Java 8 to 21

Explore and work with the
cutting-edge features of Java 21

Shai Almog

www.bpbonline.com



ii
Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork

119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55513-922

www.bpbonline.com



i1l

Dedicated to

Tao & Tara



iv

About the Author

Shai is an author, entrepreneur, blogger, open-source hacker, speaker, Java rockstar,
developer advocate and more. He is a former Sun/Oracle engineer with 30+ years
of professional experience. Shai built Java Virtual Machines (JVMs), development
tools, mobile phone environments, banking systems, startup/enterprise backends,
user interfaces, development frameworks and much more.

Shai is on the advisory board for multiple organizations including dzone, dev
network, and so on. Shai speaks at conferences all over the world and shared the
stage with luminaries such as James Gosling (father of Java).



About the Reviewer

Ravi Rajpurohit is a highly accomplished Software Engineer, currently holding
the position of Manager at Morgan Stanley in Bangalore. With a career spanning
various prestigious organizations, Ravi has amassed a wealth of experience and
expertise in the field. His journey began as an intern at ISRO RRSC-W in Jodhpur,
where he laid the foundation for his career in software engineering. He further
solidified his skills while working as a Software Engineer at Confluxsys Private
Limited in Pune. Ravi’s talent and dedication led him to excel as a Senior Software
Engineer at Publicis Sapient in Bangalore, where he contributed to the development
of cutting-edge software solutions. Proficient in Python, Java, PHP, and other
programming languages, Ravi possesses a versatile skill set that allows him to
tackle complex technical challenges. Outside of his professional pursuits, Ravi
finds joy in sharing his knowledge through technical teaching during his spare
time. Originally from Jodhpur, Ravi brings a unique perspective and strong work
ethic to his endeavors, making him a valuable asset in the software engineering
realm.



vi

Preface

Java has a big problem. It is often perceived as old, but Python is older, and
JavaScript is its contemporary. Why is that?

Java has had continuous popularity and success for nearly three decades. That
means that most of us worked with Java 1.4, which was released two decades ago.
Unlike any other platform out there, Java is still compatible with that release. That
is fantastic but also creates a sense of disconnect. Developers compare that highly
outdated version of Java to modern incarnation of other languages or platforms.
That is an unfair comparison, and Java is a victim of its own success.

There are several sources for information about new Java features but there is a
lack in a comprehensive introductory guide to modern Java, that carries us from
that old version to the modern world. With this book, we hope to fill that gap, to
answer the question of “is this still the right way to solve this problem?”.

This book is divided into 10 chapters. They cover Java basics, OOP basics and
continue to cover everything we need to know, in order to build a modern Java
backend. Here is a brief description for each chapter:

Chapter 1: Hello Java - In this chapter, we will review the basics of the language
and tooling, to make sure we are all on the same page. We focus on Java 8 syntax
and as we move forward in the book, we will discuss the newer features of Java,
all the way to version 21.

Chapter 2: OOP Patterns — In this chapter, we explore the best ways to leverage
OOP, what we would consider as good design and what type of OOP principles
are expressed in the Java APL

Chapter 3: 8 to 21 to GraalVM - Java went through many pivotal releases. Java
1.1 introduced inner classes. Java 2 introduced Swing and collections. Java 5
introduced Generics. However, one of the most pivotal releases was Java 8, which
introduced a slew of wide sweeping changes. Up until Java 8, the releases of Java
versions were irregular although they tended to follow a two-year cadence. With
the release of Java 9, this changed. We now have a 6-month release cycle. This
pace made the period between Java 8 and Java 21 relatively short. We review the
changes between these releases in this chapter.



vii

Chapter 4: Modern Threading - In this chapter, we will discuss the evolution of
Java threading from the beginning, all the way to the future. We will explain the
trade-offs and challenges and we will also discuss the best ways to write highly
concurrent code moving forward.

Chapter 5: It's Springtime in Java - Spring brings together libraries and tools from
multiple different projects, to create a unified experience. Spring is also highly
configurable; it is not limited to backend or database driven applications.

Chapter 6: Testing and CI - In this chapter, we will cover some common tools
in the world of testing such as JUnit and Mockito. We will cover GitHub Actions
when discussing CI due to its wide availability and free quota. We will also discuss
some high-level concepts such as Test-Driven Development (TDD).

Chapter 7: Docker, Kubernetes and Spring Native — The original thought behind
this chapter was around cloud native development. However, that acronym is
somewhat vague. In the old days, we would take the resulting jar files we would
build and place them on an application server connected to the internet. These
days are long gone, containers and orchestration have completely changed the
way applications are deployed in production.

Chapter 8: Microservices — The rise of Kubernetes has made the Microservices
approach far more commonplace. The cost of spinning up and managing multiple
smaller servers became manageable and as a result, drove a massive move in that
direction. Microservices bring a great deal to the table, they are easier to build and
often easier to scale.

Chapter 9: Serverless — The complexities of Monoliths and Microservices pushed
some developers towards an easier route. Serverless is a problematic branding term
indicating that we no longer need to manage our server, only the application. The
serverless provider takes over the complexity of spinning up container instances
for us as long as we follow some guidelines in application development.

Chapter 10: Monitoring and Observability — Monitoring and observability are
essential aspects of software development that help developers and operations
teams ensure the reliability, stability, and performance of their applications. As



viii

systems become increasingly complex, the need for effective monitoring and
observability tools grows in tandem, providing a comprehensive understanding
of the behavior and health of applications during development, deployment, and
production. The Java ecosystem is no exception, offering a rich set of libraries
and tools designed to facilitate these critical tasks. This chapter will delve into
the concepts of monitoring and observability in the context of Java applications,
exploring the underlying principles, methodologies, and best practices that will
enable developers to build robust, scalable, and resilient systems.



ix

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/boaude5

The code bundle for the book is also hosted on GitHub at https://github.com/
bpbpublications/Java-8-to-21. In case there’s an update to the code, it will be
updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications” Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.



Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then
see and use your unbiased opinion to make purchase decisions. We at BPB
can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com




xi

Table of Contents

) R 5 231 0T 2 VN 1
INErOAUCHION ...ttt 1
SEIUCTUTE ..t 2
ODJECHIVES ..ttt ettt 2
ReqUITEmMENtS.......ccouiiiiiiiiiiiicc s 2
Setting UP @ PIOJECT .vvviiiiiiiiicic e 3
HEILO JAVA...vvitiitieeeeeecteeceete ettt ettt eve et ess st ns s s esensesseressessesensenseneas 5
Principals of OOP ...ttt 8

ENCAPSUIALION ...ttt 8
TNR@TTEANICE. ...ttt 14
POIYIOTPRISI ..ottt 17
BUIIt-IN TYPOS..uiiiriieiiiicerece ettt 19
ATTAYS o 21
GENerics ANA ETASUTE .........c.cucueueerieesirieeeeiese et 22
DEDUGGING ...ttt 25
DeDUZGING JAVA......cooiniriririeeeieieiiiiiitieisses ettt 26
CONCIUSION .ttt ettt 27
POINtS t0 FEMEMDET......c.cuiiiiieciiicicirircectetecie ettt 27
Multiple choice QUESHIONS.......ccuueuiuciriricicirieieiciri ettt 28
ATISWETS.coiiiiviiiiccicti s 29

2. OOP Patterns ......ccueevueeeeinrieiniinieinntenneenteeseessesssesseessessssesssssssessssessessssens 31
INErOAUCHION ...t 31
SEIUCTUTE ..t 31
ODJECHIVES ...ttt e 32
WHhY OOP? ... 32
Basic Object-Oriented Desigh........c.ceucururiecrininceeieinieieiecceseseeenseeesenenes 33
COMMON PALLEITIS c..veiiiieiiciiiereerteeteee ettt 34

SIAGLELON ..ottt 35
FACLOTY i 40
BUIIACT ...ttt 42



xii

FOAGAAE.......eoieeeee ettt ettt et 47
PrOXy ..o 48
ODSETVET ..ottt ettt 51
COMIMANG. ..ottt 52
TECTALOT . 55
IMMUEADILILY oottt 56
Functional programming.......c.c.ccececrreccninicrcininecreinineceeseccseseseseseeseesesennes 58
CONCIUSION .ttt ettt 60
POINts t0 reMEMDET.......ccucueiiiecicieccirirc et 60
Multiple choice QUESHIONS.......ccuuiuiuciriricicirieiciciriccietre et eeeaes 61
ATISWET Sttt 61

3. 81021 to Graal VM ......uucueieienieniiniininennnnennnenesessessessessessessessnssssssessennes 63
INErOAUCHION ...ttt es 63
SEIUCTUTE .. e 64
ODJECHIVES ...ttt 65
Java 8—1the DASEIINE .....oovivieieeececeeeeeeee ettt 65
LAMbBAQ @XPTESSIONS ..ttt 66
MEtNOA TEfETENCES.......eeeeeeereieieisieteeeee st 67
Default MEtNOAS ......coouveeeeeeecieiciiiiiitiiee et 68
SEFEAMS ... 68
ANNOLALION CHANGES ...ttt 69
Method parameters reflection.............ucccceuevnnnnincceeeniseneeeeeee e 69
New date and time APIS ........c.ccceeeennnnnreeeieiceiceecetse st 70
VM ChANEES ...ttt ettt csene 71
Modules AKA JigSaw (JAVA 9)......vveeeeeeeueeerereirinininieeeeeniseseece e 71
Shenandoah (JAVA 12)......ueeeeceeeeeeeieeeeeeeeeeeeeee e eanons 72
Not your fathers stop the world mark SWeep............ccccccccecrirnnnneceenenee 73
Generational garbage collection ..............cceueeeiueeninennsreeeeccceeenes 73
Concurrent versus parallel garbage collector ............ccovvvvvcccccncneene. 73
Serial COLLECTOT ...ttt 74
Parallel collector or throughput collector ..........couvveecueceioirininrrenne. 74

G1 Garbage COlIECtOT .........c.c.uuveiriririreeieeeieeteestetesee et 75

Z Garbage Collector (ZGC) ....couuuvevueueueuiuieiiieisinisiseeeeeeestseseseeeeeeenenes 75
SHENANAOAN..........cooiiiiiiiett ettt 75

Microbenchmark Suite (JAVA 12) .....cooceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeveevees e 76



Virtual Threads—Loom (JAVA 21)......ceeceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 78

) o To 2 S US 80
Deprecation of finalization (JAva 9) ........cccccevrnnnevcceieeneeccrenens 83
UTF-8 by default (Java 18)........c.ccuceininininirinieieiciciciiicietsestseseseeeeeeeeeaee 83
Language Changes..........ccceeeeiriniecueininieieieeccesesesce et seeeseae st sesseacs 84
TTY WIth T@SOUTCES ...ttt 84
Private methods in interfaces (Java 9) ........occeeeceiioininsnnreeececene, 85
var keyword (Java 10) .........ceeeeceeueueeeninieceeenetseseee e 85
Switch expression (JAVa 14) ........oeeeeeeeueueeeinininreseeeeeeictiete e 85
Sealed classes (JAVA 17) .c.ouuuveeeeeeeeeeeeeeeeeeeeeeeeeeeeeteeteee e sases e svesaesanons 87
Pattern-matching instanceof (Java 16)...........cccceceevevenennnsneeeecnenenee 88
Text DIOCKS (JAVA 15) ..ocuveeeeeeeeieeeieeeeeeeeeeeeeeeee ettt esesaeenean 89
ReECOTAS (JAVA 16)...uocuviceeeeieieeeeeeeeeeeeeeeeeeee ettt e sas e eeaeeaean 90
Record patterns (Java 19 PreVIeW).......cceccccueuverrenineeeeiesininieeeeisenineens 90
String templates (Java 21 Preview)..........ceueveeeeeueeeueeceoesennneneeeseeenenenenene 90
Unnamed patterns and variables (Java 21 preview) ..........cococvvvnercccncnnns 91
APIS ettt a e et a bbb bt ssanan st eaeaeten 92
HUPClient (JAVA 11)....ceceveeeeueeeeeeieiiiinisieseeeeeieeitit e 92
Foreign function and memory API—Panama (Java 19)..........ccocuvevecucunne. 93
Structured concurtency (JAVa 19)......c.cccouevveeereveeeeueuciiiiiininsneseeeeeeeeenne 94
Serialization filtering (JAVA 9) ......cvveveeevecucueerrinisieceeersseeee e 94
Scoped values (Java 20).........cveeeueueucuceoinininieirieieieeeieeeeestse st 95
Sequenced collection (JAVA 21)......c.ceeeeeececueueeeenininieeeeieisnineseeeeeen s 96
FULUTC oottt ettt ettt e s s e e e s ansees 97
GIAAIVIM .ottt ettt ettt ettt ete e eteanes 97
VAIRAIG. ...ttt v s ssesse e 98
CONCIUSION ..ottt e b se s s e e ssese e sse e s eseneesesannns 99
POoINts tO r€MEMDET.........ceoiieeiceeeee et es 100
Multiple choice QUESTIONS......c.cuevevririririreeeeeecicteteieteteete e 100
ATISWET S cveeeeeeeeetee et eeteste e ae et et e et e et e et e e baeeteesaseeabeeate e as e asesaseeteenseenreas 101

4. Modern Threading .........ccocevevvuenenruinsiisinneininneneinenecneeiesesneseeseseene 103
INELOAUCTION ...ttt ettt et ssasese s se s ebensenes 103
SETUCTUTE ottt et s s ebe e et e s e beseeaeesaennensensensans 103
ODJECHIVES ...ttt ettt 104

HISTOTY ot 104



xiv

COMNCEPLS ..ottt ettt 106
TRTCAA SAJELY ..ottt 106
MUK (LOCK) ..ottt eas e eas e 107
Wait and notify (MONTLOT) ......c.cecucueueriririiieiceieteeeseteiee et 109
DAAIOCK ...ttt 112
RACE CONATIONS. ..ttt 113

TRICAA POOLS ..ottt 113
EXECULOTS ..ot 114

LOCKS ottt 115

SYNCRIONIZETS ...ttt 125

ALOINIC i 127

FULUTES o 129

Collections and QUEUES.........c.cuveeucurirececrrinicieirineeietseeeee e eseseisesesesesesseeaesesenes 130

CONCIUSION .ttt 132

POINts t0 FEMEMDET......c.cuiiriiiciieicicirieciceee ettt 132

Multiple choice QUESHIONS........ccuiriiecreiriireieieccieire et eeaeae 132
ATISWETS.coviiiiiiiccictii s 133

5. It’s Springtime in Java .......ccoveeevcnrcnninnninncnninnieneenecsneeeseesssesseesnee 135

INErOAUCHION ...t eaeene 135

SEIUCTUTE .. 135

ODJECHIVES ...ttt 136

History and Origin.......cocceeiceiriniceinicceceeeeeeee e eeaens 136

Inversion of Control, Dependency Injection, and

Aspect Oriented Programming..........ccceeeeererereuernenicieiemeeenseeesenseesesenenens 137

Hello Spring BOOt......c.covcueiiiieiriiceieccciceeeeeceee e senseeaens 140

A REST APL ..ottt sasne 146

Spring MVC and Thymeleaf ..........cccoenecnicnienicnicneeeneeeneeeeeeeneees 149

SQL and JDBC ...ttt 159
SQL DASTCS.c.veeeeeeeieeeeeeeeeeeeeeeee ettt et et et e et e e eatees e ertesaesiseseveeereesisesasesns 159
Java Database CONNECHIVILY.........ccvmrriecceeeiririsiisieieise s 161

Java Persistence ArChiteCtUre......ooiviviiciiiiiiieceececeeteeee ettt 164

Error handling ..o neeaens 169

CONCIUSION ..t 173

POINES tO TEIMEIMIDET ...ttt ettt e e e eveeteereeeaeesaessesaeeeneesaeenen 173



X0

Multiple choice QUESHIONS........ccuiriiecreiriiecieieccirirec et eeaeae 173
ATISWETS ..ottt 174
6. Testing and Cl ......ccucoeiviiinininicninniininncninenienesneseeseseessessesessscsssene 175
INErOAUCHION ..ottt 175
SEIUCTUTE .. 176
ODJECHIVES ...ttt ettt 176
TeStING theOTY ...t 176
JUDE 1vvvveoeeeeeeee s eeeseeessseeseesessssseesesssssseseessssseesssessseeess s e eesssseeesesssssseessssseeeeesees 178
IMOCKIEO ..ttt ettt 181
Performance MALLETs..........ceeeveueueueeeeriniseeee et 182
What sShould We TOCK? ..........cecueeeiiirinieirieiecicciccetestst et 183
Test Driven DevelOPment .......c.cvecueuriecrinincecieinineeeineeeeeseeeeeeseseaeeeseeaene 183
The problem With TDD............cccveeeirreirireeiseeeentseeesee et 184
Continuous INtegration..........ccoouveiiiinniiiicii e, 185
Continuous Integration t00LS ...........ccccecvninrririeeeucieeieetentseseseeeeeeenenes 186
ClOUA VETSUS 0N PTOMISE ...ttt 187
AGENt SEALEFUIINESS ...ttt 188
GItHUD ACHONS. ...ttt 188
BYANCH PrOTECHION ...t 194
LINTNG i 196
CONCIUSION ..t 202
Points to remMembeT..........ccccviiiiiiicicc e 202
Multiple choice QUESTIONS......c.ceueveuiuriririririririreree ettt 202
ATISWETS ..ottt 203
7. Docker, Kubernetes, and Spring Native.........ccocceevuerreerreessernvecnsucnsnensecnnne 205
INErOAUCHION ...ttt seaene 205
SEIUCTUTE oot 206
ODJECHIVES ...ttt 206
CONTAINETS ..o 206
DIOCKET .ttt 207
OTChESIAtION ...cueeticeiitreci ettt 210
KUDCITECLES (K8S)...vveeeieeeeeeeieeeee ettt ettt sas s 211
The easy Way—SKaffold..............ccoummrveeeiiiiiininnesesee e, 215

Infrastructure as Code (TaC)......ooivvieeieeeieiceeceecreeeere et 220



xvi

SPring NAtIVe .....cccuiiiiiiiiiiccc e 221
Getting started wWith SPring NALIVe............c.ccceevrrniniceeeerreeeeeenen. 223
CLOUA INALIVC. ...ttt e ettt s s ess e eveenens 226
Alternatives t0 SPring NAIVE ........c.c.ccvurrrneeeeceeiererireneceeienneseseeeeies 227

CONCIUSION ..ottt ettt s e bbb ss s s st se e s e e s eseseesesans 229

POoInts tO reMEMDET.........ceceieeieieeieee et es 229

Multiple choice QUESTIONS......c.cuevivriririireeececiceieteeteteeee et 229
ATISWET S ecuveeteeeeeeeteeeteeeeete e te e e et e et e et e et e et aesteesaseeabeeateenseenneesaseeteenseeneeas 230

8. MUCIOSEIVICES vuuvureeieiireernnnensesssossesisessannsnsessssssssssssssnnsnsesssssssssssssssnsasessssssssss 231

INELOAUCTION ...ttt ettt ettt ese s se s ebensenes 231

SETUCTUTE ottt et e e s ebe e e et e s e b e seeseesaennensensansans 231

ODJECHIVES ...ttt ettt 232

Microservices versus small MOnoliths ...........ccccoeeeeeeieiieeeeeceeeeeeeeeeeeen 232
SETVICE TNESH ..ottt ettt eere e eaeeaeenn 234
Authentication and AUINOTIZALION............cccceeveeeeeeeeieeeeieeeeiieeeeeeeeee e 237
EVENIUAL CONSISTENCY .....vvviriiieeeieiieteieieisestseeee ettt 242
MESSAGING ... e 247

RADDIEMQoeeooeeoeeoeeeeeeeeeeeeee e s oo 248
APACHE KAFKA ..ottt 249
SPring clotd SITEAM...........ceececeiiiiiiieeee ettt 249
Publish subscribe and point t0 POINt ...........ccovvveveverrvreeeeecceneneen. 250

MONOIER fIFST ..ottt v ettt ene 254

Modular Monolith. ..ot 256
MOAUIIER ..ottt v e eseasesenea 257
OLRET TOAULES ...ttt s e eaeas 258
THE DENESIL ...ttt 259

CONCIUSION ...ttt bese s s e s st s e e e s e e s esesessenans 259

POoINts tO rEMEMDET.........cueiieeeiieeeeee et es 259

Multiple choice QUESTIONS......c.cvevevririririreeeceeiccreteetetetete ettt 259
ATISWET S cueeeeeeeeeteeeteeeesae e teete ettt e et e et e baesteesasesabeeateeseenaeeaaseeseenseeneeas 260

9. SEIVEILESS...uueeeiiiiiiiinneeieieiiiirrneeeeeeccecsnneeeeeeeeeesssnnsasessssssssnsnsassssssssssnsassasssas 261

INELOAUCTION ...ttt ettt ettt ess s se s ebensenes 261

SETUCTUTE ottt st e et e e s e st reeaae st e s e besseeaeeseennensensensans 261

ODJECHIVES ...ttt ettt 262



WHRAL 18 SEIVETIESS....cueuviieiiciriiiciciri ettt eaene 262
Using AWS Lambda.......c.cevicueininiiieiccnircceiecreieceie e esesesesseseenens 263
GraalVM and Monolith Serverless..........couceurcenirincceeninicienenecsneceeeeens 269
The cloud ECOSYSLEIM ......cuuiiieciciriecieiere ettt eeaene 272
CONCIUSION .ttt 273
POInts to reMemMbDeT........cccueiiciciriiccicc e 274
Multiple choice QUESHIONS........ccuiririecreiriiicieieccirire e seaeae 274
ATISWETS.coiiiiiiiiicictit e 275
10. Monitoring and Observability ..........cccccevveivrerririseciscnnsnnscnnicnsecnsecnneennee 277
INErOAUCHION ...ttt nees 277
SEIUCTUTE .. 278
ODJECHIVES ...ttt nes 278
What i MONItOTING? ....vveieiiiicicieieeree et 278
Pillars of 0bSErvability .......c..cccvecuricuniciricinicincnecesececes e easecsseeseeeneeae 280
The three pillars of 0bServability............cccucueueeiiiininrirrreeeeecceeean, 280
What makes a system observabler...............cccocevrrnnieccceienninencccens 282
Prometheus .....c.covcuiiiciicccc s 283
GIAfANA oo 285
MICTOIMETET ..ottt 286
ACTUALOT oot 287
Enabling and configuring Spring Boot actuator .............eeeeeecececccennn. 288
Exposing custom information via Spring Boot actuator ................c...c...... 289
Developer 0bservability..........cccovcerinivciiinccccreeece s 291
TNJECHING LOZS ..ttt 292
Snapshots/captures and non-breaking breakpoints.............cocececcvvrunenne. 293
PII reduction and BIOCKLISES ...........cocvevenvrerrieciccciiee e 294
CONCIUSION .ttt 295
POInts to reMemMbDeT........cccueiiiciriricccc e 295
Multiple choice QUESHIONS........ccuririiecreiriiecieieccirirece et seaeae 296
ATISWETS.coviiiiiiiicict s 296






CHAPTER 1

Hello Java

Introduction

Java is one of the most ubiquitous programming languages on earth. One of its
biggest selling points is its simplicity. In fact, the father of Java, James Gosling, used
to describe his approach to the design of Java with the following metaphor.

When James had to move to a new residence, he would pack all his belongings into
well-labeled boxes. Then, he would only unpack the stuff he needed. Six months
later, he would throw away all the other boxes without looking at the content. If he
looked at the content, he would probably keep it. Java was designed according to the
principle of minimalism. Over the years, it grew, but it is still a small language with
a massive API and ecosystem.

In this chapter, we will review the basics of the language and tooling to make sure
we are all on the same page. We will focus on Java 8 syntax, and as we move forward
in the book, we will discuss the newer features of Java, all the way to version 20.



2 Java 8 to 21

Structure

In this chapter, we will discuss the following topics:
e Requirements
e Setting up a project
e HelloJava
e Principals of OOP
o Encapsulation
o Inheritance
o Polymorphism
e Built-in types
o Arrays
o Generics and Erasure
e Debugging
o Debugging Java

Objectives

By the end of this chapter, the reader will learn the basics of working with Java.
This book assumes some basic prior familiarity with Java. Regardless we chose to
approach this chapter as a blank slate since your familiarity might be significantly
out of date. By the end of this chapter, you will be able to read simple Java code; as
the book progresses, we will build on top of that knowledge. As such, this chapter is
the foundation for the rest of the book.

Requirements

To get started, we need to install the Java JDK, and in our case, OpenJDK is
recommended. Open]JDK is the open-source version of the Java virtual machine,
which we need in order to run Java applications. There are commercial packages of
the JDK as well as the Oracle official bundle. However, Open]JDK is free, portable,
and supported indefinitely, so a variant of OpenJDK is highly recommended. There is
a comprehensive tool to locate the OpenJDK distribution that fits your requirements
on the foojay.io sitel'l. You can check out SDKMAN® if using a Mac, Linux, or the
Linux subsystem on Windows.

1  https://foojay.io/almanac/jdk-20/
2 https://sdkman.io/



Hello Java 3

Other than that, you will need to install Intelli] /IDEAB!, which is the leading Java
IDE. The community edition is sufficient for most novices, but the Ultimate edition
is recommended, especially for working with Spring and Web.

Setting up a project

Java is simple. This facilitated an enormous ecosystem around it and, as a result,
added complexity to Java as a whole. We can compile a single Java source file using
the javac command line. But this is not practical for significant applications. A real-
world application is comprised of multiple files, with interaction among the various
pieces, and is often packaged in a novel way. There are many complexities in the
build process, including the management of dependencies. That is where build tools
come in. At the time of this writing, there are three common build tools for Java as
follows:

e Maven: This is the tool we will discuss in this book. It is the market leader,
although a bit older. It uses XML syntax by default and is somewhat clunky.
However, it has a huge ecosystem and is very mature.

¢ Gradle: Uses a syntax based on Groovy or Kotlin for the build scripts. Works
with Mavens dependency system, making the migration from Maven easy.

e Ant: Alegacy system based on XML and a precursor to Maven. Itis listed for
it its completeness, as we still run into ant scripts occasionally.

All of these tools can be used effectively from the command line, but we do not need
to do that. Java is particularly powerful when working within the confines of the IDE,
where we can leverage its automation to instantly spot problems and investigate our
code. To get started, we launch Intelli]/IDEA and create a new project!’, as seen in
figures 1.1 and 1.2:

n Intelli IDEA

Projects
Welcome to IntelliJ IDEA

Customze

Plugins Create a new project to start from scratch,

Laarn Intelll) IDEA Open existing project from disk or version control

+ = 14

New Project Open Get from VCS

Figure 1.1: Intellil/IDEA new project window

3 https://www jetbrains.com/idea/download/
4 The complete projects are available here: https://github.com/shai-almog/java-book



4 Java 8 to 21

Refer to figure 1.2 to see the steps for the creation of a new project:

Empty Project
Location: ~fldeaProjects
Project wil be areated in; - [IdvaProjects (HeIOAON
/11 Maven Archetype Create Git repository
Py Javarx
Language: Java Kotlin Groovy HTML +
I Kotlin Multiplatform
© Cempose Multiplatfe  gyild system: Intelli) Maven Gradle
IDE Plugin
% Android JOK: = openjdk-19 Oracle OpenJOK version 19 ~
[ Add sample code
~ Advanced Settings
Croupld:  org.example
Artifactid:  Helloworld
? | cnce =3

Figure 1.2: Intelli]/IDEA creating a new project

When creating a new project, make sure to select Maven as the build system and a
new version of the JDK. Notice that you can download a version of the JDK directly
from the combo box to pick a JDK, as shown in figure 1.3.

Version: 19 v

Vendor: | Azul Zulu Community™ 19.0.1 aarcht4 v [

Location: ~/Library/Java/JavaVirtualMachines/azul-19.0.1

Figure 1.3: Download and install a new JDK from within Intelli]/IDEA

Once we create a new project, we are faced with the Ul shown in figure 1.4. We have
expanded the tree on the left-hand side to show the Java directory. This is where our
Java source code should be placed. On the right side, we can see the maven pom file,
which is not important at this point. This gives us the environment where we can
start writing code.



Hello Java

5

! S P - ':'I.

b Laternal Limanes
@ Sormcnes and Conwles

Helb/orsd w0 mas e & A Geeire =

T 0 = Mmool Ml

it <?xel version="1.0" enceding="UTF-8*2> v
o <project xalnss"http://naven,apache.org/PON/4.0.8"
v e xAINSIXEL"NELR:/fwav . wd.org/2001/X0LSchera - Instance
T xsi:scheralocationz"http://aaven.opache.orq/PON/4.0.4 ™
b et L <vodelVersion>&,0.0</wodelVersion>
pom vl

<groupld>org.example</grouvpld>
<artifactld>HelleWorld</artifactla>
<version>1.0-SNAPSHOT«</version>

<properties>

<naven.corpiler.source>19</naven.conpiler.source>»
T <naven.corpiler.target>19</naven.conpiler.target>

1 <project.build.sourceEncoding>UTF-8</project.build.sop
; </properties>
ot
] </project>
i
N
PR ErNGeTeE s om Od e g

P veas Coriw TI00 O Pubes B Teviwl Oteviemn ARl B Omesieaie

[ Dwwoinal prwmit thawd bubraes 1oRas ibe sviusing 500 sl CFL bnedl w4 Y for- bl JTR sharaed 8 desin /1 Merags St wend 4/ (7 sombes o nm o T Y

a0

ey W

Figure 1.4: New Maven project in Intellil/[DEA

Hello Java

Let us start with the most basic “hello world” example we can make. Right-click the

Java directory in the project, as shown in figure 1.5, and select New | Java Class. When
prompted, we can enter the name of the new class and press enter. We went with

HelloWorld. Names have a capital first letter by convention (but it is not required).
They followed the convention of capitalizing every word. Names cannot include

spaces and various other characters. They cannot start with a number either but can
be Unicode characters from arbitrary languages (although this is uncommon). The

name cannot be one of the reserved Java keywords®.

Figure 1.5 features the New Java Class Context Action:

HelloWorld ~/Ide:
il .idea
1 src
v I main
7 java
" resources
> B test
! pom.xml
External Libraries

oject e .
2 @ New > | © Java Class

+ Kotlin Class/File

K Cut ®X
1@ Copy xcf % - -4
Copy Path/Reference... jscratchifile RN ww
£ Paste s\ ' Package "h
+ . package-info Java
Find Usages NF7 2 module-info.java el
Find in Files... O &F
Replace in Files... O ¥R i HTWL Flla

I waslin Cocine fDas=)

5

Figure 1.5: New Java Class Context Action

https://en.wikipedia.org/wiki/List_of_Java_keywords



6 Java 8 to 21

Figure 1.6 features the New Java Class Context Action:

New Java Class

€ Helloworld|

Class

I Interface
R’ Record
£ Enum

@ Annotation

Figure 1.6: New Java Class Prompt dialog

This creates a file named HelloWorld. java in Java. In order for a class to be public,
it must reside in a source file with the same name. Notice that since the language is
case-sensitive, the public class HelloWorld cannot reside in the file helloworld.java.
A public class is exposed to usage outside of its package. We will discuss packages
soon enough. Now that we understand that let us create our first Java application.

1. public class HelloWorld {

2. public static void main(String[] argv) {
3. System.out.println("Hello World");
4. }

5. }

Let us go over the lines in the code one by one. In Line 1, we start with the public
keyword. This indicates that we wish to export this class to external packages. In this
case, since we want to run the class, it must be public. The next keyword is class,
which is a basic building block of objects in Java. In Java, almost everything is part
of a class in one way or another. Classes let us package code and data (methods and

fields) together and work as a single cohesive element. This is a big subject that we
will discuss in the following section.

In Line 2, we start with the public again. Elements within the class can have different
visibility levels. Within the class, you have full access to everything, and visibility
applies to other classes. If we remove the public keyword from the class, it can still
be used by other classes in the same package but cannot be used out of the package.
The same is true for the elements we write in the class. In this case, itis a method that
is an operation we can perform. This method can be accessed by everyone because it
is public. Methods (and fields) can have the following visibility levels:

e public: Full access by anyone with access to the class. Notice that if the
class is not public and the method is public, it would still not be visible to
everyone. Only those who can access the class.



Hello Java 7

e protected: This is like the default access but also allows access to subclasses,
even if they are outside of the current package. We will discuss subclassing
soon.

e [default]: Unlike the others, this is not a keyword. This is the default
mode when we do not specify visibility and just leave out one of the other
keywords. The default visibility is package private. That means only classes
within the package have access to the method or field.

e private: This is the strictest visibility level. Elements marked as private are
only visible from within the class.

The next keyword is void, which means that the method does not return a value.
After that, we have the name of the method, which is “main” and the arguments
passed to this method. The arguments are an array of strings named argv.

The body of the method references the System class, which has a field named out. We
invoke the println public method on that object and pass the string Hello World as
the argument. This prints Hello World, as can be seen in figure 1.7.

Melowerld swx man jva @ Heliowedd B mar B+ A Grexie~r P 8 G Qoo
; hoeat = QI+ 6 - poroury Olelworkd) I Malomand v i g
8 B Mallolortd -/1dea? ‘1 »  public class HelloWorld { v {
ade 2 : . : |
m" > public static void main(String[] argv) { i
v Mmis k4 System.out.println(*Hello Worldl); ¥
A } m
s i
W7 resources } .
Mtent
b et
pam
» 1 Dternad Lbrares
© Scrazches and Conicles
Ren Mebwneld g -
: » + [users/shai/libracy/Java/lava¥irtyalMachines/openidk-19.0.1/Contents/Hone/bin/iava -javaas
3 F 4 Hello World
A -
4 »
. & Process finished with exit code 0
E &
]
=
L
PvevoaConsl B Ry T1000 Omrodiems MTewid Ot Alsdd  ® Dependencies
0 Dl compiond wactessfuly i ) sed, I ro Imarsews agul 34 U UTEE dwperes e

Figure 1.7: After pressing the green play button on the top, the application runs; we can see the

output in the Console section at the bottom of the screenshot



8 Java 8 to 21

Principals of OOP

Let us pause for a second and take a step back. Why is it important to place methods
in classes? Why are we making such a big deal about visibility attributes such as
the public? This all fits into the three principles of Object Oriented Programming
(OOP).

Encapsulation s the first and arguably mostimportant principle of the three. It means
that the data of the object and the operations on that data are packaged together in
one class. But it has another important aspect: hiding. When we encapsulate data,
we hide implementation details. We will start with a simple example.

Encapsulation

Let us consider, for example, that your daughter is learning simple fractions at
school. You want to help her practice that. You want to create an application that
will help her practice simple fractions. In a simple fraction, we have two numbers: a
numerator and a denominator. The numerator is the number on top of the fraction,
and the denominator is the number on the bottom®. We can represent a fraction like
the following:
1. public class Fraction {
public int numerator;

2
3. public int denominator;
4. }

This code does not include any encapsulation whatsoever, and we left both fields
public. Let us see how we can use it to implement a simplistic math equation. Notice
that we are taking a very simple approach here because this is a demo. We will
package the logic into a method so that we can add two fractions easily:

1. public static Fraction addFractions(Fraction first, Fraction second)
{

var newFraction = new Fraction();
newFraction.numerator =
first.numerator * second.denominator +

second.numerator * first.denominator;

a v A wWw N

newFraction.denominator =

6  This is for non-native English speakers; I did not learn the English terms in school and had to
look them up



Hello Java 9

7. first.denominator * second.denominator;

(o]

return newFraction;
9. }

The code is relatively simple, albeit a bit verbose. We access the fields and multiply
them, add them, and assign the result to a newly created object. We can now make
simple usage of this API:

1. var first = new Fraction();

2. first.numerator = 1;

3. first.denominator = 2;

4.

5. var second = new Fraction();

6. second.numerator = 2;

7. second.denominator = 3;

8.

9. var result = addFractions(first, second);

10. System.out.println(

11. first.numerator + "/" + first.denominator + " + " +
12. second.numerator + "/" + second.denominator + " = " +
13. result.numerator + "/" + result.denominator);

The code is very simple; we create two objects. Assign the values representing 1/2
and 2/3, respectively. We then invoke the addFractions method that we defined
before. Finally, we print the full equation. This is a bit verbose, but ultimately works.
It can be made more efficient with additional methods, but it has some failings that
cannot be fixed. Let us continue with the code.

1. var third = new Fraction();
third.numerator = 1;

third.denominator = 2;

var forth = new Fraction();

forth.numerator = 2;

// bug forgot to change that to forth...

O 0 N o v b W N

second.denominator = 3;



10

Java 8 to 21

10.

11. var secondResult = addFractions(third, forth);

12. System.out.println(

13.
14.
15.

third.numerator + "/" + third.denominator + + +

forth.numerator + "/" + forth.denominator + = +

secondResult.numerator + "/" + secondResult.denominator);

The fact that this code is duplicated and verbose is a problem. But the bigger problem
is the 9™ line. It assigns the value to the wrong variable, resulting in a division by
zero. If we run the code, we see the following:

1/2 + 2/3
1/2 + 2/0

7/6
4/0

Notice that the second line is wrong because the code was not meant to deal with
division by zero. Since there is no encapsulation, we could not catch the illegal value
of the field before usage. Let us take a second stab at this with encapsulation:

1.

O 00 N OO U1 b W N

11.
12.
13.
14.
15.
16.
17.

public class Fraction {

private final int numerator;

private final int denominator;

public Fraction(int numerator, int denominator) {
this.numerator = numerator;
this.denominator = denominator;
if(denominator <= @) {

thrownewIllegalArgumentException("Invaliddenominator:
" + denominator);

public Fraction add(Fraction other) {
int numerator = this.numerator * other.denominator +
other.numerator * denominator;
int denominator = this.denominator * other.denominator;

return new Fraction(numerator, denominator);



Hello Java 11

18. }

19.

20. @Override

21. public String toString() {

22. return numerator + "/" + denominator;
23. }

24.}

Let us review specific lines of code to understand what is different about this version
of the class. In Lines 2 and 3, we define the same variables. They are private, which
means that they are fully encapsulated and can only be accessed from within the
same class. They are both final. That means they cannot be modified after assignment;
they must be assigned in the constructor at the latest. This effectively makes this
classimmutable; its content cannot be modified. Immutability is an important design
principle as it promotes safer, more reliable code.

In Line 5, we define a constructor for the class that initializes both variables.
Notice that we use the same name for the constructor arguments as the fields. This
is completely optional but is a very common convention in Java. To distinguish
between the arguments and the class fields, we prefix the fields with the keyword
this. In Line 8, we explicitly throw an exception if the denominator is illegal. This
prevents users from creating invalid objects intentionally or accidentally.

The add method on Line 13 includes many encapsulation benefits. It is no longer
static and can be named add instead of addFractions since it is now directly
associated with a fraction. It no longer needs a second argument since it uses the
fields of this class.

Line 21 overrides the toString method of Java Object. This brings us to an
inheritance which is the second principle of OOP. All objects in Java inherit from a
class called object, which defines a few important methods, including toString.
This means that when we try to print the object, it will appear correctly. Notice that
Line 20 includes the @0verride annotation.

Annotations let us declare things about elements in the Java code; in this case, we
indicate that we are replacing a method that is defined in the base class (Object), but
we do not need to do that. It will work fine without the override annotation. The
reason it is recommended to add that annotation is that if the method in the base
class is removed or missing, we will get a compiler error. We will discuss inheritance
in more detail soon enough. Let us look at the usage of this new class:



12 Java 8 to 21

var first = new Fraction(1, 2);

var second

new Fraction(2, 3);

var result = first.add(second);

System.out.println(first + " + " + second+ " = " + result);

var third = new Fraction(1, 2);

// will throw an exception...

O 0 N o v b W N R

var forth = new Fraction(2, 0);

10. var secondResult = third.add(forth);

11. System.out.println(third + " + " + forth+ " = " + secondResult);

This is the full usage, including the “buggy” second block. Notice how much more
concise it is. Line 3 is particularly satisfying in its simplicity. Notice that Lines 4 and
11 become trivial compared to the previous code. Since toString() is built into Java,
the code is the equivalent of writing:

1. first.toString() + " + " + second.toString() + = + result.
toString()

When we run this version, the bug in Line 9 becomes even more obvious as we get
a clear exception:

1/2 + 2/3 = 7/6

Exception in thread "main" java.lang.IllegalArgumentException: Invalid
denominator: ©

at com.debugagent.ch@l.encapsulation.Fraction.<init>(Fraction.
java:11)

at com.debugagent.ch@l.encapsulation.SampleUsage.main(SampleUsage.
java:15)

Notice that the exception points us to the file where the error occurred, that is, the
class name and the line number. This makes it very easy to locate the code that
triggered the problem and make a fix.

Java 14 introduced a new concept: Records. A Java record is a final class that has
final fields. It is immutable. This seems like the ideal option for our fractions. Let us
port our code to use records:



Hello Java 13

1. public record Fraction(int numerator, int denominator) {

2 public Fraction add(Fraction other) {

3 int numerator = this.numerator * other.denominator +

4. other.numerator * this.denominator;

5 int denominator = this.denominator * other.denominator;
6 return new Fraction(numerator, denominator);

7 }

8. }

This is the record equivalent of our fraction class or at least a close approximation.
The usage code is identical if we use a record. However, there are two things missing
here. The toString() method and the verification code. If we run this, you will see
the following output:

Fraction[numerator=1, denominator=2] + Fraction[numerator=2,
denominator=3] = Fraction[numerator=7, denominator=6]

Fraction[numerator=1, denominator=2] + Fraction[numerator=2,
denominator=0] = Fraction[numerator=4, denominator=0]

This is due to the default implementation of toString() in records and the fact that
we did not explicitly create a constructor. We can solve both problems by creating a
more verbose record:

1. public record Fraction(int numerator, int denominator) {

2. public Fraction(int numerator, int denominator) {

3. this.numerator = numerator;

4. this.denominator = denominator;

5. if(denominator <= @) {

6. thrownewIllegalArgumentException("Invaliddenominator:
" + denominator);

7 }

8 }

9.

10. public Fraction add(Fraction other) {

11. int numerator = this.numerator * other.denominator +

12. other.numerator * this.denominator;

13. int denominator = this.denominator * other.denominator;



14 Java 8 to 21

14. return new Fraction(numerator, denominator);
15. }

16.

17. public String toString() {

18. return numerator + "/" + denominator;

19. }

20.}

It is still slightly smaller than the class and replaces the default implementations of
the constructor and toString(). Itis still worth it since itimplements other methods,
specifically equals() and hashcode().

One final subject we should cover is packages. In the sample code for this chapter,
you will find all the samples shown to you. They are all in a single project file, and
all have the same names. This might seem odd. How can the Fraction class avoid
collision with the Fraction record?

The answer is that they reside in different packages. The best practice in Java is to
place all classes within packages representing their roles. The name of the package
uses a reverse domain notation, followed by the name of the package. In a similar
way to classes residing in files bearing the same name, we expect packages to reside
in directories matching the package name. For example, in the following package:

1. package com.debugagent.ch@l.records;

The IDE created a directory hierarchy matching com/debugagent/che1/records
under the Java directory. Notice the name of the package. The author of the book
owns the domain debugagent.com. By using the name that one owns in reverse,
we make sure it will not collide with code that another developer might write.
The following parts of the package name are up to you to decide. There is another
abstraction of modules that we will discuss later.

Inheritance

The second principle of OOP is inheritance. We discussed it briefly in the
encapsulation section but let us take a step back and discuss the basics both in OOP
and in Java. Inheritance lets us base a new class on an existing one, where we can
expose common functionality. Java includes the following two types of inheritance:

1. Implementation

2. Interface



