Hands-on TinyML

Harness the power of Machine Learning
on the edge devices

Rohan Banerjee

www.bpbonline.com

ii
Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork

119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-446

www.bpbonline.com

i1l

Dedicated to

My Beloved Little Niece:

Arjama

iv

About the Author

Rohan Banerjee is a practicing data scientist having more than 12 years of relevant
industry experience. He completed his M.Tech from IIT Kharagpur in 2011. His
areas of interest include advanced data science, machine learning, embedded
machine learning, digital signal and image processing. Rohan is currently
associated with Baker Hughes Company. Before that, he was with TCS Research,
Tata Consultancy Services where he published more than 40 technical papers
in international conferences, journals, and also contributed in enhancing their
intellectual property portfolio. Rohan is an avid reader of contemporary literature,
a traveler, and a quiz enthusiast.

About the Reviewers

Tushar Chugh is a machine learning engineer at Google, focusing on search
ranking. With a background in robotics from Carnegie Mellon University, he
previously contributed to GM’s self-driving car perception systems. Passionate
about applied machine learning, deep learning, and computer vision, Tushar
has experience developing innovative technologies at Qualcomm and Microsoft
in ML and tech domains.

Yogesh M Iggalore has over a decade of experience in product development
and is actively involved in all the disciplines of product architecture, hardware
design, firmware development, testing, and cloud integration. He is currently
interested in product development in TinyML.

vi

Acknowledgements

There are many people I want to express my gratitude to. First and foremost, I
would like to sincerely thank my family members for their unwavering support
and encouragement throughout my journey — I could have never completed this
book without their support.

I am grateful to various online resources, blogs, and materials that enriched my
learning in order to write the book. I would also like to acknowledge the valuable
feedbacks of my colleagues and co-workers during many years working in the
tech industry. I am particularly grateful to Mr. Avik Ghose from TCS Research
for providing me the opportunity to learn and work on TinyML. I gratefully
acknowledge the effort of Mr. Tushar Chugh and Mr. Yogesh M Iggalore for their
technical scrutiny and suggestions for improving the quality of this book.

My sincere gratitude also goes to the team at BPB Publication for being supportive
enough to provide me quite a long time to finish the book and also for all the
valuable editorial reviews.

Finally, I would like to thank all the readers who have taken an interest in the
book. Your encouragement has been invaluable.

vii

Preface

TinyML is an emerging trend in machine learning, that aims at deploying complex
machine learning and neural network models on low-powered tiny edge devices
and microcontrollers. Modern deep learning algorithms are computationally
expensive and result in large model size. They are often hosted on dedicated
servers having enormous computing resources. As users, we generate the data
at our end and send them via the internet to process remotely. Owing to the
limitations in network bandwidth, roughly 10% of all our data can be sent over
the internet. Processing of the data on the edge can revolutionize the current
paradigm. Thanks to TinyML, large machine learning models can be shrunk in
order to effectively deploy on smaller devices having few hundred kilobytes of
RAM and few megabytes of flash memory. Such devices can operate 24x7 with a
minimum power consumption. Moreover, being entirely offline, the applications
not only consumes zero network bandwidth, but also preserves user privacy.

TinyML is going to be the next big thing in machine learning. Major tech giants
are heavily investing in standardizing the hardware and software stack. In this
book, we cover the basic concepts of TinyML through practical coding examples
to enable the readers to learn the basic concepts of TinyML and develop their own
applications. Rather than discussing every single mathematical concept behind
the machine learning algorithms, the book primarily focuses on end-to-end
application development through coding examples. The projects covered in this
book are implemented in open-source software commonly used in industry and
academics.

This book is divided into 10 chapters. The details are listed as follows.

Chapter 1: Introduction to TinyML and its Applications — covers the basic
concept of EdgeML and TinyML, their potential applications, and challenges. It
briefly covers the hardware and software platforms required to create TinyML. We
also discuss the process flow of creating TinyML applications.

Chapter 2: Crash Course on Python and TensorFlow Basics — covers the basics
of Python which is now the de facto programming language in machine learning
for both research and creating production ready software. We start with the basic
concepts of Python along with various libraries such as NymPy, Matplotlib. The
later part of the chapter covers the key aspects of TensorFlow. TensorFlow is a free

viii

and open-source software library for machine learning and neural networks. The
chapter briefly covers some of the fundamental concepts of TensorFlow through
coding examples.

Chapter 3: Gearing with Deep Learning - briefly talks about neural networks.
We begin with the concept of a simple Artificial Neural Network (ANN), various
activation functions, and backpropagation to learn the weights. Later, we talk
about Convolutional Neural Network (CNN), a popular deep neural network
architecture used in modern image processing and computer vision applications.

Chapter 4: Experiencing TensorFlow — guides us to develop our first neural
network using TensorFlow and Keras. Keras is a set of deep learning APIs in
Python, running on top of TensorFlow, providing high level of abstraction in
developing large neural networks. We begin with implementing a simple ANN
for classification of handwritten digit images. Later, we implement our first CNN
architecture.

Chapter 5: Model Optimization Using TensorFlow - talks about how a large
TensorFlow model can be effectively compressed in order to deploy on smaller edge
devices using TensorFlow Lite. We create a base CNN model using TensorFlow and
convert it into the lighter TFLite model. The chapter also covers TensorFlow Model
Optimization Toolkit, a software library for optimizing large neural networks for
easy deployment and execution. We learn about different model optimization
techniques, such as quantization, weight pruning and weight clustering through
coding examples using the APIs provided by TensorFlow Model Optimization
Toolkit. Finally, we summarize the impact of various optimization techniques on
the base CNN in terms of model size and accuracy.

Chapter 6: Deploying My First TinyML Application - guides us to create the first
real TinyML application on Raspberry Pi, a commercially available low-powered
edge device. We create a neural network for classification of offline images on
Raspberry Pi. The chapter covers two important topics, MobileNet and transfer
learning. MobileNetis an optimized neural network architecture specially designed
for low-powered mobile edge devices. Transfer learning is another interesting
concept in machine learning, where we can reuse a pre-trained model on a new

ix

problem. Transfer learning is particularly useful when we do not have sufficient
training data to create a model from scratch.

Chapter 7: Deep Dive into Application Deployment — guides us to implement
a more practical TinyML application of real-time on-device person identification
from live video stream recorded by a camera. The application is again deployed on
Raspberry Pi using various open-source software.

Chapter 8: TensorFlow Lite for Microcontrollers — covers the basics of TensorFlow
Lite for Microcontrollers, a highly optimized software tool for porting TensorFlow
models on low-powered microcontrollers. We implement a simple neural network
that modulates the voltage output of a linear potentiometer and successfully
deploy it on Arduino Nano 33 BLE Sense, the recommended microcontroller board
for creating TinyML applications.

Chapter 9: Keyword Spotting on Microcontrollers — guides us implementing
an on-device speech recognition application. Keyword spotting is an important
requirement in modern voice assistant services, such as Amazon’s Alexa or Apple’s
Siri. In this chapter, we implement a simple keyword spotting application on
Arduino. We first implement a basic keyword detection system using TensorFlow
to understand the key concepts of audio processing. Later, we implement a real
keyword spotting application using Edge Impulse, a free software platform for
designing end-to-end TinyML application and deploy on an Arduino device with
minimum code writing.

Chapter 10: Conclusion and Further Reading — summarizes our learnings in the
book and covers some recent trends in TinyML.

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/q35pmfm

The code bundle for the book is also hosted on GitHub at https://github.com/
bpbpublications/Hands-on-TinyML. In case there’s an update to the code, it will
be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications” Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

xi

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then
see and use your unbiased opinion to make purchase decisions. We at BPB
can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

xii

Table of Contents

1. Introduction to TinyML and its Applications........cc.cceeeevveeerruersucscnreciennces 1
INErOAUCHION ...t 1
SEIUCTUTE .. 3
ODJECHIVES ...ttt 3
Brief overview of Machine Learning..........ccoccocvuvecueunnevcreinenccenniecneneneeeneenenes 4

Supervised Machine Learningccccceeueueeeeninnsssneeeeeeseneueeeessesssenees 5

Unsupervised Machine LEATNinNg.............cccovvereeucuccesintnineninssieeieeeeeaene 6
Machine Learning and Deep Learningcccccocecccoevnierenenccuninenecenenieennenenes 6
Edge computing and TinyML.........ccoovveueiriniininicnninecreneceeeeeeeeeeseeseesenenes 7
Applications Of TINYMLc.ccciuieueinieinicieeececeeeieee e sesesesessesenne 9
Hardware for deploying TinyMLc.cccceeeemrncecreninceineeenesecneeneeeenennenes 10
Software for TINYML......ccooviiiririeieinieeieieeerir ettt senseaes 13
Process flow of creating TinyML applications.........c.cooceceueurececernecuenenencuennenes 13
Prerequisites—hardware and SOftwarec.cooveeeevrineieinnccrincceereeeenes 16
CONCIUSION .. 17
KOY FACTS.cvuvuvreuceiceicesecee ettt 17

2. Crash Course on Python and TensorFlow Basics.........ccocceveevcrecnensucnnncnnens 19
INErOAUCHION ...t 19
SEIUCTUTE ... 21
ODJECHIVES ...ttt 21
Colab NOtEDOOKcuviiiiiiiicirc e 22
Python variables ... 24

PYLHON SETINGS .ottt 25
LSS coietee et 26
TUPLE ...ttt 27
DiCtiONATY ... 28
Conditional and logical operations............cccccoevreecuenenecrenenccinineccnneccinenenes 28
LoOPSs N PYthon ...t 30
Functions in PYthomn ... 30

Python HIDraries ..ot seeaes 32

NUIPY TIDTATY ..ottt 32
Random number generation..............cccevvvneevceceeuerenneneneceeeesnneene 37
MatPIOtlib TIDTATY ..ottt 39
PANAAS TIDIATY ..ottt 41
Introduction to TenSOrFIOW........cc.ccccuviiiciiciricinicicccc e 42
Tensors ANA AALALYPES........c.covvwrerereeereeeeieieiiiittteieetee et 41
Differentiation in TeNSOTFIOW..........cccoevnrrueeueucieiiiiiitisestseeeseee e, 46
Graphs and functions in TensorFIOWccevvvveeccccinieininieisiseseae 47
End-to-end Machine Learning algorithm using TensorFlow 48
CONCIUSION .. 54
KEY FACES ettt 55
Further reading........c.cooveiivecnininicccccecc s 55
3. Gearing with Deep Learningco.coueevveeeuensuennneinnennnennecnsnensecneecsnessseees 57
INtrOdUCHION ..o 57
SEIUCTUTE ... 58
ODJECHIVES ...ttt ssenen 59
Theory of artificial neural NEtWOIKSc.covoeeririnceciiniicrccrc e 59
Binary cross entropy 10Ss fUNCLONcccuveveeueucecciinirininieseeeeeeeceee e, 62
Neural network activation fUNCHIONS.cceuceeccverinininerieeeeceeceeneen, 63
Sigmoid activation fUNCHIONc.ccvveeeveceeueueieeinintceeees e 64

Tanh activation fUNCHONc.cueueueueeieiinininrreee ettt 65
ReLU activation fUNCHION..........c.ceeeeeveeeeueueueeeirinineeeeeesn e 65
SOFtMAX JUNCHION ...ttt 66
Learning the neural network weights—the backpropagation algorithm66
Introduction to Convolutional Neural Network..........c.cccccvvivceirniccinnnccnnnnee 69
Architecture of A CNNcccoovrninieeeeeerrnetce et 71
INPUL LAYET .ttt 71
CONVOIULIONAL LAYET ...ttt 71
POOTING LAYET ..ttt 78

Fully connected layer or dense layer.............oooeccccuervnnnincccceennenn. 79
OUEPUL LAYET ...ttt e 79
Putting them all LOZETNETc.ccveivinirrreeeeecttt e 79
Neural network hyperparameters............ccocceviceeinrecenneceneieeneeeeeenennene 80

NUMDBDET Of IAYETS .ttt 81

xiv

Learning rate ...t 81
DIOPOUL ... 81
REGUIATIZAION ...ttt 82
Choice of optimization algorithim.............c.ccoevvvreeeecccieieieisiseneines 82
Mini-DALCH SIZE.........ovviiiiieicete s 82
CONCIUSION ..ttt 83
KEY FACES ettt 83
Further reading..........coeeveeniniccicccrcce e 84
4. Experiencing TenSOrFIOWccoiiiuiiniiiniinniinniinninnnnnnecnnennecneennesneenn 85
INErOAUCHION ...t 85
SEIUCTUTE ... 86
ODJECHIVES ...ttt st 86
Keras and TensorFIOW ..o 87
Classification of handwritten digits using a feedforward neural network...... 90
Data Processing ... 92
Model iMPlementAtiON.........c.c.overirieucueeeieiririsiiticieesss et 94
Implementation of a Convolutional Neural Networkcccocvvecvinncucueenencs 97
Evaluation metrics in classification models..........ccccceuvieicivcininicicininininnn. 105
CONCIUSION ..t 107
KOY fACTS.vuvuireecrieceieceect ettt naee 108
5. Model Optimization Using TensorFIowcccccevevuerirsecisensnensucsensncnnennne 109
INErOAUCHION ...ttt eeene 109
SEIUCTUTE ... 110
ODJECHIVES ...ttt 111
Experiencing TensorFIOW Lite..........cccoveinirincieinininceciniccnnsececeneeesenneeaens 111
TensorFlow Model Optimization ToOLKitccccceeeueeiruerennirrnreccccnes 120
QUANTIZALION ..t 121
WEIGNE PIUNIIIG ...ttt e 128
WEeight CLUSEETTIG cc..eevieiiectee ettt 134
Collaborative OptimiZationc.coeeeeeucueuriniucreinereeirineceereeereseeseseeseeseseeaes 138
CONCIUSION .. 143

KEY fACES vttt e 144

X0

6. Deploying My First TinyML Applicationccoceveivecrcnsecsensucnensucnennne 145
INtrodUCHION.......cviiiicic e 145
SEIUCTUTE ... 146
ODJECHIVES ...ttt ses 147
The MobileNet architecturecccvvvuieinieinicininiic e, 147

Depthwise separable cONVOIULIONccoeeeeucuceiuieiiieirirereeeeeiceceean, 148
Image classification using MObileNet..........cccooueurereuricerincenercerercenecneceeeneeeenes 148
Brief introduction to transfer [earningcocecevveeecccucrennneescnenens 152
Implementing MobileNet using transfer learning..............ccceovvvereevecucnee. 153
Creating an optimized model for a smaller target device................cc........ 154
Evaluation of the model 0n the test Set..........ccccocevvrneeeccierenneneecnenes 157
Introduction to Raspberry Pi........cccerccninnccennccnccenecceeccneseeaee 158
Getting started with the Pi.......cccccoiiiiniiccceeceeeeenes 160
Installing the 0perating SYSLeM...........ovveeeeeeueeeuereerinniseeeeseeeeneneseseeeeaes 161
SEHING UP THE Pil ..ttt 162
Remotely accesSiNg the Pi..........ccccuevvenereiceciciereinieinetcicieeeeeneneseeeeeaes 164
Deploying the model on Raspberry Pi to make inference.........c.ccoevvcueueuncece. 165
CONCIUSION .. 173
KEY fACES vttt e 173

7. Deep Dive into Application Deployment...........ccocceeueereenrucrneensecssncnssennnne 175
INrOAUCHION ... 175
SETUCTUIE .ottt 177
ODJECHIVES ...ttt ettt 177
System requIrementcccvviviviiiiiiiii s 178
The face recognition Pipeline........coccceueuecririrccreninicrerccerecceeecceeseeaene 179
Setting up the Raspberry Pi for face recognition.........c.cceceuveeeurceeirceeuncucnncnnn. 180

The Raspberry Pi camera mMOdule.............c.cceeeeiininnssssseieeecieeeenn, 180
Installing the necessary lIDrATIescoovveeeuerrrsiieeeerssesceane 184
Implementation of the Project.........cccvcennrccinnincrirccerreccr e 185
Data collection for traiNing............cceeevreeeecucueuiieiinrestsee e 185
MOAEl ETAINING ...ttt 189

Real-time face 1eCOZNILIONc.c.ceeuvueinerirrririeeiceettt s 192

xvi

CONCIUSION .. 196
KOY fACTS ettt naeee 197
8. TensorFlow Lite for Microcontrollersccocevveveervernennesrennesesesensensnns 199
INErOAUCHION ...ttt eeaene 199
SEIUCTUTE ... 201
ODJECHIVES ...ttt 202
Arduino Nano 33 BLE Sense. ..o 202
Setting up the Arduino NANO.............c.ccueeueeiioininirseeeeeeeicctcee s 204
First TinyML project on the microcontroller—modulating the potentiometer
209
ReqUITed COMPONENES ...ttt 210
CONNECLING the CITCUIE ...oveereeeeeeeiicitit sttt 211
Read potentiometer to control the brightness of the LED............................ 212
Creating a TensorFlow model to modulate the potentiometer reading.......215
Inference on Arduino Nano using TensorFlow Lite for Microcontrollers....222
CONCIUSION .. 228
KEY FACES vttt e 229
9. Keyword Spotting on Microcontrollers...........ccceveeeeensecnsernrecnscnsneniecnnne 231
INrOAUCHION ... 231
SETUCTUTE ..ttt 233
ODJECHIVES ...ttt ettt 233
Working principles of a Voice assistantcooeeureecureeernecrnecrnecunecrnecuneennes 234
Implementation of a keyword spotting algorithm in Pythonccccue.cece. 235
AUAIO SPECETOZIAMN ..ttt 241
Designing a Convolutional Neural Network model for keyword spotting..247
Introduction to Edge IMpulseccccovveinivciinniiciccccceeeene 251
Implementing keyword spotting in Edge Impulse.........cccccevrenecrrnccrnenencnee 253
Model deploymentccccuevieeiririeiciiicceee e naeans 264
CONCIUSION .. 266

KOY fACTS.vuvuirecieicieicer ettt 267

10. Conclusion and Further Readingccoccevueivueineeniniiseinnennnecneensnennnecnnne 269
INtrodUCHION ..o 269
SEIUCTUTE ... 270
ODJECHIVES ...ttt 270
Brief learning SUMMATY........cccceuririceirinecueinineceneeeseieeeseee e sesseeaens 271
TINYML DSt PractiCesccvuveueuririneiereiiiieieeeeietrecceeee e sseaene 273
AUtoML and TInYMLcocccueiiieiriiieirircccirerecieeeeieteeseaese e seaens 275
Edge ML 0n Smartphones........c.ccoccceveeceninnccienninieeeeeneeeeesesenseseeeseenens 277
Future of TINYML......ccccirieieircciriric ettt sesese e s seeaes 277
Further reading........c.ccvieeiiieininiccccce e 278

BN 0133 4 R 281

CHAPTER 1

Introduction to
TinyML and its
Applications

Introduction

The year 2022 brought Artificial Intelligence (AI) to a new level of endless
possibilities through the applications of a Generative Pre-training Transformer,
ChatGPT. ChatGPT is an Al language model that uses advanced machine learning
models to generate human-like text. Needless to say that Al and Machine Learning
are hot topics in modern technology. We are living in a world where we are using
them everywhere in our day-to-day activities, knowingly or unknowingly. Although
the two terms, Al and Machine Learning, are often used synonymously, there are
subtle differences between them.

Artificial Intelligence is the science of imbibing human-like intelligence in machines
via computer programming to make them behave like humans and, therefore, solve
real human problems. In short, through Al a computer system tries to simulate
human reasoning using maths and logic. Al can be applied to many different sectors
and industries, including but not limited to healthcare industries for suggesting
drug dosage, banking and finance sector for identifying suspicious activities, self-
driving cars, and so on. Machine Learning is a subset of AI, where a machine is
programmed to learn from past experience in order to predict the outcome of a
future event without explicitly being programmed for that. The conceptis analogous

2 Hands-on TinyML

to the way we all learn. We gather knowledge from various mediums, for example,
reading books, guidance and advice from parents and teachers, and from our day-
to-day experiences. Based on that knowledge, we can act in a new situation, like
writing in an exam. Machine Learning has many sub-fields. Deep learning is a
subset of machine learning that simulates the behavior of the human brain through
a specially designed architecture called the Artificial Neural Network (ANN). Deep
learning can deal with large unstructured data with minimum human interaction,
and hence, has gained lots of attention in recent times. In today’s world, we are
immensely dependent on Machine Learning and deep learning techniques in our
daily activities. Our smartphones are loaded with numerous applications directly
using machine learning. When you click a photo on your smartphone and upload
it on social media, it automatically detects various objects in the photo, the place
where it is captured, and even suggests you to tag your friends who are present in
the photo. All these happen thanks to some Machine Learning applications such
as object detection, geo-locating mapping, and face recognition. Similarly, while
searching for news on the internet, we often opt for searching by voice. It falls under
speech recognition, another popular application of Machine Learning. When you
shop at an e-commerce site, you are often surprised at how the website accurately
knows your preference and recommends you accordingly. This also happens because
of some Machine Learning algorithms that learn from your past purchase history
and recommend you accordingly.

Machine Learning, particularly deep learning algorithms, are computationally
expensive and often require a powerful hardware accelerator like a Graphics
Processing Unit (GPU) to operate. Such applications typically run on large
computers and dedicated data centers. However, the data is generated by the users,
on their personal devices like smartphones. In the traditional approach, user data is
sent to a dedicated remote server machine via the internet for running the machine
learning jobs. However, is this practically feasible? We generate gigabytes of data
every day. Is it practically possible to send all these data to a remote system? That
would consume enormous network bandwidth. What about the network delay?
Recently, there has been a trend called Edge ML that aims at shrinking the machine
learning models to run them on edge devices like our smartphones.

In this book, we are going to introduce TinyML, which takes Edge ML one step further
andallowsittorunmachinelearningalgorithmseven on the smallest microcontrollers.
It is a subset of applied machine learning that fits large machine-learning and deep
learning models to tiny embedded systems running on microcontrollers or other
ultra-low power processors. Technically, embedded systems need to be powered by
less than 1 milliwatt so that they can run for months, or even years, without needing

Introduction to TinyML and its Applications 3

to replace batteries. TinyML is one of the hottest trends in the field of embedded
computing. Research suggests that global shipments of TinyML devices will reach 2.5
billion by 2030. Several tech-giants are currently working on chips and frameworks
that can be used to build more systematized devices in order to standardize the field.
TinyML is expected to cause ground-breaking advancements in complex machine
learning tasks to solve our day-to-day problems.

Structure

In this chapter, we will discuss the following topics:
e Brief overview of Machine Learning
o Supervised Machine Learning
o Unsupervised Machine Learning
e Machine Learning and Deep Learning
e Edge computing and TinyML
e Applications of TinyML
* Hardware for deploying TinyML
e Software for TinyML
* Process flow of creating TinyML applications

e Prerequisites—hardware and software

Objectives

TinyML is a subfield of modern Machine Learning that aims at compressing large
Machine Learning models to deploy them on low-powered, low footprint, resource-
constrained edge devices and microcontrollers. Though it sounds amazing,
deploying a large Machine Learning model on a smaller edge device is not easy.
A reduction in model size often comes with a degradation in performance. Hence,
rather than compression, the main focus is on optimizing a model for a target device.

This book is intended to cover the fundamentals of TinyML through practical projects
so that the readers can have an in-depth idea of how TinyML works with some
hands-on experience. The primary objective of this book is to make you familiar
with TinyML programming using open-source software packages so that you can
create your own TinyML projects from scratch. Rather than detailing the underlying
complex mathematics involved in machine learning and deep neural network
algorithms, our key focus is to learn the programming aspects using practical

4 Hands-on TinyML

examples. However, interested readers are encouraged to learn the mathematical
aspects from various available resources for a better understanding of how various
machine learning algorithms were actually derived.

In this introductory chapter, we will briefly cover the fundamentals of TinyML. We
will begin with the key aspects of machine learning and deep learning. Then, we
will talk more about TinyML as a technology, its applications, and the hardware and
software recommended to create real TinyML projects.

Brief overview of Machine Learning

Before starting with TinyML, we should have some fundamental concepts of
machine learning. Machine Learning is a branch of artificial intelligence that focuses
on developing computer algorithms based on data to imitate the human learning
process. Now, the question arises: where do we need machine learning?

Suppose you have measured the temperature of the day as 25 degrees in the Celsius

scale using a thermometer and wish to convert it to the Fahrenheit scale. There is
a well-known formula for doing the conversion, which is given by: % = % . You
can simply put C = 25 in the equation and get F as 77. Here, you have both the
data and the rule that relates to the data. However, the situation is quite different
in real-life applications where you have data, but you often do not have a known
mathematical formula to relate them. For example, suppose you want to predict
the price of a house in a suburban locality in Delhi. What would you typically do?
There is no known mathematical formula to solve the problem. Machine learning
can help us to do so. Machine learning is all about data. If we have the right amount
of data, it can help us to find suitable relations between them. In order to predict
the price of a new house, you first need to gather certain information for a few
other houses in the same locality to empirically estimate the price of a new house.
For example, you could collect the area of those houses, the number of rooms, the
distance of the properties from the main road, and so on. You also need to collect
the current prices of those houses. Here, the price of the house can be considered
as a dependent variable, which is determined by the independent variables such
as the area of the house, number of rooms, distance from the main road, and so on.
The dependent variables are also called the target values or labels in some cases,
and the independent variables are called as features. With machine learning, we can
build a model to find the relationship between the dependent and the independent
variables. The resulting model can predict the price of another house if the features
are provided as input.

Introduction to TinyML and its Applications 5

Similarly, suppose a pharmaceutical company is planning to launch a new blood
pressure-controlling medicine. Before that, they want to investigate the impact of
that medicine on people. If the recorded stable blood pressures after the intake of
certain dosages of the medicine are experimentally noted on a diverse group of
people, a machine learning model can be created to predict what should be the ideal
medicine dose for a patient having a certain range of blood pressure.

Machine learning approaches primarily fall into two categories, supervised and
unsupervised machine learning.

Supervised Machine Learning

Supervised machine learning approaches take both features and corresponding
targets or labels as input to create a model which can be used to predict the target
value of a new unseen example data using the features. Supervised machine learning
algorithms are commonly used for classification and regression. In classification, a
machine learning model is designed to predict a discrete class label from the features,
for example, predicting the presence of a cat or a dog in an image, or identifying
numerical digits from handwritten expressions. In regression, a machine learning
model predicts a continuous value, for example, predicting the price of an asset or
predicting the salary of a person. Figure 1.1 provides a basic block diagram showing
various components of the supervised learning approach:

Feature vector

Training data ——| Feature extraction
Machine learning
algorithm

Target labels

Training phase

L— s ————— e e

Feature vector

Testdata ———————>| Feature extraction

Evaluation phase 1

Predicted output

Figure 1.1: Block diagram of supervised learning approach

6 Hands-on TinyML

Supervised learning involves two phases, training and evaluation. During training,
it takes labeled training data as input and tries to create a mathematical relationship
between them by adjusting some parameters, which are called the model weights.
Once the training is done, the model can be used for the prediction of unseen test
data. Feature extraction is a very important step in machine learning. The relevant
set of information extracted from the input that directly determines the target values
is called as features. In the previous example of house pricing, the number of rooms
or area of the house can be considered as features. Similarly, for a classification
problem, if you are given labeled images of cats and dogs as input, color of the
animal in the image, its facial structure, the presence or absence of whiskers, and so
on could be the relevant feature to create the classifier.

Training of a supervised learning algorithm has the following three basic components:

* A decision process that makes a guess of the target values from the input
features.

e An error function that finds how good the guess is with respect to the actual
target values or labels.

* An optimization process that iteratively adjusts the decision process via
modifying the model weights to reduce the error between the guessed and
the actual target values.

Linear regression, logistic regression, support vector machine, and Artificial Neural
Networks (ANN) are popular examples of supervised learning algorithms.

Unsupervised Machine Learning

Unsupervised machine learning algorithms deal with unlabeled data. That means
you only have the features but not the labels. Such algorithms try to find the hidden
patterns of the input data based on the features and group them together to form
clusters. All data in a particular cluster share similar properties. Unsupervised
learning is typically used in applications such as customer segmentation, similarity
detection, product recommendation, data dimensionality reduction, and so on,
where you really do not know the target labels. A few examples of unsupervised
learning algorithms are principal component analysis and K-means clustering.

Machine Learning and Deep Learning

Deep learning is the newest yet most popular branch of machine learning that works
particularly well on unstructured data. Deep learning algorithms can be considered
as mathematical evolution of traditional Machine Learning algorithms. Refer to the

Introduction to TinyML and its Applications 7

basicblock diagram of supervised learning in figure 1.1. Amachine learning algorithm
cannot learn from raw unstructured data. It first needs to extract a set of relevant
features, and the features are then used to train the model. Feature extraction is a
manual process in traditional machine learning. Finding the optimum feature set is
probably one of the most difficult tasks, which might require domain expertise in
the field application. Deep learning algorithms can directly take raw data as input
and can extract the relevant features automatically, therefore, bypassing the need
for manual feature extraction. Deep learning techniques are particularly useful to
process unstructured data (for example, text and images).

Deep learning approaches analyze data in a way similar to the human brain. They
have a layered structure of Artificial Neural Network (ANN), which is inspired by
the biological nervous system. An ANN comprises of neurons or nodes in a layered
structure where each layer is connected to another layer to analyze complex patterns
and relationships in data. A typical neural network requires huge training data but
minimum human intervention to function. The ability of deep learning algorithms
to work with minimum human intervention makes them extremely popular in
modern data science in diverse practical applications such as computer vision,
speech recognition, natural language processing, and so on. In this book, we will
heavily use deep neural networks in various projects, primarily the Convolutional
Neural Network (CNN).

Edge computing and TinyML

Machine learning, more specifically deep learning algorithms, are computationally
expensive. In reality, it may take from several hours to several days to train a large
neural network model using sophisticated hardware acceleration platforms such as
Graphics Processing Unit (GPU) or Tensor Processing Unit (TPU). Such hardware
platforms are maintained by large enterprises at large distributed data centers. As
individual users, we generate data at our end in our personal edge devices, like
smartphones or tablets, in the form of text, audio, video, or image. However, the
devices we possess are not always capable of running complex machine learning
models for an application. Machine Learning operations are traditionally performed
on the cloud. Users’ data is typically sent to the backend data center that hosts the
machine learning model via the internet for processing, and the result is transferred
back to our device. For effective data management and processing, all our devices
are connected to the internet to create an ecosystem called the Internet of Things
(IoT). The interconnection between traditional machine learning and IoT is no doubt
effective as we get all our jobs done seamlessly. However, it has its own drawbacks.
A few key challenges are listed as follows:

8 Hands-on TinyML

e Data privacy and security: In traditional machine learning, IoT devices send
their data to a cloud network for processing. This is prone to cyber-attacks,
and hence, has severe security and privacy issues.

e Power consumption: Machine learning models consume enormous power. A
research team at the University of Massachusetts estimated in 2019 that deep
learning sessions of a machine learning model could generate up to 626,155
pounds of CO, emission, which is roughly equal to the carbon emission of
five cars over their lifetime.

e Network bandwidth and latency: It would require an infinite bandwidth
to support hundreds and thousands of IoT devices, to continuously stream
their data to the cloud for processing. Another key aspect is of network
latency. Latency is termed as the time lag in sending and receiving the data
between an IoT device and the server over the network. In slower networks,
the latency is higher, and the user often needs to wait for a long period of
time to get a response from the server. It is undesirable for user engagement
in real-time applications.

Edge Al and Edge ML have emerged as the next frontier of development for IoT
systems. In Edge Al, data is produced, handled, and processed locally. Instead of
sending to the cloud, the analytics happens in the edge device, such as smartphones,
single board computers, IoT devices, or edge servers. Real-time processing allows a
faster response and reduced latency and bandwidth use. Applications of Edge Al can
be seen in object detection, speech recognition, fingerprint detection, autonomous
driving, and so on.

Tiny machine learning, commonly known as TinyML, takes Edge Al one step further
in order to run machine learning algorithms even on the smallest microcontrollers
with the least amount of power possible. TinyML is a rapidly growing field in
machine learning. Instead of GPUs or microprocessors for computation, TinyML
entirely relies on less capable processing units that consume very less power,
typically in the range of a few milliwatts. Such processors are frequently Cortex-M
based, having only a few hundred kilobytes of Random Access Memory (RAM), a
few megabytes of flash memory, and clock rates in the tens of megahertz. Therefore,
TinyML applications ensure low power consumption, low latency in running a
machine learning model. They also ensure to preserve user privacy as the data is
entirely being processed on the edge device.

Introduction to TinyML and its Applications 9

Applications of TinyML

TinyML applications are extremely energy efficient. A standard Central Processing
Unit (CPU) consumes around 70-85 Watts, and a GPU consumes up to 500 Watts of
power to operate. On the other hand, TinyML models operate on microcontrollers
that consume only a few milliwatts or microwatts. Such devices are intended to run
for several weeks or even months without recharging or changing of the batteries.
This brings down the overall carbon footprint. Processing at the edge also ensures
low latency and improved data privacy. These devices are relatively basic in terms
of computation hardware, making them available at a cheaper price. TinyML is
successfully applied in various practical applications across industries, explained
as follows:

Predictive maintenance: Large industrial machines are prone to making
faults. Predicting a fault of a machine ahead of time is important in any
industry to avoid a potential shutdown. Under normal health conditions,
most machines exhibit some standard properties in terms of mechanical
noise, vibration, torque, and so on. A deviation from the normal range can be
an alarm for the potential fault of the machine in the near future. Continuous
monitoring of the machine is possible by gathering relevant information
on various properties by installing sensors on the body of the machine for
analysis. Such analysis is typically done 24 x 7 using small microcontrollers
with minimum power consumption, as the frequent replacement of the
device battery is impractical.

Healthcare: TinyML is bringing in affordable solutions in early disease
screening and medical diagnostics, which can be used in developing nations
to supplement limited healthcare facilities. Off-the-shelf electronic devices
in the form of wristbands or smart watches are readily available that use
TinyML algorithms to measure physiological parameters like heart rate and
blood pressure. Such devices can also predict abnormal heart rhythms like
atrial fibrillation, which can be an early sign of a heart attack.

Agriculture: There are mobile phone applications for assisting farmers to
detect diseases in plants just by taking a few pictures of the diseased plants to
run on-device machine learning algorithms for analysis. As the applications
do not need images to send to the cloud, they can help the farmers in remote
areas where stable internet connectivity remains an issue.

Voice-assisted devices: Voice-assisted devices such as Amazon Echo, Google
Home, or iPhone’s Siri have become very popular these days. Such devices
listen to your voice command and can act accordingly, such as playing
your favorite music, turning ON/OFF the room light, and so on. This is a

10 Hands-on TinyML

perfect example of where TinyML and traditional machine learning work
together. The microphone of the voice-assisted device continuously analyses
the background sound to detect a wake-up keyword such as “OK Google!”,
“Alexa!”, or “Hey Siri!”. The keyword detection process has to be extremely
light-weight, on-device, and low-powered. Thisis where TinyMLis deployed.
As soon as the keyword is detected, the device wakes up and records your
following voice instruction like “What’s the weather going to be like today?” or
“Play my favorite music.”, which is sent to the cloud for processing via more
powerful natural language processing algorithms which are not possible to
run at the edge.

* Ocean life conservation: TinyML applications are used for real-time
monitoring of whales in North America to avoid whale strikes in busy
shipping lanes.

Hardware for deploying TinyML

A complex deep learning model can have several thousand to millions of trainable
parameters, resulting in a large model size in the range of several megabytes to
gigabytes.In general, model sizeis notabigissue when machinelearning applications
are deployed on a remote server that virtually has infinite memory space for storage.
However, the scenario is different in TinyML, having a few hundred kilobytes of
RAM.

Deciding the correct hardware for deploying TinyML models is often challenging.
You have to keep several factors in mind, for example, the device form factor for
your application, how much memory storage your model requires, the maximum
allowable power consumption by your application, what sensors you might require
for the collection of data and their interfaces, whether you require on-device
training, the approximate price of your application, and so on. Our smartphones
and tablets are great examples of edge devices. The past few years have witnessed
a rapid proliferation of smartphones. Modern smartphones are rich in computing
resources and in-built sensors. You can even train medium size neural networks on
them. Smartphones and tablets are a great choice to run Edge ML applications that
involve a strong user interface, for example, on-device face recognition for person
identification, high-definition videography, gaming, natural language processing,
and so on.

A Single Board Computer (SBC) is another popular device for edge computing
in IoT-based applications. An SBC is a small portable computing device built on a
single printed circuit board with a microprocessor, memory, and input/output (I/O)
devices. Although an SBC has much smaller memory and lesser powerful processor

Introduction to TinyNML and its Applications 11

than a personal computer, it comes at a much cheaper price and drives significantly
low power to operate. An SBC can draw its required power to operate from a power
bank or the USB port of a computer. SBCs can easily interface with external sensors
like servo motors and ultrasound sensors. They are typically used in academic
projects and industrial applications where edge devices of small form factors are
required to be directly connected to external devices for data collection and analysis.
Figure 1.2 shows a picture of a Raspberry Pi device, a popular SBC used in various
commercial applications and academic projects. The device is powerful enough to
run optimized deep learning models.

Figure 1.2: Raspberry Pi 3, Model B+, a popular single board computer

When we think of deploying extremely low-profile TinyML applications to operate
24 x 7, the primary target hardware are the microcontrollers. A microcontroller is a
compact Integrated Circuit (IC) designed to perform a specific task in an embedded
platform. They are much smaller in size than a smartphone or an SBC and have
much lesser computing resources. However, they are extremely low-powered. A
microcontroller primarily contains a CPU that connects all other components in
a single system. The CPU fetches data, decodes, and executes the assigned task.
The CPU clock speed typically ranges between 16 megahertz and 64 megahertz in
a microcontroller. They have a small amount of computation memory along with
a certain amount of Read Only Memory (ROM) or flash memory for the storage
of data and programs. The typical RAM size is 64 to 256 kilobytes, and the flash
memory can be of 2 megabytes. There are several I/O ports to communicate with
external devices. Microcontrollers may also contain one or more in-built timers and
counters, Analog to Digital Converter (ADC) and Digital to Analog Converter
(DAC), to read data from external sensors. Microcontrollers can be divided
into various categories depending on the underlying architecture, memory, and
instruction sets. They are used in applications such as machine health monitoring,
space research, autonomous cars, and so on, which need to operate for a prolonged
duration without frequently replacing the battery.

12 Hands-on TinyML

Microcontrollers are significantly different than a computer system. A computer
system is designed to perform multiple different tasks concurrently, whereas a
microcontroller is specifically designed for one particular application, such as
turning ON/OFF an LED, rotating a servo motor, or controlling a robotic arm.
Microcontrollers have a much-constrained hardware environment. The CPU clock
speed of a powerful microcontroller can be up to 64 megahertz, with 256 kilobytes
of RAM and only 1-2 megabytes of flash memory. On the other hand, modern
computer systems come with several gigahertz of CPU clock speed, 8-16 gigabytes
of RAM and terabytes of storage area. Microcontrollers do not have an operating
system. They draw much smaller power compared to a computer, which is in the
range of milliwatts or microwatts. Hence, they can operate for several weeks without
recharging or replacing the battery, making them extremely popular for continuous
operation in edge computing applications. Figure 1.3 shows few of commercially
available microcontroller units popularly used in TinyML applications:

Arduino Nano 33 BLE Sense SparkFun Edge

Raspberry Pi Pico ESP-32-S3
Figure 1.3: Popular microcontrollers for TinyML applications

