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Preface

Machine learning has rapidly become a transformative tool in algorithmic trading, offering
capabilities that go far beyond traditional methods such as econometrics, technical
analysis, stochastic calculus, portfolio optimization, and signal processing. While these
established approaches have long been staples in quantitative finance, they often rely on
rigid assumptions and handcrafted rules. In contrast, machine learning enables systems
to learn directly from data—discovering patterns, adapting to market dynamics, and
building predictive models with minimal human intervention. The idea that examples—
training sets—could be transformed into models automatically is revolutionary.

This book was written to fill a gap I observed repeatedly: the space between the first
steps taken by beginners in machine learning for trading, and the more advanced, often
inaccessible, expertise found in academic or institutional settings. Many newcomers begin
by trying to classify returns—often unsuccessfully—due to a lack of experience with
alternative prediction targets or a deeper understanding of feature engineering. My goal
is to bridge that gap by introducing modern machine learning techniques that are both
powerful and practical. Whether you're working on your own or within a small team, this
book focuses on approaches that are computationally efficient, applicable in real trading
contexts, and capable of delivering measurable results.

This book is designed as a hands-on journey through the key techniques of machine
learning applied to real-world trading. It starts with the foundations of algorithmic
strategy design, then progressively expands into supervised learning, unsupervised
models, pattern mining, NLP for financial text, and ends with portfolio construction using
advanced ML techniques. The focus is entirely practical—mathematical derivations have
been intentionally excluded in favor of code, tools, and examples—making the material
accessible without sacrificing technical depth.

You will learn how to apply quantamental methods by integrating accounting data into
predictive models, detect structural changes in time series and extract rules automatically,
work with alternative and unstructured data, and engineer features that go far beyond
basic OHLC inputs, filter out market noise while preserving signal, and construct volume-
or volatility-based bars and leverage recent breakthroughs in AutoML and low-code ML,
using tools like H20 and Microsoft FLAML. Each chapter combines clear explanations,
ready-to-run code, and use cases that reflect real trading problems and constraints.

Chapter 1: Algorithmic Trading and Machine Learning in a Nutshell - This chapter
introduces systematic trading strategies, key players in the industry, and how machine
learning fits into modern trading systems. Covers traditional approaches and contrasts
them with ML-driven pipelines.
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Chapter 2: Data Feed, Backtests, and Forward Testing - This chapter explores how to
acquire macroeconomic and fundamental data via APIs, and how to prepare data for
machine learning workflows. Introduces forward testing concepts and time-aware data
pipelines.

Chapter 3: Optimizing Trading Systems, Metrics, and Automated Reporting - This
chapter covers feature engineering, metric selection, model boosting, and creating
automatic performance reports using QuantStats and other tools.

Chapter 4: Implement Trading Strategies - This chapter focuses on event-driven strategy
implementation using Backtrader. Includes end-to-end ML strategy deployment, risk
management, and performance evaluation.

Chapter 5: Supervised Learning for Trading Systems - This chapter covers the
classification and regression algorithms relevant for trading. Emphasizes model selection,
metric interpretation, and prediction targets.

Chapter 6: Improving Model Capability with Features - This chapter explores advanced
feature creation: technical indicators, entropy, PCA, UMAP, tree-based features, and
feature selection techniques.

Chapter 7: Advanced Machine Learning Models for Trading - This chapter presents
ensemble methods (boosting, bagging, stacking), kernel-based regressors, and online
learning strategies adapted to financial time series.

Chapter 8: AutoML and Low-Code for Trading Strategies - This chapter shows how to
use AutoML frameworks (H20, FLAML) to build efficient models without manual tuning.
Focuses on workflow automation and reproducibility.

Chapter 9: Unsupervised Learning Methods for Trading - This chapter introduces change
point detection and clustering for uncovering hidden patterns and structural shifts in
financial series.

Chapter 10: Unsupervised Learning with Pattern Matching - This chapter teaches how
to use recurrence plots, distance matrices, and matrix profiles to identify motifs and
anomalies in time series data.

Chapter 11: Trading Signals from Reports and News - This chapter combines NLP and
embeddings to extract trading signals from unstructured text. Covers GloVe, UMAP,
similarity graphs, and HRP-based portfolio construction.

Chapter 12: Advanced Unsupervised Learning, Anomaly Detection, and Association
Rules - This chapter explores unsupervised anomaly detection, projection-based clustering,
and association rule mining for discovering hidden market structures.
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CHAPTER 1

Algorithmic Trading
and Machine Learning
in a Nutshell

Introduction

This chapter provides an overview of algorithmic trading. It covers the basics of algorithmic
trading strategies.

Itexplains the reasons why MLisbeing introduced in trading and the potential consequences
of its use. This chapter discusses the use of machine learning (ML) in algorithmic trading,
from momentum to statistical arbitrage strategies. It explores how ML can detect trends
and mean-reversion patterns for trading and other innovative applications, such as meta-
learning.

Structure

In this chapter, we will cover the following topics:
e Systematic algorithmic trading
e Discretionary vs. systematic trading
e Main types of algorithmic strategies
e Understanding machine learning
e Machine learning in trading

e Meta-strategy using machine learning
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Objectives

By the end of this chapter, you will have a robust understanding of algorithmic trading,
its inception, the driving forces behind its development, and its diverse applications.
Moreover, you can differentiate and describe key algorithmic strategies, from momentum
to statistical arbitrage and high-frequency trading (HFT), recognizing the distinguishing
elements and identifying the various participants in the space.

This chapter aims to provide a comprehensive foundation in algorithmic trading and
machine learning applications, empowering you to build upon this knowledge in real-
world applications.

Systematic algorithmic trading

The evolution of the financial markets and investment industry has led to the development
of various sophisticated trading methodologies. One such method that has emerged and
seen considerable growth over the years is systematic, algorithmic trading. Algorithmic
trading' has captured over 50% of the trading volume in US markets today. The reasons
for this proliferation are manifold, with the key drivers being the ability to process large
amounts of information rapidly and the elimination of human errors and emotions from
the trading process. This approach eliminates emotional biases and subjectivity from
trading decisions, providing objectivity.

Historically, trading was primarily discretionary, which involved human decision-making
and intuition. However, it became apparent over time that this approach has inherent
limitations, particularly in processing vast amounts of data and acting rapidly on market
opportunities. Systematic algorithmic trading solved these challenges, introducing a new
speed, scalability, and efficiency paradigm.

It was introduced in the 1970s when highly computerized trading systems emerged in the
American financial markets.

The systematic aspect comes from the use of explicitly formulated investment rules. These
rules express the conduct to be followed. Consequently, the writing and formulation
of relevant rules becomes a strategic differentiator between investors, and we will see
throughout this book how to achieve this. This book aims to explore methods for generating
trading rules using self-learning algorithms.

Before going any further, let us take a moment to illustrate this. Here is an example of a
trading rule:

“Buy Microsoft share if

the Volume exceeds the previous day’s volume and

the closing price is higher the opening”

1 https:/ / analyzingalpha.com/algorithmic-trading-history
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This rule constitutes a trading strategy, which, when followed, is called systematic or
algorithmic trading?

The algorithmic trading concept involves applying quantitative models to create, back-
test, and implement trading strategies. This approach enables the execution of large orders
exceptionally quickly, often resulting in significant financial gains.

Speed and scalability are a natural consequence of using a computer (via programming
language) to process these systematic trading rules and send the resulting buy/sell orders
to the financial markets. The rule encompasses all the necessary information to make
informed investment decisions in each context.

The decision involves selecting the most suitable course of action from the options, such as
buy, sell, do nothing, reduce exposure, lighten a portfolio, hedge a financial risk, or protect
an investment. The usefulness of a rule is precisely to choose among these actions.

Now let us look at some of the key players in this business and a brief history.

Emblematic players in systematic trading

The narrative of algorithmic trading began in the late 1970s, deeply rooted in quantitative
methodologies. Ed Thorp®, a math professor turned hedge fund manager, was one of the
pioneers, utilizing his expertise in blackjack strategies to make a lasting impact on Wall
Street. His strategies were well-suited for Wall Street, leaving a lasting mark on trading
history. He introduced quantitative methods into finance, establishing the foundation for
systematic trading. He is considered the first quantitative analyst in history.

Here is how it started®.

In the late 1970s, the prevailing theory of efficient markets, which posits that financial
markets reflect all available information, thus rendering it impossible to consistently
achieve higher than average profits, was subject to increasing skepticism. Influential
figures like Ed Thorp, renowned for his successful application of probabilistic strategies
in blackjack, and Jerome Baesel, a distinguished mathematician at UCI University and
colleague at Princeton-Newport Partners, harbored strong beliefs in the existence of market
inefficiencies. Their conviction was further buoyed by empirical evidence, including the
consistently successful investment strategies of Warren Buffett, suggesting that savvy
players could indeed beat the market. Thus, the stage was set for the era of systematic
trading and the advent of new tools to exploit these inefficiencies.

While at Princeton-Newport Partners, they embarked on a groundbreaking project:
studying the impact of various indicators and characteristics on the historical returns of

2 To be quite precise, there is a fine distinction between systematic trading and algorithmic trading. Un-
like algorithmic trading, systematic trading offers no discretionary alternative to the trader or manager
who applies it. In this book, we will deal mainly with systematic strategies.

3 http:/ www.fortunesformula.com /Edward ThorpBio.html

4 Ed Thorp, a mathematician on Wall Street, Statistical Arbitrage, part I, https:/ /www.valuewalk.

com /1850840
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securities. This audacious endeavor involved analyzing factors like P.E. ratios, book-to-
price ratios, and company size, and was met with a wave of criticism from the academic
world. Yet, they pressed on undeterred.

Then, in a twist of fate, one of their researchers stumbled upon a game-changing idea:
statistical arbitrage.

This concept hinged on a single indicator that ranked stocks from best to worst and
offered short-term forecasts of their performance relative to one another. They discovered
intriguing recurrent patterns by examining the percentage change in price over a recent
period, such as the last two weeks. The stocks that experienced significant gains tended to
falter in the subsequent weeks, while those that suffered losses often rebounded.

With this newfound insight, they devised a system called MUD, which cleverly stood
for most up, most down stocks. Through extensive computer simulations, they were
astounded to find that buying the top-performing decile of stocks while short-selling the
bottom-performing decile could yield an annualized return of around 20 percent.

At the end of this paragraph, we will return to this system and propose an implementation.

Concurrently with Ed Thorp, innovators such as Richard Olsen and Michael Stumm
launched digital forex trading platforms, further preparing the ground for the adoption of
algorithmic methods.

Among the other pioneers of algorithmic trading, the most famous is a mathematician
specializing in transmission codes and how to break them. Armed with this knowledge of
code breaker, he founded Renaissance in 1982. It is the best-known systematic hedge fund
globally for its success® and the aura of secrecy surrounding its strategies.

Renaissance Technologies was not alone on this new frontier. Other noteworthy hedge
funds, including D.E. Shaw and Citadel, were also at the forefront of the algorithmic trading
movement. They were early adopters of systematic algorithmic trading and have reaped
substantial rewards from their endeavors.

For instance, D.E. Shaw manages assets worth over $50 billion, with trading systems
powered by algorithms consistently delivering market-beating returns. Similarly,
Renaissance Technologies, with around $130 billion in assets under management, and
Citadel, with assets exceeding $34 billion, have realized remarkable performance from
their algorithmic trading operations.

These entities and their significant successes exemplify the substantial potential inherent
in algorithmic trading. However, the nuances and variations in algorithmic trading
strategies are vast, with each type possessing unique attributes and considerations. We
will delve deeper into these strategies in the subsequent sections.

5 “Renaissance's flagship Medallion fund is famous for the best track record on Wall Street, returning
more than 66 percent annualized before fees over a 30-year span from 1988 to 2018”.
Source Wikipedia, https:/ /en.wikipedia.org/wiki/Renaissance_Technologies



Algorithmic Trading and Machine Learning in a Nutshell 5

Let us take a moment to implement the idea, which is probably the ancestor of modern
statistical arbitrage systems: buy the poor performers and sell the best. This forms the
basis of trading systems based on the statistical properties of mean reversion of financial
asset prices.

Implementing the first statistical arbitrage system

The sequence is as follows, starting with installing the Yahoo finance library (yfinance) if
necessary:
try :
import yfinance as yf
except ModuleNotfoundError as e:
Ipip install -q yfinance

import yfinance as yf
Next, we request a long history of daily quotes for 30 tickers traded on the New York Stock
Exchange. Tickers are randomly picked:
# Define the stock tickers
tickers = ['AAP', 'AXP', 'BA', 'CAT', 'CSCO', 'CvX', 'DIS', 'GS', 'HD', \

'IBM', 'INTC', 'INJ', 'JPM', 'KO', 'MCD', 'MMM', 'MRK', 'MSFT',
"NKE '\

'"PFE', 'PG', 'TRV', 'UNH', 'VZ', 'WBA', 'WMT', 'XOM', 'MMM']
# Download historical price data from Yahoo Finance
data = yf.download(tickers, start='1990-01-01', end='2023-07-07' , interval
='1d")
Compute returns and drop missing values with the help of the Pandas dropna() function :
# Calculate the percentage change in price over a recent period (e.g., last
two weeks)
ret = data['Adj Close'].pct_change(periods=10)
# Drop "Nan® values
ret.dropna(inplace=True)
Then, following the logic outlined by Ed Thorp, we start by sorting the returns (rank
function) to determine the best (top_decile) and worst performers (bottom_decile) for
each period of history.
# Rank the stocks based on their percentage change
ranked_ret = ret.rank(axis=1, ascending=False)

# Select the top-performing and bottom-performing deciles of stocks



