ettt 206
‘this” in prototypes and inheritance...........ccccocvciviriinicinicnenicceeeceees 208
Common Pitfalls ..o 209
Incorrect context DINAINGccvueveieviviviiiiiciieeeccc e 209

Lost ‘this’ referenice in callDACKSccccovviviiiiniiiiiiiiiicciicicccc 209

Binding issues with prototype methodsccccccevvvvrveeeiciiiiiiiicccceee, 210
Forgetting mew’ OPeratorccuvivveoivieiininiiiiiieiiiieiitsecieet s 212
TrOUDIEShOOHING ... 212
Best PractiCes ... 213
CONCIUSION. ..ottt 214
Points to 1€MEMDETcccuiviiiiiiiiiiicc s 215
Multiple choiCe UESHIONSc..cuiuiiiiiiiciiic s 216
ADISWETS ittt 218
7. Coercion........ crereesnerenaesennes 219
INErOAUCHON. ... 219
SHUCKUTE. ...ttt 219
ODJECHIVES....oviiiiiiitcc 220
Introduction tO COBTCIONcccuiiiiiiiiiiiiii e 220
Importance of coercion in dynamic typing languages...............ccovevvvvcinncininiininne, 220
Coercing in COMMON SCENATIOSouvvvereririireriieiiniiiiriisieiet et 221
TYPE CONVOISION ...ttt 221
Implicit and explicit tYPe CONVETSION......c.ccuvueiviviiiiiiiiiiieiiiiecise e 221
Converting between primitive data tYpPes............cccovuvvvciiiiiiiiiniciiciiiciccce 222
Using built-in functions for type CONVErSIONovvruvvrieieiviriiiicicicieeieieieicccieines 222
Best practices and potential pitfalls of type cOnvVErsion............cccccvvvvivivcicircininencnn, 223
COETCION TUIES ... 224
Unary plus and minus 0Perators.........cwweevviiiiiiiceieieiseisiesisccises s 224
Coercion in arithmetic OPerations..........c.cocvivveiriviiiiiiniiiieiisecise s 225
String concatenation And COTCIONcouvvviuiiiiiiiiiiiiiiiicieccct s 225
Comparison operators And COCTCIONvvururueueisisiiiiiiicicieieieie et 226
Coercion with 10ical OPETALOTSccccvvivviviiiiiiiiiiiisiiitt s 226
Truthy and falSy ValUesccocceiiiriciiicecccece e 227
Coercion rules in conditional StATEIMENEScccoveveveveiiiiiieicisiciciicccee e 227
Common pitfalls with truthy and falsy 0alUES ..o, 228
ODbjJECt CORTTCION. ...t 229
Customizing object c0ercion DERAVIOYccvueueveieieieiiiiiiiicieisieiciiccceee e 230
Best practices and avoiding coercion pitfallsccccooeiiiiiinnnniiiciiiies 231
Writing explicit and clear code to avoid CONfUSION..............ccovuevviiiiiiiiiiicicicccnn 231
Properly handling edge cases and unexpected inputcocoovvvvveeniiiciiicccnenns 231

Using strict equality (===) for COMPATISONS......c.ccvoviviriviiiiiiiiiciiiiccseeiee 232

xXxXiv

Leveraging type-checking utilities and [iDYaries.............c.cococvvvvvvvvcnenisieieiicccncnenns 232
CONCIUSION. ..ottt 233
Points to 1€MEMDETcccuiviiiiiiiiiiiic s 233
Multiple choice UESHIONS..........cuiuiiiiiiiciiic s 234
ADISWETS ettt a e 235

8. Advanced Obijects........ reereeesasetaeatans 237
INErOAUCHON. ...t 237
SHUCKUTE. ...t 237
ODJECHIVES. ... 238
Recap: Importance of objects in JavaScript........cccooveeiiiiiiiiiiiiccccccce 238
Property descriptors.........occiiiiiiiiiniiiciccc s 239

Understanding property descriptorscoccccviiiiiiiiiiiiiiiiiiiiiiiiiisseccccscseina 239

Creating property desCriPLOrscvviiiiiiviiricieieieisieii e 240

ObJECt.CYEALE() ...ttt 240
Object.defineProperty() ...t 240
Object.defineProperties()........ccvceeeinicieiiiiiiiiiieieieeisiessccse s 241

Modifying property AeSCriptorsccccivveivivciiiiiiiiieiiiictseets e 242
Object cloning and deep COPYING.......ccovuiuimiiiiiiiiiniiiiiccii s 245

SRALIOTW CIOTING ... 246

ObjeCt.ASSIGI) oottt 246
SPread OPerator..........cccccuiuiiiiiiiiiiiiiicicicccct s 246

DeCP COPYING w.vvviniiiiieieieieietcse e 247
Recursive strategies for deep copying 0bjects..........ccccvvviviveicinciiniicininciniecnn, 247
Object sealing and freezing ..o 249

ObJECt SEALING ..ot 249

ODBJECt fTOOZING ...ttt 252

SHAILOTW fIOEZING......ocveviiiiiiiiiiicicicct s 254
CONCIUSION.....oviiiiiiii b 255
Points t0 TeMEMDETcooviiiiiiiiiiii s 256
Multiple ChOICe QUESHONS......cccucuiiiieiicieiiceice et 256
ADISIWETS .ttt 258

9. React and Vue veeennneneneaeaenes 259
INtrOdUCHON. ..o 259

o] 0 4§ Lol 4 1 L TR TSR RPN 260

ODJECHIVES. ...t 260
Introduction to React and Vue..........ccooiiiiiiiiiiic 260
KNOWING REACE.......covviiiiiiiiiiiiiiciiiicci s 260
React’s architecture and core CONCEPES.........ovviviiiiiririeieieieiiiiiiicicee s 261
Virtual document object MOdel..............cccccvviviviininiiiiiiiiicicicicc 261
Component ArCRItECHUTEcccuevvuiuiiiiiiiiciiicicccc s 261
Unidirectional data floth............cccovvruvueieinieiiiiiiiiccceee e 262
INEPOAUCEION 10 JSX ovvivieiieiieestestt ettt ettt st sttt beease e e saaeneenes 262
Setting up @ ReAct PrOJECtoovvvvviviiiiniiiiiiiciiiciciicici s 263
KROWING VUC ..ot 265
Viue’s architecture and core CONCEPLS.........cvviviviivinviiiiiiiiiiciiiiciseee 265
Introduction to Vue single file cOMponents.............ccccccocvvvviinvciiinicccciiiniiiiiinns 266
Setting up @ VUE PIOJECEouvvvviiiieiiiiiciiiictcieieeec e 266
Comparing React and VUE............cccvvcivviiniviiiiiiiiiiciiieit it 267
LeATTIING CUTVE c.vvviiceiciciiicicicct s 267
SYNMEAX oo 267
Ecosystem and cCOMMUNIEYcovivivieuininiiiiiiiiniiciiect s 268
ReACHUIEY oo 268

51z ANA PEIFOYMANCE ...ttt 268
Component 1eUSADIITEYccocvviviviiiiciiiiiciiiccti s 268
AOPHION ...ttt 268
Creating components and managing statecccoovveeniiiniiiccceces 269
Creating functional and class components in React............ccccecevvovvviviieininccinnenenn, 269
Using properties to pass data to COMPONENtS..........cccvcvvvivviiiiiiiiiciciiiiiiiiieas 270
Managing state with React’s useState and useReducer hooks................ccccccccvnee. 270
Understanding component lifecycle methods in Reactccccvvvvvvcinincnninnen, 272
Creating components i VIUEcccouvvvviivieiiiiiiiiiiiiiicis e 274
Using props to pass data to components in VUEccccccevvvvvvvivcccciiiiiiiiice, 275
Managing state with Vue’s reactive data properties and computed properties........ 277
Understanding component lifecycle hooks it VUEcccccovvvvviviivcciiiiiiiiiiiiies 279
Comparing component creation and state management in React and Vue................... 280
CompOonent CYEAFIONo.cueuirieiiiiieiiicieiiiieisis et 280

State MANAZEMENTocvvvviiiiiiiiiiicc 281
Routing and Navigation............ccccvirriinininiiiicccce s 281

Introduction to client-side TOUFINGcccovveiviviiiiiiiiiciiieise e 282

xXxvi

ROUING 111 REACEoveeiiiiiiee e 282
Setting up routing in react With reAct TOULET.........cccoovveiriveiiieiiiisiicecisecie 282
Navigating between routes it RACEcccccvvivvvieiviiiiiiiiiiicicicicccccccca 283
Handling dynamic routes and route parameters in Reactcococovvuvuerrininnn. 286

ROULTIG 11 VIUE .ottt 287
Setting up routing in Vue with Ve ROULErccccovvviiviiiiiiciiiiiiiiiicicicccc, 287
Navigating between 10Utes i VUE............ccccveveeeieieiiiiiiiicceciciciecccee e 288
Handling dynamic routes and route parameters in Vie........cccoecvvvevnncinincnnn, 289

Comparing routing techniques in React and VUcccovvvvvvccciiiiiiiiiiicicccn, 291
Routing CONfiQUIALIONcoovveiecicieieiciciiccccce e 291
Navigating Detteers TOULES..........ccvvvvvivivieiiiiiiiisieiise s 291
Handling dynamic rOULES............ccccovveiiciiiiiiiiiiicicicccccs i 292
AdVANCEA fEALUTES ... 292

Building scalable and maintainable applications...........c.cccccveiniiinncinicninncines 292

Best practices for code organization in Reactcccccccvvvviviiiiviccciiniiiiiiiicccnan, 293

Testing techniques for React applications..............cocovvvcuceeinisicieiiiiiicieieseieiesisccans 294

Debugging strategies for React applicationsccccececvvviniieioinniniieciieiiiieenns 294

Best practices for code 0rganization in VUe............ccccccccvieiniiiiininicciiiiiiiciciceeci, 295

Testing techniques for Vie applicAtionscccovvvvcuceucesisiiiiiiiiiceieeeieesesscnns 296

Debugging strategies for Vie applications............ccccoccvecivviiniieioinniniiciineiieees 297

Comparing strategies for building scalable and maintainable applications in

ReACt ANA VU ...t 298
Component-based architeCtUTeccvivviniiiiiniiciiiciiec s 298
State MANAZEMENTocvvvviiiiiriieiiiicc s 298
COde OFGANIZALION. ... 299
T00liNG AN ECOSYSIEML ...ttt 299
Documentation and [earning CUTVEc.covvevciiiiiiiiiisinieeccisieeeeeeenas 299

CONCIUSION.....oviiiiiiii b 300
Points to TeMEeMDETc.civiiiiiiiiiiic s 300
Multiple ChOICe QUESHONS.......cvucuiieciiiicieiceece e 301
ADISIWETS .ttt 303
10. Testing and Debugging veeeesneneneneneneaenes 305
INtrOdUCHON. ..o 305
SEIUCHUTE ...t 305

ODJECLIVES. ...ttt 306

The importance of testing and debugging............cccccccuviuriccinicininininiciniiicccces 306
IMportance of teSHNGcccvvivueiviiiciiiiiiiciccie 306
The benefits Of deDUZZINGcevvuvueuiiiiiiiiiiiciiiciciciiccc s 307
Testing and debugging in software development..............ccccvvveveveiiviveeeiniiiiriicnnns 307

TYPes Of tESHINEcvuieiiiiiiiiiii s 308
UNIE FESEIIG.cocviviivieiicieiiicictccis s 309

Overview of Uit teSHINGccovveueueieieieiciiiicccee s 309
Writing unit tests with testing frameworks...........ccccocvvvvivvciiiviciiniiniieiiieinnas 309
Test-driven development and its DENEfits............cccovvvvvviciviiiiicciiiiiiiiiiceccccc 310
INteration teSHIGovvvvveviieieieieicicictee e 310
Understanding integration teStingccccvvivveiiieiiiiinciiiieiiiecsieecseec s 310
Approaches to integration teStNGc.cccovviviiiiiiiciiiiiiiiiiiciceeccc e 310
Testing APIs and external ServiCescoovvvrueurueieisiiiiiiiicceeiee s 310
ENd-t0-end teSHNG ...ttt 311
Overview of end-t0-end teStINGccccviiviiiiiiiiiiiiiiiiiicc 311
Tools and frameworks for E2E teSting..........cccovvvuvueienieiiiiiiccicicicieeisiecccicecnenes 311
WITHNG E2E FESES...viiiiiiiiiiiiiiiiciiicicit et 311

Setting up a testing eNVIroNMEeNtcccccvvviiiiiiiiiiii 312
Establishing a test envIirONmMentcocovvvvurueueieisisiiiiiiccieee e 312
Test runners and tASK FUNTIETS...........c.coovvviviiiieieiiiiiiiiicee e 312
Mocking and stubbing dependencies...............cocvvvvvvivicicciiiiiiiiiiiiiiccccicciea 312
Continuous integration and continuous deployment...........c.c.cccoevvvvvvcvneneiviiinnnns 313

Debugging teChNMIGUESc.c.eviuciriiiiieiiciece ettt 313
Using browser developer L00ISccccovvvuciciiiiiiiiiiiciciccccciicicc 313

Overview of browser developer t00Is.............covveeeeeeiiiiiiiccseeeeecs 314
Inspecting and modifying the DOMcccccoviinniiinniiiiiiiiiciiiccsscie 314
Debugging JavaScript with breakpoints..............cccccccvvviiiiiiiiiiincciiiiiisicccecn, 314
COnSOle AEDUZGING ...ttt 315

Leveraging console statements for debugQing.........c.cccvcvvvvvvvoinviiniiccnncinieccnn, 315

Logging and debugging teCHNIGUES...............ccvueuvuriiiiiiiiiiiiiiciciciciiiees 315
Remote deDUGQINGcvuvveueieieieiciiiiiiiicieice et 316

Remote debugging on mobile devicescoovevvveicivvininciiiiciiiiciiei, 316

Remote debugging in differernt browsers............cococvvvciiiiiiiiciiiniiciciccicicicisine 316

Identifying and fixing cOMMON €ITOTSccoviuiuiuiiriiiiiicc s 317

Syntax errors and [0GICAl @FTOTSccoovvueiviviciiiiiiiiicicieiect e 317

xXXUiii

Debugging tools for error identificAtioncoccevvevcecesisisiiiiiicccceeeeessca 317
Step-by-step debugging teCANIGUESccccuvueiviviiiiiiiiiiieiiiiecicecsec e 318
Common error patterns And SOTUFIONSc.ocevirivuiiinieeirieiiieecieeet s 318
Best practices for effective error handling ..., 318
Understanding error RANALINGcccocvvivviiiiiiniiiiiiiiciiiecese 319
Error types and exception Randling.............cccccvvvvccciiiiiiiiiiiiniccciiicciccceece 319
Error 10g9ing and 1eportingccccevevevviucunieieisisiiiiicciciees e 319
Graceful error handling and USer eXPErieNCe.cccvvvvivurirviiiiieiiieiiiseicisecias 319
CONCIUSION. ..ot 320
Points t0 TEMEMDET ... 320
Multiple chOiCe QUESHONS.cueuuriieieieicieinecieirei ettt 321
ADISIWETS .ttt 322
11. Beyond Tools and Extensions.... vererenenennssaeaenns 323
INErOAUCHON. ..ottt 323
SEIUCTUT® ...ttt 323
ODJECHIVES. ...ttt 324
Code optimization and performance tUNING...........cccceeieiririninirieieccceerreeeeenee 324
Understanding code Optimizationccccccciiiiiiiniiiniciiiiiiiciccs e 324
MIRIfICAFION ..o 325
ODBFUSCALION ...ttt 325

Lazy [0Adingcccciuiiiiiiiiiiiiiiiiciciccicc 325
METNOIZAION. ...t 325
Introduction to performance tUNiNGc.coccvvviinniiieiiiiiisiieieee 326
G00Gle LiGNEROUSEcocueiiiiiiiiiiiiiciciciccictc 326
Chrome DevTO0sccviiiiiiiciiiiiciiiiicicici 327
Practical examples for optimizing performance..........ccuvvevvvvcinvcinnccininencnn, 327
Choosing the right tools for your project and teamccccoeeeuverecuvnicrnenccrenenee 328
Considerations for t00l SEIECHIONcccovvvururueieisisiiiiiicccee e 328
ASSESSING PrOJeCt TEQUITEIEHIES ...c.vvuiiiiciciiiieiiiiiciciset e 328
Evaluating team expertise...........cccivvivioiiiiiiiniciciciiiiiiisisiseecc s 328
Anticipating scalability Needs..............cocovvveiiiiiiiiciiiciiicccccce s 329

Best practices for collaboration and code reviews...........cccccceevieininiriciciccinininnnnnnnes 329
Effective cOllaboration.............cocovvvviiiiiiiiiciiiiiiiiiiiicicieccc 329
Importance of collaboration in SOftWAre PrOJECES.........ccvvvvuvueveicieiiiiiiicicicieeieiae, 330

Use of Git for version CONLTOL..........ccccvvciviviiiniiiiiieiiieiiseiiee e 330

Implementation of agile methodolOgIescceeveveveviiieiuieiiicieiiiiiieccee e, 330

COde TEVIETD PYACHICES......cuiuiveiiiiieiiieieii ittt s 331
Benefits of COAe TEUIETWScccueuvueuiuiiiiiiiiciciccc 331

Use of t00ls for COAE TEVIES.vuvuevreeieieieieiciciiccicce e 331

Tips for providing and receiving feedbackccoovccivvvvivviiciiniiiiiiiiiniine, 332
Strategies for managing complexity and maintainabilityccccccoeeviiiiinnnne 332
Managing COMPIEXTHYccovovviueurieieisiiiiiiiiccce e 332
Strategies for managing complex SYStEMScccvevviveiiineinieiiiiniicecisecines 333
Importance of modular design and error handlingcocecevvvcvcviiiviiinninns 333
Adherence to SOLID principles and MVC pattern............ccccoeevvvvvveeeininrenennnns 333
Ensuring maint@inabilitlf ... 334
Importance of code maintainability............c.ccocovvvvvivviiiiiiiiiiiiiicccce 334
Techniques for maintaining code qUALTEYccvveeveeieiiiiiiicceeeeecces 334
Emerging trends and best practices.........cccoeevniiiniiiininiiniiiiincce 335
CUTTENE FFONAS ..o 335
Future of JAUASCYIPE......cuvuceeveieiiiciiciicccceet s 336
Latest ECMA standard Updates.............ccovveviveinivciiiniiiiiiieiisecisecs 336
Upcoming frameworks and t00lS............c.ccocovevvivivviciiiiiiiiiiiiiiicccccccccie 336
CONCIUSION. ... 337
Points t0 TeMEMDETcooviviiiiiiiii s 337
Multiple ChOICe QUESHONS.......ccucuiiiieiicieiceicee et 338
ADISIWETS .t 339

Index341-353

CHAPTER 1

Fundamentals of
JavaScript

Introduction

This chapter covers the basics of JavaScript, including its syntax, data types, variables,
operators, and control structures. We introduce the JavaScript language and its key
features, such as its dynamic typing system and its use of functions as first-class objects.
We then cover the essential data types in JavaScript, including numbers, strings, Booleans,
arrays, and objects, as well as the operators and control structures used to manipulate and
control them.

Structure

In this chapter, we will discuss the following topics:
e Overview of JavaScript
¢ Features of JavaScript
* JavaScript syntax and conventions
¢ Data types in JavaScript
® Variables in JavaScript
® Operators in JavaScript

e Control structures in JavaScript

2 JavaScript Masterclass

e Comments

e Indentation and whitespace

Objectives

The objective of this chapter is to provide a comprehensive understanding of the
fundamentals of JavaScript. By the end of this chapter, you will be ready to move on to
more advanced topics. We will discuss best practices for organizing and writing JavaScript
code, including using comments, indentation, and whitespace.

Overview of JavaScript

The origin of JavaScript dates back to 1995 when Brendan Eich, an engineer at Netscape
Communications Corporation, was tasked with creating a new scripting language
for the web. At that time, the World Wide Web was still in its infancy, and web pages
were mostly static, lacking interactivity and rich user experiences. The development of
JavaScript attempted to overcome these limitations and revolutionize how users interact
with websites.

Brendan Eich developed the prototype of JavaScript in ten days. The initial language
version was simple, featuring basic control structures, functions, and a few built-in
objects. However, it was powerful enough to support basic interactivity in web pages and
manipulate HTML elements, which was a groundbreaking achievement then.

JavaScript was initially called Mocha and then briefly named LiveScript. The final name
change to JavaScript was influenced by the popularity of Java, a programming language
developed by Sun Microsystems (now owned by Oracle Corporation). Although Java
inspired the syntax of JavaScript, they have distinct features, use cases, and design
philosophies.

After JavaScript’s introduction, it quickly gained popularity among web developers.
Netscape’s primary competitor, Microsoft, developed its JavaScript version, JScript, in
their Internet Explorer browser. Minor differences in implementation led to compatibility
issues across different browsers, prompting the need for standardization.

ECMA International’s involvement in the standardization process ensured that JavaScript
could be implemented consistently across browsers and platforms. Since the publication
of the first ECMAScript standard, ECMA-262, in 1997, multiple revisions have been
released. These revisions have expanded the language’s capabilities, making JavaScript
increasingly powerful and versatile.

Some notable ECMAScript versions include:

e ECMAScript3(1999): This version introduced features such as regular expressions,
exception handling with try-catch statements, and improved support for
Unicode.

Fundamentals of JavaScript 3

e ECMAScript 5 (2009): After a long hiatus, ECMAScript 5 brought significant
updates, including strict mode, native support for JSON, and many new array and
object methods.

e ECMAScript 6 (2015): This release marked a turning point for the language,
introducing modern features like classes, arrow functions, template literals,
promises, and modules, among others.

Since ECMAScript 6 (2015), the standardization process has shifted to a yearly release
cycle, with incremental updates and new features added to the language each year.

JavaScript’s impact on the web is immense. It is one of the three core technologies of web
development, alongside HTML and CSS. JavaScript’s use cases have expanded beyond
the browser as the web evolved. The advent of Node.js in 2009 allowed developers to use
JavaScript for server-side programming, and with the help of frameworks and libraries
like React Native, developers can now build mobile applications using JavaScript as well.

Today, JavaScript is a fundamental skill for web developers, and its importance continues
to grow as new technologies and frameworks emerge. As a result, understanding the
history and evolution of JavaScript provides valuable context for developers who wish to
leverage the full potential of this versatile and powerful programming language.

This book adopts the version notation format ESYYY'Y, with YYYY representing the release year of
the respective version. As an illustration, ECMAScript 6 will be denoted as ES2015.

JavaScript as a scripting language

As a scripting language, JavaScript is primarily used to automate, enhance, and make web
pages interactive. It provides the means to respond to user actions, manipulate webpage
content, and communicate with web servers on the fly.

Unlike low-level languages such as C or C++, JavaScriptis a high-level language, meaning it
abstracts many of the intricate details of the machine (computer hardware). This abstraction
makes JavaScript easier to learn and use, as developers can focus on programming logic
rather than managing memory and understanding machine architecture.

Also, JavaScript is an interpreted language, which means a JavaScript engine runs it
line-by-line in the user’s browser or server environment (like Node js). This differs from
compiled languages, such as Java or C++, where the code is converted into machine code
before running. The advantage of an interpreted language is that it allows for dynamic
typing and flexible, on-the-fly code execution, potent assets for rapid development and
debugging.

JavaScript in web development

In web development, JavaScript is central, forming one of the three pillars of web
technologies alongside HTML and CSS. While HTML provides the structure of a webpage

4 JavaScript Masterclass

and CSS determines the styling and layout, JavaScript breathes life into static web pages,
making them interactive and responsive.

One of the most significant capabilities of JavaScript is the ability to manipulate the
Document Object Model (DOM). The DOM is a tree-like structure that represents all
web page elements. JavaScript can traverse this tree structure, add, modify, or delete
elements, change styles, and react to user events, such as clicks or key presses. This allows
for interactive features like image sliders, form validation, responsive navigation menus,
and more.

JavaScript enables asynchronous communication with servers using technologies like
Asynchronous JavaScript and XML (AJAX) and Application Programming Interfaces
(APIs). This means that JavaScript can send and receive data from a server in the
background and update parts of a webpage without refreshing the entire page, leading to
a smoother user experience.

Moreover, with the advent of JavaScript frameworks and libraries like React, Angular, and
Vue.js, the capabilities of JavaScript have extended beyond simple client-side scripting.
These tools allow developers to build complex user interfaces, single-page applications,
and even mobile applications with JavaScript.

In conclusion, JavaScript's role as a high-level, interpreted scripting language makes it
an accessible yet powerful tool for web development. It is responsible for much of the
interactivity and dynamism we associate with modern web applications. By understanding
JavaScript’s capabilities and how it interacts with HTML, CSS, and web servers, developers
can leverage their full potential to create engaging and user-friendly web applications.

Features of JavaScript

JavaScript is known for its unique features and design principles, contributing to its
flexibility and power as a programming language. Here, we delve into some of its notable
features.

Dynamic typing

In JavaScript, variables are dynamically typed, which means a variable’s type is checked
during runtime and not in advance. This is different from statically typed languages like
C++ or Java, where the variable type must be declared when the variable is created. In
JavaScript, you can assign a string to a variable and later assign a number to the same
variable. Please consider the following code:

let myvVar = "Hello, world!";

myVar = 42; // No error

Fundamentals of JavaScript 5

This flexibility can speed up development and make JavaScript more accessible for
beginners. However, it can also lead to potential runtime errors, so it is important to be
mindful of type coercion and ensure that operations make sense for the variable’s current

type.

First-class functions

In JavaScript, functions are first-class objects, which means they can be assigned to
variables, passed as arguments to other functions, and returned from other functions.
This feature allows powerful programming techniques such as callbacks, higher-order
functions, and closures. Please consider the following code:

// Assigning a function to a variable
let greet = function() {

console.log("Hello, world!");

}s

// Passing a function as an argument (callback)
function callThreeTimes(func) {

func();

func();

func();

callThreeTimes(greet);

// Returning a function from another function (closure)
function makeAdder(x) {
return function(y) {

return x + y;

}s

