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Preface

The objective of this book is to streamline the creating and operating workloads
on Kubernetes. This book will guide and train software teams to run Kubernetes
clusters directly (with or without EKS/GKS), use API gateways in production, and
utilise Istio Service mesh, thereby having smooth, agile, and error-free delivery of
business applications.

The reader masters the use of service mesh and Kubernetes, by delving into
complexities and getting used to the best practices of these tools/approaches.
While one runs hundreds of microservices and Kubernetes clusters, security is
highly prone to be breached and that is where zero trust architecture would be
kept in mind throughout the software development cycle.

The book also makes use of some of the great observability tools to provide a robust,
yet clean set of monitoring metrics such as Latency, traffic, errors, and saturation to
get a single performance dashboard for all microservices. After reading this book,
challenges around application deployment in production, application reliability,
application security and observability will be better understood, managed, and
handled by the audience.

Chapter 1: Docker and Kubernetes 101 - This chapter will introduce the audience
to the basics of Dockers and Kubernetes. In the docker section, the audience
will get concepts to write and push images to container registries. We will give
a walk through of an already developed application and package it in a docker
container. There will be a discussion around practices which induce security
vulnerabilities and their resolution. In the later part of the chapter, the audience
will get introduced to Kubernetes, such as the why, what, and how of Kubernetes,
followed by an in-depth understanding of architecture. There will be discussion
around basic principles of Immutability, declarative and Self-healing way of
assigning infrastructure in Kubernetes cluster.

Chapter 2: PODs - discusses the foundational block of Kubernetes called Pod. The
chapter discusses the lifecycle of the pods along with health checks. The chapter
also explains the resources requirements for Pod such as CPU, Memory as well as
storage required for persisting data, along with security aspects like pod security
standards and admissions.
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Chapter 3: HTTP Load Balancing with Ingress - This chapter will discuss concepts
of bringing the data in and out of an application deployed in Kubernetes. Ingress is
a Kubernetes-native way to implement the “virtual hosting” pattern. This chapter
will talk about exposing services deployed in Kubernetes to the outside world.
Al gateways will also be discussed in this chapter taking example of open source
API gateways like Gloo, Tyk and Kong. Apart from discussing the details around
networking, readers will get the feel of security issues and loopholes which should
be taken care of while configuring networking.

Chapter 4: Kubernetes Workload Resources — takes readers towards more practical
examples of using Kubernetes in enterprise applications, by showing hands-on
examples of creating workload resources such as deployments, replicasets, jobs
and daemon sets. The chapter discusses the life cycle of each of these workload
resources and explains which workload resource should be used for which use
case while building scalable applications.

Chapter 5: ConfigMap, Secrets, and Labels - In this chapter, the concept of labels
and secrets will be discussed. Labels can be used to select objects and to find
collections of objects that satisfy certain conditions. In contrast, annotations are
not used to identify and select objects. This chapter will help the audience to in-
depth understanding of Annotations & Labels and strategies around how to use
them effectively in real environments. This chapter will also help you understand
the concepts of config map and a Secret better.

Chapter 6: Configuring Storage with Kubernetes—focuses on storage patterns with
Kubernetes. The chapter discusses Volumes, Persistent volumes and stateful sets
in details followed by a practical example of MongoDB installation. Furthermore,
the chapter discusses disaster recovery of content stored using configured storage
and the extesibility of Kubernetes architecture using container storage interface.

Chapter 7: Introduction to Service Discovery - Service discovery tools help
solve the problem of finding which processes are listening at which addresses
for which services. This chapter audience will get insight about various ways of
discovering service in Kubernetes cluster. This chapter will act as a building block
for section 3, where conceptual discussion will happen around how to achieve
service discovery using Istio. The audience will also get insights into the various
patterns of discovery and registration and the same will be showcased as hands-
on exercises in the chapter.



Chapter 8: Zero Trust Using Kubernetes - This chapter will introduce the audience
to the aspects of modelling and application with Zero trust principles in place. Lot
of security aspects are already discussed in the previous chapters. For example,
in Chapter 3, HTTP Load Balancing With Ingress, we will be talking about POD
security. Similarly in Chapter 4, Kubernetes Worklad Resources, we plan to talk
about security aspects when it comes to creation of networks. This chapter will
give the audience a hands-on insight of how to achieve the aspects of this zero-
trust security model using the individual building blocks discussed in the previous
chapters.

Chapter 9: Monitoring, Logging and Observability - This chapter will talk about
aspects of logging and monitoring of applications deployed in the Kubernetes
cluster. This chapter will further discuss ways to implement basic SRE concepts and
how the observability aspects are supported. Hands on exercises will demonstrate
each of the concepts of logging, monitoring and SRE by enhancing the micro
service application written and developed in earlier chapters.

Chapter 10: Effective Scaling - One of the key advantages of using Microservice
deployed on Kubernetes is the power scaling mechanism. This chapter will help
the audience understand the aspects of scaling in Kubernetes which includes
horizontal & vertical pod scaling. Not only can we configure auto scaling on out
of the box metrics, but also based on custom metric and combination of metrics.
All the hands-on aspects will involve the three micro services which we created
in earlier chapters. One Micro service will be planned to scale horizontally and
vertically. Others will scale based on custom metrics, and third will showcase
scaling based on a combination of two metrics.

Chapter 11: Introduction to Service Mesh and Istio — starts with the basics about
microservices and then talks in details about the what, why and how of the service
mesh concepts. The chapter discusses pros and cons of the service mesh as a
concept and uses Isio as an example. The chapter then discusses Istio architecture,
installation techniques and the customizations of Istio steup.

Chapter 12: Traffic Management Using Istio - is all about how to take the traffic
management logic out of service code into the declarative yamls. The chapter
discusses controlling ingress traffic, egress traffic and gateways. The chapter
introduces Kubernetes’s custom resources like VirtualService, DestinationRule,
ServiceEntry and how to make use of them for achieving traffic management
strategies like canary deployment, blue-green deployment. The chapter also
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explains with examples how to implement design patterns like circuit breaking,
timeouts, retries and fault injection using service mesh like Istio. This chapter
introduces and uses a sample application to explain the traffic management
patterns.

Chapter 13: Observability Using Istio — talks about how different open source
observability tools like Kiali, Grafana, Prometheus, Jaeger can be used alongside
Istio to improve the observability. The sample application introduced in earlier
chapters is used here again to show how to manage traffic patterns between
different microservices, how to observe the scalability, how to monitor and search
the logs, and how and where to view and search different metrics. The chapter also
explains with examples how to use distributed tracing to debug latency issues in
the application.

Chapter 14: Securing Your Services Using Istio - revolves around identity
management, authorization and authentication using the built-in support that
Istio provides. The chapter briefly introduces what is secure communication and
then explains how Istio helps with Certificate management to make the intra-
cluster communication secure by default. The chapter builds on top of the existing
sample application used in previous chapters to explain concepts like permissive
mode of Istio, Secure naming, Peer authentication, Service authorization, End-
user authorization and so on. The chapter concludes by bringing it all together by
explaining security architecture of Istio.
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CHAPTER 1

Docker and
Kubernetes 101

Introduction

Software architecture evolves with time to cater to the needs of the latest industry
workloads. For example, a few years ago, when the data size was insignificant, we
used to write data processing workloads using multithreading, but the processing
spanned across multiple machines. After that came the wave of Big data, where
distributed computing frameworkslike Hadoop and Spark were used to process huge
volumes of data. We are now witnessing a similar wave. Today’s architects believe
in breaking a use case into more minor services and orchestrating user journeys
by orchestrating the calls to the microservices. Thanks to Google for donating
Kubernetes to the open-source world, such an architecture is now reality. With many
organizations adopting Kubernetes for their infrastructure management, it has
become the platform for orchestrating and managing container-based distributed
applications, both in the cloud and on-premises. No matter what role you play in
the organization, be it a developer, architect, or decision maker, it is imperative to
understand the challenges and features of Kubernetes to design effective workflows
for the organization.

Just like Kubernetes, Docker is one of the most widely used container runtime
environments. Docker has seenits growth over thelastfew years, and while everybody
agreed to the need for a container, there have always been debates about how to
manage the life cycle of a container. The way Kubernetes and docker complement
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each other’s needs makes them prominent partners for solving container-based
workloads. Docker, the default container runtime engine, makes it easy to package
an executable and push it to a remote registry from where others can later pull it.

In this chapter, you will dive deep into the concepts of Docker and Kubernetes. In the
later chapters, one component discussed at a high level will be picked and discussed
in further detail.

Structure
In this chapter, we will discuss the following topics:
e Introduction to Docker

Introduction to Kubernetes

o Kubernetes architecture

o Principles of immutability, declarative and self-healing

Installing Kubernetes
o Installing Kubernetes locally

o Installing Kubernetes in Docker

Kubernetes client

Strategies to validate cluster quality
o Cost efficient

o Security

Objectives

After studying this chapter, you should understand the basic working of Docker
and Kubernetes. This chapter will also discuss some generic best practices when
deploying docker and Kubernetes, and it will help you understand what factors
you should keep in mind while enhancing reliability, resiliency, and efficiency better
suited to the type of use cases you intend to solve. You will understand the principles
of immutability, declarative, and self-healing, based on which the framework of
Kubernetes stands. This chapter will also help you learn how to evaluate the quality
of your cluster as per the needs of use cases.

Introduction to Docker

Docker is the most widely used container runtime environment; it enables creating
containers and running them on some infrastructure. Some infrastructure could be
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physical on-premise nodes or virtual machines on any cloud platform. Developing,
shipping and running applications are key terms when discussing docker. You can
develop applications with each application having its binaries and libraries, and
package them by creating an image. These images could be instantiated by running
them as containers. Each container with separate applications can run on the same
physical or virtual machine without impacting the other.

Consider Figure 1.1, which demonstrates the preceding discussion in detail.

COMTAINER 1 CONTAINER 2 CONTAINER 3
APPLICATION 1 ‘ APPLICATION 2 J APPLICATION 3
T R I CECE R R
APP 1 APP 2 APP 3
DEPENDEMCIES DEPENDENCIES DEPENDENCIES

2 DOCKER CONTAINER RUN TIME ENGINE
o HOST OPERATING SYSTEM{LINLXWINDOWS\MacOS)
4 PHYSICAL NODE OR VIRTAUL MACHINE (GCPVAZUREWWSIONFREM)

Figure 1.1: Docker 101

Refer to the numerical labelling in Figure 1.1 with the following corresponding
numerical explanations:

1.

Multiple applications with completely different technology stacks could be
developed, and their complete dependencies could be packaged as container
images. These container images, when instantiated, become containers.

These container images need a container runtime environment. The container
runtime environment provides all the features to launch, execute, and delete
an image. Multiple runtime environments are available in the industry, such
as runC, containerd, Docker, and Windows Containers.

These container runtime environments run on top of any operating system.
For example, a docker runtime could be installed on Linux, Windows, or
macOS, unless the container runtime is installed successfully and no other
host operating system restrictions apply.

The mentioned setup can run on a physical or virtual machine, and on-
premise machines on public cloud providers like GCP, AWS, or Azure. In fact,
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the setup can run on a device in which an operating system and Container
Runtime Environment (CRE) could be installed.

With this basic introduction to how containers, container run time, and physical
infrastructure align, let's now look at Docker precisely and understand the game's
rules with Docker as a container runtime environment. Figure 1.2 demonstrates the
docker process of building and using images:

1 DOCKER CLIENT 2 DOCKER HOST 1 REGISTRY
1 az2
a.
DOCKER DAEMON o
docker build F—-—*“"Hj *
b.1 f_\
P | | conTaiNeRS DC:_ICUKBER
docker pull ch -
& cl |‘_ IMAGES
f et / CONTAINER
A = ] & REGISTRY
docker run ‘ Gl
—— 312 |
(=)

N

Figure 1.2: Docker Process

Refer to the numerical labelling in Figure 1.2 with the following corresponding
numerical explanations:

1. Docker client is a CLI utility to execute docker commands. In this section,
there are three main commands that everybody should know about.

2. The docker daemon interprets the CLI commands, and the action is
performed.

3. Aregistry is a repo where you build and upload the image. A few standard
registries are docker hub, quay.io, and registries with cloud providers, such
as Google Container registry in the Google cloud platform.

Let us talk about the three docker commands shown in Figure 1.2:

e Docker builds <docker-file-path>: You specify the contents of your
repo in a plaintext file (which are written as per the construct suggested by
Docker). This command creates a local image using the plaintext file(created
above). Look at the arrows labeled with a.

o a.l:Docker build command is interpreted by the docker daemon.

o a.2:Theimage created by the docker build command can be pushed
to container registries.
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e Docker pulls <container registry link for image>: This command
pulls the image from the registry to a local machine. Look at the thick solid
lines and follow the flow labelled as b.

o b.1: The docker daemon interprets the docker pull command, and a
pull call is made to a remote repository.

o b.2:Docker image is pulled to a local system.

e Docker run <image name>: Create a container using one of the docker
images available locally in the systems.

o ¢.1:Docker run command interpreted by docker daemon.

o ¢.2: Containers are created using images. Image labeled as one is
used in creating container c1, and image two is used in creating
containers ¢2 and c3.

Now is the time to investigate the complete preceding defined process. For this
exercise, refer to the docker-demo-python-app folder in the code base attached to
this chapter. It is a simple hello world Python application. If you look at the folder's
contents, there are python-related files and a file named Dockerfile.

You will use docker hub, an openly available container registry, for this exercise.
Follow the given steps:

1. Login to the docker hub

Type the following command and enter your username and password for the
docker hub. To create this username and password, get yourself registered at
https://hub.docker.com/signup.

$ docker login
Refer to Figure 1.3:

Login with yvour Docker ID to push and pull images from Docker Hub. If you don't have a [
Username: swapnildubeyl984

Password:

WARNING! Your password will be stored unencrypted in /home/sdubey7/.docker/config. json.

Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded

Figure 1.3: Docker hub Login

2. Build an application image

In this step, you will build the docker image in local. We will discuss how a
docker file looks in the next step.

$ docker build -t demo-python-app:1.0.1 .
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Once the preceding command completes, run the following command if
your docker image is present locally:

$ docker images|grep 'demo-python'

Build multistage images
It is time to investigate the docker file you used to create an image.

FROM python

# Creating Application Source Code Directory

RUN mkdir -p /usr/src/app

# Setting Home Directory for containers

WORKDIR /usr/src/app

# Installing Python dependencies
COPY requirements.txt /usr/src/app/

RUN pip install --no-cache-dir -r requirements.txt

# Copying src code to Container

COPY . /usr/src/app

# Application Environment variables
#ENV APP_ENV development
ENV PORT 8080

# Exposing Ports
EXPOSE $PORT

# Setting Persistent data
VOLUME ["/app-data"]

# Running Python Application
CMD gunicorn -b :$PORT -c gunicorn.conf.py main:app

In the preceding file, you can see the first line, FROM python, meaning that
this image, when built, will first pull the Python image and then prepare a
new image by adding the following details in the Dockerfile.
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This is known as multistage pipelines, and there are obvious advantages.
You can build an image once and then reuse and share the same image as
sub images in across multiple images. For example, in your Enterprise,
there could be one hardened image by security team for Python, and all
teams could use the hardened Python image and use it to create application
code specific image.. This makes the Dockerfile creation simple and more
straightforward.

Also, note the constructs like RUN, COPY, EXPOSE, and so on. These are docker-
specific constructs and have a special meaning in the docker container
runtime environment.

4. Store images in registries

The image demo-python-app:1.0.1, which you built in step 2, is still
available locally, meaning that no other machine can create a container using
that image. For this, you have to share the image with the container registry.
You will be using the docker hub for this. Once you have an account created
and have logged in to docker hub, you can trigger the following two-step
process to push the image:

i.  Step 1: Tag the image

$ docker tag demo-python-app:1.0.1 <dockerhub-username>/
demo-python-app-dockerhub:1.0.

ii.  Step 2: Push the image to docker hub

$ docker push <dockerhub-username>/demo-python-app-
dockerhub:1.0.

On docker hub web page, you can see if the image is pushed or not. Refer to

Figure 1.4:
® / demo-python-app-dockerhub Docker commands Public View
Description To push a new tag to this repository,
Demo application  # docker push /demo-python-app-
dockerhub:tagname
(O Last pushed: 5 minutes ago
Tags and scans ) VULNERABILITY SCANNING - DISABLED Automated Builds

Enable

This repository contains 1 tagi(s). Manually pushing images to Hub? Connect your account to GitHub or
Bitbucket to automatically build and tag new images whenever your code
Tag 0s Type Pulled Pushed is updated, so you can focus your time on creating.

1.01 A Image - 5 minutes ago Available with Pro, Team and Business subscriptions.

seeall Go to Advanced Image Management Upgrade Learn more

Figure 1.4: Docker Hub Repo
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5. Container runtime

The docker image pushed to the docker hub can now be pulled into any
machine having docker installed. The pull of the image will make a copy
from the remote repo to the local machine, and then the docker image can
be executed.

$ docker pull <dockerhub-username>/demo-python-app-
dockerhub:1.0.1

$ docker images| grep "demo-python"

The preceding docker image command will now show two results: the
local one, that is, demo-python-app:1.0.1, and demo-python-app-
dockerhub:1.0.1. Refer to Figure 1.5:

aafel72b02ee 24 minutes ago 951MB

aafel72b02ee 24 minutes ago 951MB

Figure 1.5: Local Docker Images

As the last step, you can create a docker container using the following
command:

$ docker run -d -p 8080:8080 <dockerhub-username>/demo-python-app-
dockerhub:1.0.1

Open the web browser and feed the URL localhost :8080; a web page will open,
and this will show that the container is created and exposed at port 8080 of the
machine.

Introduction to Kubernetes

Kubernetes is an open-source container orchestrator for efficiently deploying and
hosting containerized applications. Google initially developed it as an internal
project to host scalable distributed applications reliably. In modern software systems,
services are delivered over the network via APIs. The hosting and running of the
APIs generally happen over multiple machines present geographically at the same
or different locations. Also, since the data is growing every day, the scalability aspect
of such services has started taking center stage, with no point in service-delivering
responses breaching Service Level Agreements (SLA). Your application should use
the optimal infrastructure to keep costs in check. Both the aspects of applications,
that is, being scalable (up and down) and distributed, make sense only when the
system is reliable. An algorithm running on such modern systems should produce
the same results in multiple runs without any dependence on where and how the
application is hosted.
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Since Kubernetes was made open-source in 2014, it has become one of the most
popular open-source projects in the world. Kubernetes APIs have become the de facto
standard for building cloud-native applications. Kubernetes is a managed offering
from almost all cloud providers: Google cloud platform, Amazon Web Services,
and Microsoft Azure. Kubernetes, also known as K8S, automates containerized
applications' deployment, scaling, and management. It provides planet-scale
infra; if you keep supplying physical infrastructure, Kubernetes can scale up your
application to significant levels. The larger the deployment, the greater the chance of
parts of the infrastructure failing; Kubernetes has auto-healing properties, enabling
automated recovery from failures.

Kubernetes also has some extremely mature features apart from the ones already
mentioned. A few of the handy ones are as follows:

e Capability to scale: The application deployed in Kubernetes can scale
horizontally (scaling up and down) and vertically (scaling in and out).

e Security: Kubernetes provides a platform for secured communications
between multiple services. The extent depends on the type of application,
for example, applying authentication and authorization on the services
accepting internet data (external, front facing) to user authentication and
consent to all services (internal and external)

e Extensibility: This refers to adding more features to the Kubernetes cluster
without impacting the already present applications. For example, you can
integrate plugins that will produce metrics about your application that are
needed to perform SRE activities.

e Support for batch executions: We have only discussed services so far;
however, Kubernetes provides support for executing batch jobs and also
provides the ability to trigger cron jobs.

¢ Rollbacks and roll-outs: Kubernetes support features to roll back and roll
out your application in stages, meaning that you can choose to deploy a new
version of the service by just allowing it to serve 10% of users and then allow
it for all.

e Storage and config management: Kubernetes provides the capability to use
various storage solutions — SSD or HDD, Google Cloud Storage, AWS S3, or
Azure Storage. In addition, Kubernetes has support for effectively managing
general and secret configurations.

In the currentbook, you will see the preceding features being described and explained
in depth, with special attention to security aspects and production readiness of the
Kubernetes platform and applications.
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Kubernetes architecture

Kubernetes is a complete and competent framework for modern workloads, but
it is also very complex. When they read the documentation, many people get
overwhelmed and get lost in the amount of information it provides. In this section,
you will see the architecture of Kubernetes, and we will talk about the basics of the
architecture, its components, and the roles each component plays in how Kubernetes
does what it does.

Kubernetes follows a master-worker architecture. Consider Figure 1.6; you will
see components - worker nodes and master nodes. As the name suggests, worker
nodes are where actual work happens, and the master node is where we control and
synchronize the working between worker nodes:

KUBERNETES CLUSTER.
1
o
. CLI, APl & DashBoard
. »  MASTER NODE

2 /I\.

WORKER NODE 1

WORKER NODE 2 WORKER MODE 3

Figure 1.6: Kubernetes 101

Refer to the numerical labeling in Figure 1.6 with the following corresponding
numerical explanations:

1. Label 1 represents a complete Kubernetes cluster. A Kubernetes cluster is a
collection of physical machines/nodes or virtual machines, with an official
limit of a max of 5000 nodes. The control plane (Master) and workload
execution plane (Worker) are deployed on these nodes. The expectation from
the nodes comes from expectations from the Kubernetes components. For
example, your master machine could only be a Linux box, while the worker
nodes can be windows boxes too.

a. Kubernetes is responsible for identifying and keeping track of which
nodes are available in the cluster. Still, Kubernetes does not manage
the node, which includes things like managing the file system,
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updating the operating system security patches, and so on, inside
the node. The management of the node becomes the responsibility of
a separate components/team.

2. Any system/entity or person (developer or admin) can interact with the
Kubernetes cluster via CLI, APIs, and Dashboard. All these interactions
happen only via Master nodes.

3. The master node manages and controls the Kubernetes cluster and is the
entry point for all admin tasks. Since the master node is responsible for
maintaining the entire infrastructure of the Kubernetes cluster, when master
nodes are offline or degraded, the cluster ceases to be a cluster. The nodes are
just a bunch of ad hoc nodes for the period, and the cluster does not respond
to the creation of new resources(pods), node failures, and so on. No new
workloads can be launched on the cluster.

4. Worker nodes are the workhorses of the cluster, which perform the actual
processing of data. They only take instructions from the Master and revert to
the Master. If they do not receive any signal from the Master, they will keep
waiting for the following instructions. For example, in the scenario of Master
being down, the worker node will finish the work running on them and
will keep waiting. If a worker node is down, it results in the low processing
capability of the cluster.

5. Kubernetes Pods host workloads. A workload and all its supporting needs,
like exposing ports, infrastructure and other networking requirements, and
so on, are specified in a YAML file. This file is used to spin up a container or
multiple containers in a Pod. Since you define one YAML per pod and each
pod can have multiple containers, all containers share the resources inside
a pod. For example, if your workload creates two containers inside the pod
and your YAML file assigns them, both pods will share this one core of the
CPU.

6. Containers represent the containerized version of your application code.
Containers inside one pod are co-located and co-scheduled to run on the
same Kubernetes work node. Kubernetes support multiple container runtime
environments like containerd, CRI-O, docker, and several others. You will
see docker being used throughout the book.

With the preceding behavioral concepts in mind, let us look at the components and
internal working of the Master and worker nodes.

Kubernetes Master

Kubernetes Master, or the control plane of the Kubernetes cluster comes to life when
a Kubernetes cluster is created and dies when a cluster is deleted. Generally, the



