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Preface

Java has a big problem. It is often perceived as old, but Python is older, and
JavaScript is its contemporary. Why is that?

Java has had continuous popularity and success for nearly three decades. That
means that most of us worked with Java 1.4, which was released two decades ago.
Unlike any other platform out there, Java is still compatible with that release. That
is fantastic but also creates a sense of disconnect. Developers compare that highly
outdated version of Java to modern incarnation of other languages or platforms.
That is an unfair comparison, and Java is a victim of its own success.

There are several sources for information about new Java features but there is a
lack in a comprehensive introductory guide to modern Java, that carries us from
that old version to the modern world. With this book, we hope to fill that gap, to
answer the question of “is this still the right way to solve this problem?”.

This book is divided into 10 chapters. They cover Java basics, OOP basics and
continue to cover everything we need to know, in order to build a modern Java
backend. Here is a brief description for each chapter:

Chapter 1: Hello Java - In this chapter, we will review the basics of the language
and tooling, to make sure we are all on the same page. We focus on Java 8 syntax
and as we move forward in the book, we will discuss the newer features of Java,
all the way to version 21.

Chapter 2: OOP Patterns — In this chapter, we explore the best ways to leverage
OOP, what we would consider as good design and what type of OOP principles
are expressed in the Java APL

Chapter 3: 8 to 21 to GraalVM - Java went through many pivotal releases. Java
1.1 introduced inner classes. Java 2 introduced Swing and collections. Java 5
introduced Generics. However, one of the most pivotal releases was Java 8, which
introduced a slew of wide sweeping changes. Up until Java 8, the releases of Java
versions were irregular although they tended to follow a two-year cadence. With
the release of Java 9, this changed. We now have a 6-month release cycle. This
pace made the period between Java 8 and Java 21 relatively short. We review the
changes between these releases in this chapter.
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Chapter 4: Modern Threading - In this chapter, we will discuss the evolution of
Java threading from the beginning, all the way to the future. We will explain the
trade-offs and challenges and we will also discuss the best ways to write highly
concurrent code moving forward.

Chapter 5: It's Springtime in Java - Spring brings together libraries and tools from
multiple different projects, to create a unified experience. Spring is also highly
configurable; it is not limited to backend or database driven applications.

Chapter 6: Testing and CI - In this chapter, we will cover some common tools
in the world of testing such as JUnit and Mockito. We will cover GitHub Actions
when discussing CI due to its wide availability and free quota. We will also discuss
some high-level concepts such as Test-Driven Development (TDD).

Chapter 7: Docker, Kubernetes and Spring Native — The original thought behind
this chapter was around cloud native development. However, that acronym is
somewhat vague. In the old days, we would take the resulting jar files we would
build and place them on an application server connected to the internet. These
days are long gone, containers and orchestration have completely changed the
way applications are deployed in production.

Chapter 8: Microservices — The rise of Kubernetes has made the Microservices
approach far more commonplace. The cost of spinning up and managing multiple
smaller servers became manageable and as a result, drove a massive move in that
direction. Microservices bring a great deal to the table, they are easier to build and
often easier to scale.

Chapter 9: Serverless — The complexities of Monoliths and Microservices pushed
some developers towards an easier route. Serverless is a problematic branding term
indicating that we no longer need to manage our server, only the application. The
serverless provider takes over the complexity of spinning up container instances
for us as long as we follow some guidelines in application development.

Chapter 10: Monitoring and Observability — Monitoring and observability are
essential aspects of software development that help developers and operations
teams ensure the reliability, stability, and performance of their applications. As
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systems become increasingly complex, the need for effective monitoring and
observability tools grows in tandem, providing a comprehensive understanding
of the behavior and health of applications during development, deployment, and
production. The Java ecosystem is no exception, offering a rich set of libraries
and tools designed to facilitate these critical tasks. This chapter will delve into
the concepts of monitoring and observability in the context of Java applications,
exploring the underlying principles, methodologies, and best practices that will
enable developers to build robust, scalable, and resilient systems.
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CHAPTER 1

Hello Java

Introduction

Java is one of the most ubiquitous programming languages on earth. One of its
biggest selling points is its simplicity. In fact, the father of Java, James Gosling, used
to describe his approach to the design of Java with the following metaphor.

When James had to move to a new residence, he would pack all his belongings into
well-labeled boxes. Then, he would only unpack the stuff he needed. Six months
later, he would throw away all the other boxes without looking at the content. If he
looked at the content, he would probably keep it. Java was designed according to the
principle of minimalism. Over the years, it grew, but it is still a small language with
a massive API and ecosystem.

In this chapter, we will review the basics of the language and tooling to make sure
we are all on the same page. We will focus on Java 8 syntax, and as we move forward
in the book, we will discuss the newer features of Java, all the way to version 20.
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Structure

In this chapter, we will discuss the following topics:
e Requirements
e Setting up a project
e HelloJava
e Principals of OOP
o Encapsulation
o Inheritance
o Polymorphism
e Built-in types
o Arrays
o Generics and Erasure
e Debugging
o Debugging Java

Objectives

By the end of this chapter, the reader will learn the basics of working with Java.
This book assumes some basic prior familiarity with Java. Regardless we chose to
approach this chapter as a blank slate since your familiarity might be significantly
out of date. By the end of this chapter, you will be able to read simple Java code; as
the book progresses, we will build on top of that knowledge. As such, this chapter is
the foundation for the rest of the book.

Requirements

To get started, we need to install the Java JDK, and in our case, OpenJDK is
recommended. Open]JDK is the open-source version of the Java virtual machine,
which we need in order to run Java applications. There are commercial packages of
the JDK as well as the Oracle official bundle. However, Open]JDK is free, portable,
and supported indefinitely, so a variant of OpenJDK is highly recommended. There is
a comprehensive tool to locate the OpenJDK distribution that fits your requirements
on the foojay.io sitel'l. You can check out SDKMAN® if using a Mac, Linux, or the
Linux subsystem on Windows.

1  https://foojay.io/almanac/jdk-20/
2 https://sdkman.io/
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Other than that, you will need to install Intelli] /IDEAB!, which is the leading Java
IDE. The community edition is sufficient for most novices, but the Ultimate edition
is recommended, especially for working with Spring and Web.

Setting up a project

Java is simple. This facilitated an enormous ecosystem around it and, as a result,
added complexity to Java as a whole. We can compile a single Java source file using
the javac command line. But this is not practical for significant applications. A real-
world application is comprised of multiple files, with interaction among the various
pieces, and is often packaged in a novel way. There are many complexities in the
build process, including the management of dependencies. That is where build tools
come in. At the time of this writing, there are three common build tools for Java as
follows:

e Maven: This is the tool we will discuss in this book. It is the market leader,
although a bit older. It uses XML syntax by default and is somewhat clunky.
However, it has a huge ecosystem and is very mature.

¢ Gradle: Uses a syntax based on Groovy or Kotlin for the build scripts. Works
with Mavens dependency system, making the migration from Maven easy.

e Ant: Alegacy system based on XML and a precursor to Maven. Itis listed for
it its completeness, as we still run into ant scripts occasionally.

All of these tools can be used effectively from the command line, but we do not need
to do that. Java is particularly powerful when working within the confines of the IDE,
where we can leverage its automation to instantly spot problems and investigate our
code. To get started, we launch Intelli]/IDEA and create a new project!’, as seen in
figures 1.1 and 1.2:

n Intelli IDEA

Projects
Welcome to IntelliJ IDEA

Customze

Plugins Create a new project to start from scratch,

Laarn Intelll) IDEA Open existing project from disk or version control

+ = 14

New Project Open Get from VCS

Figure 1.1: Intellil/IDEA new project window

3 https://www jetbrains.com/idea/download/
4 The complete projects are available here: https://github.com/shai-almog/java-book
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Refer to figure 1.2 to see the steps for the creation of a new project:

Empty Project
Location: ~fldeaProjects
Project wil be areated in; - [IdvaProjects (HeIOAON
/11 Maven Archetype Create Git repository
Py Javarx
Language: Java Kotlin Groovy HTML +
I Kotlin Multiplatform
© Cempose Multiplatfe  gyild system: Intelli) Maven Gradle
IDE Plugin
% Android JOK: = openjdk-19 Oracle OpenJOK version 19 ~
[ Add sample code
~ Advanced Settings
Croupld:  org.example
Artifactid:  Helloworld
? | cnce =3

Figure 1.2: Intelli]/IDEA creating a new project

When creating a new project, make sure to select Maven as the build system and a
new version of the JDK. Notice that you can download a version of the JDK directly
from the combo box to pick a JDK, as shown in figure 1.3.

Version: 19 v

Vendor: | Azul Zulu Community™ 19.0.1 aarcht4 v [

Location: ~/Library/Java/JavaVirtualMachines/azul-19.0.1

Figure 1.3: Download and install a new JDK from within Intelli]/IDEA

Once we create a new project, we are faced with the Ul shown in figure 1.4. We have
expanded the tree on the left-hand side to show the Java directory. This is where our
Java source code should be placed. On the right side, we can see the maven pom file,
which is not important at this point. This gives us the environment where we can
start writing code.
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Figure 1.4: New Maven project in Intellil/[DEA

Hello Java

Let us start with the most basic “hello world” example we can make. Right-click the

Java directory in the project, as shown in figure 1.5, and select New | Java Class. When
prompted, we can enter the name of the new class and press enter. We went with

HelloWorld. Names have a capital first letter by convention (but it is not required).
They followed the convention of capitalizing every word. Names cannot include

spaces and various other characters. They cannot start with a number either but can
be Unicode characters from arbitrary languages (although this is uncommon). The

name cannot be one of the reserved Java keywords®.

Figure 1.5 features the New Java Class Context Action:

HelloWorld ~/Ide:
il .idea
1 src
v I main
7 java
" resources
> B test
! pom.xml
External Libraries

oject e .
2 @ New > | © Java Class

+ Kotlin Class/File

K Cut ®X
1@ Copy xcf % - -4
Copy Path/Reference... jscratchifile RN ww
£ Paste s\ ' Package "h
+ . package-info Java
Find Usages NF7 2 module-info.java el
Find in Files... O &F
Replace in Files... O ¥R i HTWL Flla

I waslin Cocine fDas=)

5

Figure 1.5: New Java Class Context Action

https://en.wikipedia.org/wiki/List_of_Java_keywords
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Figure 1.6 features the New Java Class Context Action:

New Java Class

€ Helloworld|

Class

I Interface
R’ Record
£ Enum

@ Annotation

Figure 1.6: New Java Class Prompt dialog

This creates a file named HelloWorld. java in Java. In order for a class to be public,
it must reside in a source file with the same name. Notice that since the language is
case-sensitive, the public class HelloWorld cannot reside in the file helloworld.java.
A public class is exposed to usage outside of its package. We will discuss packages
soon enough. Now that we understand that let us create our first Java application.

1. public class HelloWorld {

2. public static void main(String[] argv) {
3. System.out.println("Hello World");
4. }

5. }

Let us go over the lines in the code one by one. In Line 1, we start with the public
keyword. This indicates that we wish to export this class to external packages. In this
case, since we want to run the class, it must be public. The next keyword is class,
which is a basic building block of objects in Java. In Java, almost everything is part
of a class in one way or another. Classes let us package code and data (methods and

fields) together and work as a single cohesive element. This is a big subject that we
will discuss in the following section.

In Line 2, we start with the public again. Elements within the class can have different
visibility levels. Within the class, you have full access to everything, and visibility
applies to other classes. If we remove the public keyword from the class, it can still
be used by other classes in the same package but cannot be used out of the package.
The same is true for the elements we write in the class. In this case, itis a method that
is an operation we can perform. This method can be accessed by everyone because it
is public. Methods (and fields) can have the following visibility levels:

e public: Full access by anyone with access to the class. Notice that if the
class is not public and the method is public, it would still not be visible to
everyone. Only those who can access the class.
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e protected: This is like the default access but also allows access to subclasses,
even if they are outside of the current package. We will discuss subclassing
soon.

e [default]: Unlike the others, this is not a keyword. This is the default
mode when we do not specify visibility and just leave out one of the other
keywords. The default visibility is package private. That means only classes
within the package have access to the method or field.

e private: This is the strictest visibility level. Elements marked as private are
only visible from within the class.

The next keyword is void, which means that the method does not return a value.
After that, we have the name of the method, which is “main” and the arguments
passed to this method. The arguments are an array of strings named argv.

The body of the method references the System class, which has a field named out. We
invoke the println public method on that object and pass the string Hello World as
the argument. This prints Hello World, as can be seen in figure 1.7.

Melowerld swx man jva @ Heliowedd B mar B+ A Grexie~r P 8 G Qoo
; hoeat = QI+ 6 - poroury Olelworkd) I Malomand v i g
8 B Mallolortd -/1dea? ‘1 »  public class HelloWorld { v {
ade 2 : . : |
m" > public static void main(String[] argv) { i
v Mmis k4 System.out.println(*Hello Worldl); ¥
A } m
s i
W7 resources } .
Mtent
b et
pam
» 1 Dternad Lbrares
© Scrazches and Conicles
Ren Mebwneld g -
: » + [users/shai/libracy/Java/lava¥irtyalMachines/openidk-19.0.1/Contents/Hone/bin/iava -javaas
3 F 4 Hello World
A -
4 »
. & Process finished with exit code 0
E &
]
=
L
PvevoaConsl B Ry T1000 Omrodiems MTewid Ot Alsdd  ® Dependencies
0 Dl compiond wactessfuly i ) sed, I ro Imarsews agul 34 U UTEE dwperes e

Figure 1.7: After pressing the green play button on the top, the application runs; we can see the

output in the Console section at the bottom of the screenshot
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Principals of OOP

Let us pause for a second and take a step back. Why is it important to place methods
in classes? Why are we making such a big deal about visibility attributes such as
the public? This all fits into the three principles of Object Oriented Programming
(OOP).

Encapsulation s the first and arguably mostimportant principle of the three. It means
that the data of the object and the operations on that data are packaged together in
one class. But it has another important aspect: hiding. When we encapsulate data,
we hide implementation details. We will start with a simple example.

Encapsulation

Let us consider, for example, that your daughter is learning simple fractions at
school. You want to help her practice that. You want to create an application that
will help her practice simple fractions. In a simple fraction, we have two numbers: a
numerator and a denominator. The numerator is the number on top of the fraction,
and the denominator is the number on the bottom®. We can represent a fraction like
the following:
1. public class Fraction {
public int numerator;

2
3. public int denominator;
4. }

This code does not include any encapsulation whatsoever, and we left both fields
public. Let us see how we can use it to implement a simplistic math equation. Notice
that we are taking a very simple approach here because this is a demo. We will
package the logic into a method so that we can add two fractions easily:

1. public static Fraction addFractions(Fraction first, Fraction second)
{

var newFraction = new Fraction();
newFraction.numerator =
first.numerator * second.denominator +

second.numerator * first.denominator;

a v A wWw N

newFraction.denominator =

6  This is for non-native English speakers; I did not learn the English terms in school and had to
look them up
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7. first.denominator * second.denominator;

(o]

return newFraction;
9. }

The code is relatively simple, albeit a bit verbose. We access the fields and multiply
them, add them, and assign the result to a newly created object. We can now make
simple usage of this API:

1. var first = new Fraction();

2. first.numerator = 1;

3. first.denominator = 2;

4.

5. var second = new Fraction();

6. second.numerator = 2;

7. second.denominator = 3;

8.

9. var result = addFractions(first, second);

10. System.out.println(

11. first.numerator + "/" + first.denominator + " + " +
12. second.numerator + "/" + second.denominator + " = " +
13. result.numerator + "/" + result.denominator);

The code is very simple; we create two objects. Assign the values representing 1/2
and 2/3, respectively. We then invoke the addFractions method that we defined
before. Finally, we print the full equation. This is a bit verbose, but ultimately works.
It can be made more efficient with additional methods, but it has some failings that
cannot be fixed. Let us continue with the code.

1. var third = new Fraction();
third.numerator = 1;

third.denominator = 2;

var forth = new Fraction();

forth.numerator = 2;

// bug forgot to change that to forth...

O 0 N o v b W N

second.denominator = 3;
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10.

11. var secondResult = addFractions(third, forth);

12. System.out.println(

13.
14.
15.

third.numerator + "/" + third.denominator + + +

forth.numerator + "/" + forth.denominator + = +

secondResult.numerator + "/" + secondResult.denominator);

The fact that this code is duplicated and verbose is a problem. But the bigger problem
is the 9™ line. It assigns the value to the wrong variable, resulting in a division by
zero. If we run the code, we see the following:

1/2 + 2/3
1/2 + 2/0

7/6
4/0

Notice that the second line is wrong because the code was not meant to deal with
division by zero. Since there is no encapsulation, we could not catch the illegal value
of the field before usage. Let us take a second stab at this with encapsulation:

1.

O 00 N OO U1 b W N

11.
12.
13.
14.
15.
16.
17.

public class Fraction {

private final int numerator;

private final int denominator;

public Fraction(int numerator, int denominator) {
this.numerator = numerator;
this.denominator = denominator;
if(denominator <= @) {

thrownewIllegalArgumentException("Invaliddenominator:
" + denominator);

public Fraction add(Fraction other) {
int numerator = this.numerator * other.denominator +
other.numerator * denominator;
int denominator = this.denominator * other.denominator;

return new Fraction(numerator, denominator);
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18. }

19.

20. @Override

21. public String toString() {

22. return numerator + "/" + denominator;
23. }

24.}

Let us review specific lines of code to understand what is different about this version
of the class. In Lines 2 and 3, we define the same variables. They are private, which
means that they are fully encapsulated and can only be accessed from within the
same class. They are both final. That means they cannot be modified after assignment;
they must be assigned in the constructor at the latest. This effectively makes this
classimmutable; its content cannot be modified. Immutability is an important design
principle as it promotes safer, more reliable code.

In Line 5, we define a constructor for the class that initializes both variables.
Notice that we use the same name for the constructor arguments as the fields. This
is completely optional but is a very common convention in Java. To distinguish
between the arguments and the class fields, we prefix the fields with the keyword
this. In Line 8, we explicitly throw an exception if the denominator is illegal. This
prevents users from creating invalid objects intentionally or accidentally.

The add method on Line 13 includes many encapsulation benefits. It is no longer
static and can be named add instead of addFractions since it is now directly
associated with a fraction. It no longer needs a second argument since it uses the
fields of this class.

Line 21 overrides the toString method of Java Object. This brings us to an
inheritance which is the second principle of OOP. All objects in Java inherit from a
class called object, which defines a few important methods, including toString.
This means that when we try to print the object, it will appear correctly. Notice that
Line 20 includes the @0verride annotation.

Annotations let us declare things about elements in the Java code; in this case, we
indicate that we are replacing a method that is defined in the base class (Object), but
we do not need to do that. It will work fine without the override annotation. The
reason it is recommended to add that annotation is that if the method in the base
class is removed or missing, we will get a compiler error. We will discuss inheritance
in more detail soon enough. Let us look at the usage of this new class:
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var first = new Fraction(1, 2);

var second

new Fraction(2, 3);

var result = first.add(second);

System.out.println(first + " + " + second+ " = " + result);

var third = new Fraction(1, 2);

// will throw an exception...

O 0 N o v b W N R

var forth = new Fraction(2, 0);

10. var secondResult = third.add(forth);

11. System.out.println(third + " + " + forth+ " = " + secondResult);

This is the full usage, including the “buggy” second block. Notice how much more
concise it is. Line 3 is particularly satisfying in its simplicity. Notice that Lines 4 and
11 become trivial compared to the previous code. Since toString() is built into Java,
the code is the equivalent of writing:

1. first.toString() + " + " + second.toString() + = + result.
toString()

When we run this version, the bug in Line 9 becomes even more obvious as we get
a clear exception:

1/2 + 2/3 = 7/6

Exception in thread "main" java.lang.IllegalArgumentException: Invalid
denominator: ©

at com.debugagent.ch@l.encapsulation.Fraction.<init>(Fraction.
java:11)

at com.debugagent.ch@l.encapsulation.SampleUsage.main(SampleUsage.
java:15)

Notice that the exception points us to the file where the error occurred, that is, the
class name and the line number. This makes it very easy to locate the code that
triggered the problem and make a fix.

Java 14 introduced a new concept: Records. A Java record is a final class that has
final fields. It is immutable. This seems like the ideal option for our fractions. Let us
port our code to use records:
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1. public record Fraction(int numerator, int denominator) {

2 public Fraction add(Fraction other) {

3 int numerator = this.numerator * other.denominator +

4. other.numerator * this.denominator;

5 int denominator = this.denominator * other.denominator;
6 return new Fraction(numerator, denominator);

7 }

8. }

This is the record equivalent of our fraction class or at least a close approximation.
The usage code is identical if we use a record. However, there are two things missing
here. The toString() method and the verification code. If we run this, you will see
the following output:

Fraction[numerator=1, denominator=2] + Fraction[numerator=2,
denominator=3] = Fraction[numerator=7, denominator=6]

Fraction[numerator=1, denominator=2] + Fraction[numerator=2,
denominator=0] = Fraction[numerator=4, denominator=0]

This is due to the default implementation of toString() in records and the fact that
we did not explicitly create a constructor. We can solve both problems by creating a
more verbose record:

1. public record Fraction(int numerator, int denominator) {

2. public Fraction(int numerator, int denominator) {

3. this.numerator = numerator;

4. this.denominator = denominator;

5. if(denominator <= @) {

6. thrownewIllegalArgumentException("Invaliddenominator:
" + denominator);

7 }

8 }

9.

10. public Fraction add(Fraction other) {

11. int numerator = this.numerator * other.denominator +

12. other.numerator * this.denominator;

13. int denominator = this.denominator * other.denominator;
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14. return new Fraction(numerator, denominator);
15. }

16.

17. public String toString() {

18. return numerator + "/" + denominator;

19. }

20.}

It is still slightly smaller than the class and replaces the default implementations of
the constructor and toString(). Itis still worth it since itimplements other methods,
specifically equals() and hashcode().

One final subject we should cover is packages. In the sample code for this chapter,
you will find all the samples shown to you. They are all in a single project file, and
all have the same names. This might seem odd. How can the Fraction class avoid
collision with the Fraction record?

The answer is that they reside in different packages. The best practice in Java is to
place all classes within packages representing their roles. The name of the package
uses a reverse domain notation, followed by the name of the package. In a similar
way to classes residing in files bearing the same name, we expect packages to reside
in directories matching the package name. For example, in the following package:

1. package com.debugagent.ch@l.records;

The IDE created a directory hierarchy matching com/debugagent/che1/records
under the Java directory. Notice the name of the package. The author of the book
owns the domain debugagent.com. By using the name that one owns in reverse,
we make sure it will not collide with code that another developer might write.
The following parts of the package name are up to you to decide. There is another
abstraction of modules that we will discuss later.

Inheritance

The second principle of OOP is inheritance. We discussed it briefly in the
encapsulation section but let us take a step back and discuss the basics both in OOP
and in Java. Inheritance lets us base a new class on an existing one, where we can
expose common functionality. Java includes the following two types of inheritance:

1. Implementation

2. Interface



