Hands-On
Kubernetes,
Service Mesh and
Zero-Trust

Build and manage secure applications
using Kubernetes and Istio

Swapnil Dubey
Mandar J. Kulkarni

www.bpbonline.com

ii
Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork

119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-675

www.bpbonline.com

i1l

Dedicated to

To my ‘partners in Crime’
(since childhood) : Sneha, Shivam & Shubhanshu
— Swapnil Dubey

sk k Kk k

My beloved wife:
Tejashri
&

My Daughters Rucha and Shreya
— Mandar |. Kulkarni

iv

About the Authors

Swapnil Dubey has been working as an Architect at SLB since 2019, with a IT
total experience of more that 14 years with enterpireses like Snapdeal, Pubmatic
and Schlumberger. His current role at SLB involves designing and guiding
technical teams implement data intensive workloads using Microservices and
distributing computing architectural patterns hosted on public cloud (GCP &
Azure) and On premise.

In the past, he has served as Trainers for BigData technologies like Hadoop
and Spark (Certified Trainer with Cloudera), and facilitated approximately
20 batches of people to kickstart their journey of Distributed computing.
Moreover, he has spoken in multiple national & international conferences,
where the key topic to talk was about containers and their management using
Kubernetes.

He completed his Masters from BITS Pilani in Data Analytics, and also holds
Professional Architect Certifications in GCP and Microsoft Azure. This is his
second book. Before this one, he has authored a book Scaling Google Cloud
Platform with BPB Publications.

Mandar J. Kulkarni has been working in software development and design
for more than 16 years, and has played multiple roles such as Software
Engineer, Senior Software Engineer, Technical Leader, Project manager and
Software Architect. Currently, he is an architect in SLB building data products
on top of Open Subsurface Data Universe (OSDU) Data Platform. He has also
contributed to OSDU Data Platform with multiple architectural modifications
and improvements.

He has acquired Professional Cloud Architect certification from Google Cloud
and also holds a Masters degree from BITS Pilani in Software Engineering. He
has been a technical blogger for a while and this is first foray into writing a
complete book.

About the Reviewer

Mahesh Chandrashekhar Erande has played the software architect role in the
healthcare, telecom, and energy domains. For the past 19 years, he did end-to-
end solution designing, programming and operationally supporting scalable

enterprise apps. He is currently constructing the poly-cloud products for the
SLB.

vi

Acknowledgements

QO Any accomplishment requires the effort of many people, and this work is no

different. First and foremost, I would like to thank my family, (especially my
father figure, mentor and guardian , Mr. N.R. Tiwari and My Mother — Sushma
& Wife - Vartika) for continuously encouraging and supporting me in writing
the book. I could have never completed this book without their support. Big
thanks to the Energy which keeps pushing me everyday for my side hustles
(apart from work).

I gratefully acknowledge Mr. Mahesh Erande for his kind technical scrutiny
of this book. My sincere thanks to the co author of the book, Mr. Mandar J.
Kulkarni, whose constant enthusiasm and quality inspired me to bring out my
best.

My gratitude also goes to the team at BPB Publication for being supportive and
patient during the editorial review of the book. A big thank you to SLB team
for allowing me do this work.

- Swapnil Dubey

This book would not have been possible without continuous support from
my family and friends. I thank them for their unconditional support and
encouragement throughout this book's writing, especially my wife Tejashri
and my brother Kedar.

I am also grateful to the BPB Publications team for giving me the opportunity to
author the book, and also for their support, guidance and expertise in making
this book a reality. The participation and collaboration of reviewers, technical
experts, and editors from team BPB has been very valuable for me as well as
the book.

Collaborating with author Mr. Swapnil Dubey has been an invaluable
experience, and the learnings I gained, will guide me forever. I also want to
thank Mr. Mahesh Erande for his technical reviews and feedback on the book
content.

vii

I would also like to acknowledge SLB for giving me the opportunities to work
on the interesting technologies during my career and also for allowing me to
write the book.

Finally, I would like to thank all the readers who keep taking interest in reading
technical books. The appreciation and feedback from the readers is the biggest
motivation for authors to create better content.

- Mandar |. Kulkarni

viii

Preface

The objective of this book is to streamline the creating and operating workloads
on Kubernetes. This book will guide and train software teams to run Kubernetes
clusters directly (with or without EKS/GKS), use API gateways in production, and
utilise Istio Service mesh, thereby having smooth, agile, and error-free delivery of
business applications.

The reader masters the use of service mesh and Kubernetes, by delving into
complexities and getting used to the best practices of these tools/approaches.
While one runs hundreds of microservices and Kubernetes clusters, security is
highly prone to be breached and that is where zero trust architecture would be
kept in mind throughout the software development cycle.

The book also makes use of some of the great observability tools to provide a robust,
yet clean set of monitoring metrics such as Latency, traffic, errors, and saturation to
get a single performance dashboard for all microservices. After reading this book,
challenges around application deployment in production, application reliability,
application security and observability will be better understood, managed, and
handled by the audience.

Chapter 1: Docker and Kubernetes 101 - This chapter will introduce the audience
to the basics of Dockers and Kubernetes. In the docker section, the audience
will get concepts to write and push images to container registries. We will give
a walk through of an already developed application and package it in a docker
container. There will be a discussion around practices which induce security
vulnerabilities and their resolution. In the later part of the chapter, the audience
will get introduced to Kubernetes, such as the why, what, and how of Kubernetes,
followed by an in-depth understanding of architecture. There will be discussion
around basic principles of Immutability, declarative and Self-healing way of
assigning infrastructure in Kubernetes cluster.

Chapter 2: PODs - discusses the foundational block of Kubernetes called Pod. The
chapter discusses the lifecycle of the pods along with health checks. The chapter
also explains the resources requirements for Pod such as CPU, Memory as well as
storage required for persisting data, along with security aspects like pod security
standards and admissions.

ix

Chapter 3: HTTP Load Balancing with Ingress - This chapter will discuss concepts
of bringing the data in and out of an application deployed in Kubernetes. Ingress is
a Kubernetes-native way to implement the “virtual hosting” pattern. This chapter
will talk about exposing services deployed in Kubernetes to the outside world.
Al gateways will also be discussed in this chapter taking example of open source
API gateways like Gloo, Tyk and Kong. Apart from discussing the details around
networking, readers will get the feel of security issues and loopholes which should
be taken care of while configuring networking.

Chapter 4: Kubernetes Workload Resources — takes readers towards more practical
examples of using Kubernetes in enterprise applications, by showing hands-on
examples of creating workload resources such as deployments, replicasets, jobs
and daemon sets. The chapter discusses the life cycle of each of these workload
resources and explains which workload resource should be used for which use
case while building scalable applications.

Chapter 5: ConfigMap, Secrets, and Labels - In this chapter, the concept of labels
and secrets will be discussed. Labels can be used to select objects and to find
collections of objects that satisfy certain conditions. In contrast, annotations are
not used to identify and select objects. This chapter will help the audience to in-
depth understanding of Annotations & Labels and strategies around how to use
them effectively in real environments. This chapter will also help you understand
the concepts of config map and a Secret better.

Chapter 6: Configuring Storage with Kubernetes—focuses on storage patterns with
Kubernetes. The chapter discusses Volumes, Persistent volumes and stateful sets
in details followed by a practical example of MongoDB installation. Furthermore,
the chapter discusses disaster recovery of content stored using configured storage
and the extesibility of Kubernetes architecture using container storage interface.

Chapter 7: Introduction to Service Discovery - Service discovery tools help
solve the problem of finding which processes are listening at which addresses
for which services. This chapter audience will get insight about various ways of
discovering service in Kubernetes cluster. This chapter will act as a building block
for section 3, where conceptual discussion will happen around how to achieve
service discovery using Istio. The audience will also get insights into the various
patterns of discovery and registration and the same will be showcased as hands-
on exercises in the chapter.

Chapter 8: Zero Trust Using Kubernetes - This chapter will introduce the audience
to the aspects of modelling and application with Zero trust principles in place. Lot
of security aspects are already discussed in the previous chapters. For example,
in Chapter 3, HTTP Load Balancing With Ingress, we will be talking about POD
security. Similarly in Chapter 4, Kubernetes Worklad Resources, we plan to talk
about security aspects when it comes to creation of networks. This chapter will
give the audience a hands-on insight of how to achieve the aspects of this zero-
trust security model using the individual building blocks discussed in the previous
chapters.

Chapter 9: Monitoring, Logging and Observability - This chapter will talk about
aspects of logging and monitoring of applications deployed in the Kubernetes
cluster. This chapter will further discuss ways to implement basic SRE concepts and
how the observability aspects are supported. Hands on exercises will demonstrate
each of the concepts of logging, monitoring and SRE by enhancing the micro
service application written and developed in earlier chapters.

Chapter 10: Effective Scaling - One of the key advantages of using Microservice
deployed on Kubernetes is the power scaling mechanism. This chapter will help
the audience understand the aspects of scaling in Kubernetes which includes
horizontal & vertical pod scaling. Not only can we configure auto scaling on out
of the box metrics, but also based on custom metric and combination of metrics.
All the hands-on aspects will involve the three micro services which we created
in earlier chapters. One Micro service will be planned to scale horizontally and
vertically. Others will scale based on custom metrics, and third will showcase
scaling based on a combination of two metrics.

Chapter 11: Introduction to Service Mesh and Istio — starts with the basics about
microservices and then talks in details about the what, why and how of the service
mesh concepts. The chapter discusses pros and cons of the service mesh as a
concept and uses Isio as an example. The chapter then discusses Istio architecture,
installation techniques and the customizations of Istio steup.

Chapter 12: Traffic Management Using Istio - is all about how to take the traffic
management logic out of service code into the declarative yamls. The chapter
discusses controlling ingress traffic, egress traffic and gateways. The chapter
introduces Kubernetes’s custom resources like VirtualService, DestinationRule,
ServiceEntry and how to make use of them for achieving traffic management
strategies like canary deployment, blue-green deployment. The chapter also

xi

explains with examples how to implement design patterns like circuit breaking,
timeouts, retries and fault injection using service mesh like Istio. This chapter
introduces and uses a sample application to explain the traffic management
patterns.

Chapter 13: Observability Using Istio — talks about how different open source
observability tools like Kiali, Grafana, Prometheus, Jaeger can be used alongside
Istio to improve the observability. The sample application introduced in earlier
chapters is used here again to show how to manage traffic patterns between
different microservices, how to observe the scalability, how to monitor and search
the logs, and how and where to view and search different metrics. The chapter also
explains with examples how to use distributed tracing to debug latency issues in
the application.

Chapter 14: Securing Your Services Using Istio - revolves around identity
management, authorization and authentication using the built-in support that
Istio provides. The chapter briefly introduces what is secure communication and
then explains how Istio helps with Certificate management to make the intra-
cluster communication secure by default. The chapter builds on top of the existing
sample application used in previous chapters to explain concepts like permissive
mode of Istio, Secure naming, Peer authentication, Service authorization, End-
user authorization and so on. The chapter concludes by bringing it all together by
explaining security architecture of Istio.

xii

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/l114igmh

The code bundle for the book 1is also hosted on GitHub at
https://github.com/bpbpublications/Hands-On-Kubernetes-Service-Mesh-and-
Zero-Trust. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications” Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical

articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

xiii

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions. We at
BPB can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

xiv

Table of Contents

1. Docker and Kubernetes 101 1
INErOAUCHON ..o 1
SHUCHUT ...ttt 2
ODJECHIVES ..uvviiiettetttt s 2
Introduction to DOCKETccovviiiiiiiiiiii e 2
Introduction to Kubernetes ... 8

Kubernetes arcHiteCtirecovvvvivieiviciiiiiiiiiiiiicicsssccese s 10
Kubernetes MASLETc.couovvviiuiiiiiiiiiiiicicicitiiiis i 11
Kubernetes WOTKercovvvviiuiueiciiiiiciciciciiiic s 14

Principles of immutability, declarative and self-healingc.cccococuue... 16
Principle of immutabilityccccvvviiiiiiiiiiiiiiiicce 16
Declarative CORfIQUIALIONSccuvviviiiiiiiiiiiiiiciiiiic e 16
Self-Nealing SYSEEIIScovviviuiiiiiiiiciiiiecice s 17

Installing Kubernetes ..o 17
Installing Kubernetes locally using Minikubecccocvvvvvivnviennnnn, 18
Installing Kubernetes in DOCKercccovveveiviiiniiiiiieiiiieieiiicccinn, 19
Kubernetes Clientcocvvveviiiviiiiiiiincs e 19

Checking the VerSION.cccoviiiiiiiiiicicicieieisicisicicisit s 20

Checking the status of Kubernetes Master Daemonscccccovvvvneurunnnns 20

Listing all worker nodes and describing the worker node..............c.cccccoevvue. 21

Strategies to validate cluster quality ..o 23

Cost-efficiency as measure of UALTLYooveieviiecnieiiiiiiiiiiciies 23
RIQHE TOARS ..ot 24
Request and restrict specifications for pod CPU and memory resources.............. 24
Persistent DOIUIMES ... 24
Data transfer costs and network COSES.........ccovvvviviiiiiiiiiiiicicieeces, 24

Security as a measure Of QUATTEY............cccovviiiiiiiiiiicc s 25

X0

CONCIUSION ottt 25
Points t0 T@MEMDETc.oviieiiiiiiiiicccc e 25
Multiple choice QUESHONS.c.cuviiuiiiieiiiiiiccicicic s 26
ANSTVCTS vttt 26

2. PODS.uucteteeeretstnnnenetesnssssessssesessssssessssssssessssssesssenes 27
INtrOAUCHON ot 27
SHUCEUT@ ..ottt 28
ODJECHIVES ..evviiietetettit s 28
Concept Of POAScoviiiiiiiiiiiicctcci e 29
CRUD operations 0n POdS ...t 30
Creating and running POdScc.covvvvviiviriiiciiiiiiieccicees 30
LISHNG POS ..ottt 31
Deleting POS..........c.ccovueieioiieieiiiiiiieiiiiieieiccsieistvs s 33
ACCESSING PODS ..ottt 34
Accessing via port forwarding...........ccvvvvvivniiniiiiiiiiicecsesiesees 34
Running commands inside PODS USING €XEC........ocovvvrverirevieiiririeiirirninn, 35
ACCESSTNG [0S 1.vvvvvviiiiiiiiiiiiiisiciie e 36
Managing FESOUICESc.ceiereriririiriintiiietee ettt s e eas 36
Resource requests: Minimum and maximum limits to PODs........................ 36
Data PersistenCecouviiiuriieiieieieieieite s 38
Internal: Using data volumes with PODs.............cccooovivivininiiiiiiiicicnnnn, 39
External: Data on remote disks.............ccevvivieiioiviiniiiiiiiiiiiiceiiiicenn, 41
Health Checks ... e 42
SEATEUP PIODE ... 42
LIVCIESS PYODC ...ttt 43
Readiness probe...............covveiviviieioiiiiiiiiiiiieeitcisieee 43
POD SECUIILY .vvieiiiiciciciciiiiciccs sttt eanes 44
Pod Security Standardsccoccevvvvvveioiviieieiiiiiii e, 45

Pod Security AAMISSIONS..........cvveveieviiiiiiiiieieiitcinieetie e 46

xvi

CONCIUSION ottt 47
Points t0 T@MEMDETc.oviieiiiiiiiiicccc e 47
QUESEIONS . cevveeeereeeireeetteeereeetteeetteeeteeeesaeeesaeeesaeeesseeesseeesseeesssessseeessaessseessaessaensseens 47
ANSTVCTS vttt 48

3. HTTP Load Balancing with Ingress 49
INtrOAUCHON ot 49
SHUCEUT@ ..ottt 49
ODJECHIVES ..evviiietetettit s 50
Networking 10T......c.oveiiiiiiiiccr s 50
Configuring KubeproxXycccvvvvvurueueueieinisisieiiieiiiiioiisiiiicscisscisssis e, 53
Configuring container network interfaces.............ccocovvvvvivvvviiieiniiieiennn, 54
Ingress specifications and Ingress controller..........cccoeeeveivninnicncnieiinncnne. 55
Effective INGress USage.........ccoevvuiviiiiniiciiiiciciicitcct s 62
UHTIZING BOSHNATNES ...t 62
UHIZING PALNS ...ttt 63
Advanced INGTeSScueveviuiieieiieiiee s 64
Running and managing multiple Ingress controllersccccovvvvnennnnnn. 64
Ingress and NAMeSPACESc.c.covviiviiiiiiiiiiiiiiiic 64
Path 1e101THIG c..covvvieiviiciccee e 64
SIVING TLS .oiiiiviiiiietceet e 65
Alternate implementations. ... 66
APL GatEWAYS....cuiuiuititiieieieieii e 68
Need for API QALEWAYScoevevevviveieiiieieieiiieieiiie et 68
ROULING TOGUESES ...t 69
Cr0SS-CULEING COMCOTNS c.vvviiviiiiciciiccicis it 69
Translating differert protocolscoeevemeieeieiieieiciciiiiiiiiccce e 69
Securing NEtWOIK.......cceiiiiiiiiiiiiiccccc s 69
Securing via network PoliCiescvvvvvveiviviiiniiiiiiiiiiiieeeice e, 69

Securing via third-party 100lcccvvvvvveeieieiiiiiiiiiiiicicceee e, 70

Best practices for securing a Networkcoeeveveeeiieieiceince 71
CONCIUSION ottt 72
Points t0 TeMEMDETcviviiieieiicie s 72
Multiple choice qUESHIONS.........cviviuieinricirr s 73
ANSTVCTS vttt 73
QUESEIONS . cevveeeereeeireeetteeereeetteeetteeeteeeesaeeesaeeesaeeesseeesseeesseeesssessseeessaessseessaessaensseens 73
4. Kubernetes Workload Resourcesccceueeeereveveeerereneanenes 75
INErOAUCHON ..ottt 75
SHUCEUT® ..ottt 76
ODJECHIVES ...ttt e 77
REPLICASELS ..ottt s 77
Designing RepliCASELsc.ccovviviiiiviviviviiiiiiiiiiiiiiiiiiciiicccsss 77
Creating RepliCASets...........covvvevviiveiiiiiiiiiiiiiiieieiicesicteeee s 78
Inspecting ReplicASerls............ccooveveviiieioiiiiieieiiiniieiciiee s 79
Scaling RepliCaSerts...........covvviiiiiiiiniciiiciiiciiiiiiiiciiticc 79
Deleting RepliCaSeLscccovvvvevvieieiviiiiieiiiiiiicieiciesistieeis e 81
DEPLOYIMENLS ...ovviieriereiiiteteieie et 81
Creating deployments ... 82
Managing deploymentscccoovvveveveioieeiiiiiiieiciiee e 83
Updating deployments.............coccoovvviiiiiiiiiiieiieiicsss s 83
Deployment SHALEGIESccoovviuiiiiiieieiricisieisieiiiiiiiiiiciiiccs s 86
Monitoring deployment StAtUSc.ccovvviieniiiiieiiiiiciiiiics 86
Deleting deploymentscccoovevueveiieieieiiinisiiiisieicisesteesiee s 87
DaemONSELSoovviiitt e 87
Creating DAemONSELScoccvovvvevevieieiitiiiieiiiieic e 87
Restricting DaemonSets to Specific HOAescccovvvvviiviciniicniiniininnnnn, 89
Updating DaemonSets...........covovvvvveciiioiiiiininiiiiiiiieissiis s 90
Deleting DaemonSetsc.ocwevevvieieiiieieiitiieisiiiicie et 91

KUDEINELES JODS...cvicvietiiieticiieee ittt et sre st ree e e esressessae e ssasssassessessanses 92

xviii

JODS e ettt 92

JOU PALLETTIS ..o 94
Pod and container failurescccocvvvvvvvivnicivniniiiiiiiicicccs 94
Cleaning up finished jobs automaticallly................c.cccovviviiiviiiniiiiiiiiiiiinns 94
CHOMJODS ..ottt 95
CONCIUSION ottt 96
Points to remMemDET ... 97
(QUESEIONS 1. eveeeeiieeiie et eeteeetteeetteeette e tae e saeeesaeeesaeeesseeesseeessaesssaessaaassasssanssaesseans 98
ANSWETS vttt 98

5. ConfigMap, Secrets, and Labels 99
INtrOdUCHON ...ttt 99
SHUCHUT ...t 100
ODJECHIVES ..evvititet e 100
CONFAGMAP o.vviiiii e 100
Creating COnfigMapccovvvvvviivieiiiiiiiiisiiict e 102
Consuming CoNfIgMAPS..........ccccuvviviviuieiiieieieisieisieisieieieset e 104
Consume ConfigMap in the environment variablescccoiviiinnnnnn, 105

Set command-line arguments with CONfigMapcccevvivviviiiciicinnne, 106
Consuming ConfigMap via volume plugin ..o, 107

SOCIOLS ..ottt 109
Creating SECTELScvvviviiiiiiiiiiiiiiiiice e 109
CONSUMING SECTLSvovvvvvivieiiieieietiee et 111
Consuming Secrets mounted as VOIUIMEc.cccvviviniiiiiiiciiiiceccs 111
Consuming Secrets as environment VAriables................cccvvivviviiiciicniinnnnn, 112

Private docker 1egISITIEScovvviviiiiviiiiniciieci e 112
Managing ConfigMaps and Secretsccceeuveeeieeniieieinieeieeesenes 113
LESHILG c.vvvvviiiicccici et 113
CTOALING v.vovvvveeete e 114

UPAALITLG .ottt 114

xix

Applying and modifying labels..........coooveiemiiii 115
Labels SElectors ... 117
Equality-based Selectorcccovvviiiviiiiiiniiiiiiiciccciicisicec s 117
Set-based SCLeCtOTS............ccvvviniiiiiiiiiiiiciciccci 118
Role of labels in Kubernetes architeCture..............c.ococvvvvvvviiiiiiinineninn, 118
Defining annotations.........ccccevninicciiiniicccccc e 119
CONCIUSION ...ttt esas 120
Points to remMemDbercccccvviiiiiiiiiiiiii e 120
(QUESEIONS v cevveeereeetreeetreeereeetteeeteeeetaeeesaeeesaeeesseeesseeesseeesseeesseeesseeesssesssseesseeesssennnes 120
ANSWETS .ot 121

6. Configuring Storage with Kubernetesceeuerercuencnnne 123
INtrOdUCHON ...t 123
SHUCEULE ..t 124
ODJECHIVES ...ttt 124
Storage provisioning in Kubernetes...........cccccoouvivrinininiinnnininnnnns 124
VOIUIES. ...ttt 124
Persistent Volumes and Persistent Volume claimscoccvvvvenienninnn. 125
SEOTAGE CLASS ... 130
Using StorageClass for dynamic provisioningc.ccveveeervvinreriineienns 132
StAtefULSELS....cu vt 133
Properties of StatefulSets.............cccvvuvivivvvnivnviiniiiiiiiiiiccicccas 133
Volume claim templates..............cooovvvvvnvvicniviiiiiiiiiiiciicccees 137
Headless SCrviCeccovvvvvviiiiiiiiiiiiciicicicicciccctsis e 137
Installing MongoDB on Kubernetes using StatefulSetscccoueveienee 138
DiSaSter TECOVETY ...vvuiuiiiiiieiiieieieieie et 140
Container storage interface ... 141
CONCIUSION ..ottt 142
Points tO FEMEMDETc.cuiuimiiiiiiiiiiiii s 142
(QUESEIONS . evveeeiieeiieeeieeeteeetteeeteeetaeeetaeeetaeeeaaeeesseesssseesseaessaessseeessaessnsessseesnssennnes 143

ATISTUCTS ittt ettt ee ettt e s e e st e e e e e s ettt e e s s s s saatesesenas 143

XX

7. Introduction to Service Discovery 145
INtrOdUCHON ... 145
SHUCHUT ...t 145
ODJECHIVES ..etvieeiettett s 146
What is service diSCOVEIY? ...ccuviuiiiuiiiiiiiiiiiiciiicicieisicsiesssesssesssesssessans 146

Client-side disCOVETY PALETTL.........ccvviuiiiiiiiiciciiiciiiiicisiicici s 148
Server-side diSCOVEIY PALLETTLcuvvevverviveiiiieieiiiieiece s 150
SeIVICE TOEISIIY .euuieieiieieieictctcie et s 151
Registration patterns ... 151
Self-reQistration PAttercovevvviveveieiiiiniiieiiiieie e 152
Third-party 1eQiStrAtiON..........ccovvevivieieieicinieieiice e 152
Service discovery in Kubernetes...........cccooovvininiiiiininniiieccccns 153
Service diSCOVEry USING CECvvvvvieiieieiiiieieiiie e 153
Service discovery in Kubernetes via Kubeproxy and DNSccocoou... 157
SEIVICE OBJECES.....ovvviiiiiiiiiiiicc s 159

DINS..oiiiiiiiiii 160
ReAAINeSS CHECKS ...t 160
Advance details.........cociiiiiiiiiii e 161
ERAPOINES ..ot 161
Manual service diSCOVEIYovvvovuiveiiiiieieiiiiiieieiiiie e 163
Cluster IP environment variables.................ccccccvvivvivininiviininniniiciciiiinn, 164
Kubeproxy and cluster IPs..............coovvivveveroioiiiieiiiieieiisiceieeiiseiie, 164
CONCIUSION ...ttt esas 165
Points tO FEMEMDETc.cuivimiiiiiiiiiiii s 166
(QUESEIONS c.evveeiieeeie et eeteeete e teeetaeeetaeeesaeeeaseeesaeesssseesseaessaessseesssaessnsesssaesnssennnes 166
ANSWETS .ot 167

8. Zero Trust Using Kubernetes...........coeevvriicirusesrerercsccsnenenens 169
INtrOdUCHON ...ttt 169

SETUCEULC ettt ettt e e eee et et e ee s e saasaeeeesessanssseeeesessnsssesessssssnnssessssssnnnnns 170

xxi

ODJECHIVES ..evviieittet e 170
Kubernetes security challenges ... 171
Role-based access control (RBAQ).....c.ooieeieeerieeeeeeeeeeeeeeeeeeseeeeeeeeeseeeeneenees 173
JACTEIEY oo 173
Role and role bindingsc.cceueieueveiiinieiiii 174
Managing RBAC ...t 177
AgQQregating ClUSLEr TOLES...........covvveveviviiiiciciiieicicicieiee s 178
User groups for Dindingscccoveevevieieieiieessiiinieieisiis e 179
Introduction to Zero Trust Architecture ..o, 180
Recommendations for Kubernetes Pod SeCUTILYcccovuvvevviieieriinierarinns 182
Recommendations for Kubernetes network securitycocoevevvvevniernnes 185
Recommendations for authentication and authorizationc.ce.c.... 186
Recommendations for auditing and threat detection.................c.cccoevevvane. 187
Recommendation for application security practicescocvvvvveuvernnnnn. 187
Zero trust in Kubernetes...........oiiiie 188
Identity-based service to service accesses and communication..................... 188
Include secret and certificate management and hardened Kubernetes encryption..... 189
Enable observability with audits and [0gQINgc.cccccvvviviviviiiicniiiininins 190
CONCIUSION ..ttt 191
Points tO TeMEMDETc.cuiviiiiiiiiiiii s 192
QQUESEIONS v cevveeereeeireeereeereeetteeeteeeetaeeesaeeesaeeesseeesseeesseeesseeessaeesseeesssesssseesseensssennnes 192
ANSTVTS wvvvviiiiieieietic e 193

9. Monitoring, Logging and Observability 195
INtrOAUCHON oot 195
SHUCHUT@ ottt 196
ODJECHIVES ..etvteitttet e 196
Kubernetes observability deep dive ..o 197
Selecting metrics for SLISooevvvvveieiiiiiiisiiiieieicieeee s 199

SEHING SLO ..ottt 200

xxii

Tracking error BUAGELScooevvevvvieieiiiiiieiiiee 200
Creating Alertscovevevoiiiieioiiieisiciiieie s 201
Probes and uptinme checksccccevvvviviiiiniiiiiiiiiiiiiiiccse 202
Pillars of Kubernetes observabilitycccocoeeveieiieieiniiicicee 204
Challenges in 0bServabilityccceuiieeirviriniiniiiiics e 205
Exploring metrics using Prometheus and Grafana..........c.cccececevccencucecnen. 206
Installing Prometheus and Grafang...............ccocooeveeviviieeioiiiiiiiiineiinns 208
Pushing custom metrics to Prometheusc.ccocovvviecnvviiicinniinnnnnnn, 211
Creating dashboard on the metrics using Grafand............cocovvvvvevivevncnnne. 213
Logging and tracingc.ccceeeeueveiiurieinieeieiscee e 214
Logging using FIUENEdcooovvvvivivviiiiiiiiiiiiciiieicictc 215
Tracing with Open Telemetry USING JACETcccccvvvvivivviviviiiiiiiiiriiiiinin, 217
Defining a typical SRE Processccccceueueieiriviniiiniiccnicnceeiceieeseneenes 220
Responsibilities 0f SRE.........ccoiiieieiiiieiicci s 221
Incident MANAGEMENEccooveviiiiiiiiiiiiiiiiisiciecceei s 222
Playbook MAIRLENATICecccovvveviveiiieieieiiieieisice s 223
DFIIIS oottt 223
Selecting monitoring, metrics and visualization toolscccecevuvieiriinnes 224
CONCIUSION ..ttt 225
Points tO TeMEMDETc.cuiviiiiiiiiiiii s 225
QQUESEIONS v cevveeereeeireeereeereeetteeeteeeetaeeesaeeesaeeesseeesseeesseeesseeessaeesseeesssesssseesseensssennnes 226
ANSTVTS wvvvviiiiieieietic e 226

10. Effective Scaling 227
INtrOAUCHON oot 227
SHUCHUT@ ottt 228
ODJECHIVES ..etvteitttet e 228
Needs of scaling microservices individuallyccccceeiriiivnninnnnininnnns 228
Principles of SCAlNG.......cecvveueriiicieieiiet s 229

Challenges of SCAliNG.........cceueuruimimrinriciie s 230

Introduction to auto SCAlNGccoveveveieueieiiiei e 231
Types of scaling in K8s........couoveveviiiiieiiiiccc 232
Horizontal pod SCALING..........cccccvvvviviviiiiiiiiiiiiiiiiiicic s 233
Metric threshold definition..........ccocvvvvviviniiiniiiiciies e, 237
Limitations of HPA ..o 239

Vertical pod SCAITNG............ccvvvivviieiniiiiiiiiiiiiiciiictcics e 239
Cluster AULOSCALINGc.cvovveiveveriiiiisiciieieieiiee s 242
Standard metric SCAliNng.........c..oovvvvvvvvieeiiiiiieiiiiee e 244
Custom Metric SCAlINGcccovvvviiiiiiiciiiciciiciicisieicieieis e 247
Best practices of SCalingcccocoeueveiiueieiiiiieieic e 249
CONCIUSION ..ttt 250
Points t0 reMeMDETcueviuivriiiciicc s 250
(QUESEIONS c.evveeiieeeie et eeteeete e teeetaeeetaeeesaeeeaseeesaeesssseesseaessaessseesssaessnsesssaesnssennnes 251
ATISTICTS cvviiviiit ettt 251

11. Introduction to Service Mesh and Istio.........ccceuveerereuvencnenees 253
INtrOAUCHON .ottt s 253
SHUCHUT@ ..ttt 254
ODJECHIVES ...ttt 254
Why do you need a Service Mesh? ... 254
SErVICE AISCOVETY ovvvviiviveiiiiieieiicieie et 256
Load balancing the traffic.........ccocvvvviviivcciiiiciiiiiiiiiicecccs, 256
Monitoring the traffic between Services...........ccouvviviviviiivinieiiesieiaienas 256
COlleCting MELTICSvvvvveveviiiieiiiieieictciee e 256
Recovering from failure...............cccvvvvvivivicniiniiiiiiiiicsccccesess 256
What is @ Service MESh?ccccvvceuiiieeininiiicreiieeeecerenseecsessaeeeseesesenens 257
WRAL 18 TSHO? coeviveviiieciciireeictecetteereteeaacte et s ettt sesssaeaeseaees 260
Istio ArchiteCture.........cuvuiviiiiiiiicc e 261
Data plane..............oovvvviiiniiieiiiiiiiitiiic s 262

COMETOL PLANIE ... 263

xXX10

INStalling IStO...vcueveiieetcteiiete s 263
Installation using iStiOCH...........ccovvvevevoveiieiiiciieieiiiiece s 264
Cost of using a Service Meshccccuviiiiininciiiiiniiciiiccicciccieiceieaes 267
Data plane performance and resource CONSUMPHON..........cocovveveveriieviieininnnes 267
Control plane performance and resource CONSUMPHIONcocvevevvvervvnnennns 267
Customizing the IStO SEtUP ...ccvvvviucuririciiiicciiiccrcccee e 268
CONCIUSION ...ttt esas 269
Points to remMemDbercccccvviiiiiiiiiiiiii e 270
(QUESEIONS v cevveeereeetreeetreeereeetteeeteeeetaeeesaeeesaeeesseeesseeesseeesseeesseeesseeesssesssseesseeesssennnes 270
ANSWETS .ot 270

12. Traffic Management Using Istio 273
INErOAUCHON .ot 273
SHUCEULE ... 274
ODJECHIVES ..etvicttttet e 274
Traffic management via gateways........ccoeeeivinirieiciciiniciciccecen 274
Virtual service and destination 1ulecccoovvvviviiiiccinicsseiena, 276
Controlling Ingress and Egress traffic ..., 279
Shifting traffic DEtWEEN VErSIONSccccueeeuvuevieciieeniienieeneeeneeeneeeneaeneaes 280
Injecting faults for teStNgGcceveueveiieiece 284
Timeouts and retries ... 286
Circuit breaking ..o 288
CONCIUSION ...ttt esas 290
Points to remMemDberccccvviiiiiiiiiiiiiici e 291
QQUESEIONS v cevveeereeeireeeteeereeeteeeeteeeetaeeesaeeesaeeeaseeesseeesseeesseaesseessseeesseeesssessssensssennnes 291
ANSWETS .ottt 291

13. Observability Using Istio 293
INErOAUCHON .ot 293
SHUCEULE ... 293

ODJECHIVES ...vevivtcttitctc s 294

XX0

Understanding the telemetry flow ..., 294
Sample application and proxXy logs.......cceceuveuererriieininiiieieiieeeees 295
Visualizing Service Mesh With Kialicccceueveuierieuncicincieieeieeireeneenenns 297
Querying Istio Metrics with Prometheus..........cccocuveeriiniiincincnicicnnn, 303
Monitoring dashboards with Grafana...........ccccceevvevcnincncnceeccnns 305
Distributed tracingccoeeeieiviiiiiniciinic 308
CONCIUSION ...ttt esas 313
Points to remMemDbercccccvviiiiiiiiiiiiii e 314
(QUESEIONS v cevveeereeetreeetreeereeetteeeteeeetaeeesaeeesaeeesseeesseeesseeesseeesseeesseeesssesssseesseeesssennnes 314
ANSWETS .ot 315

14. Securing Your Services UsINg ISHO......uuiirimnriririiiininncsisiisisssesesicsssnssssesenen 317
INtrOdUCHON ... 317
SHUCHUT ...t 318
ODJECHIVES ...ttt 318
Identity Management With ISHO......cccccueueurieunicinicineeeieceeeceeeeeeeeaenne 318
Identity verification in TLS ..o 319
Certificate generation process it ISHO..........covvvevveicsieiiinioiiiiiicciiciiiiines 319
Authentication With IStHO.....ccccccuevriiucieiriccicircccceecrcce e enenaeaes 321
Mutual TLS authentication.............cccoeveviiviiiiiniciiiiciiicccccscescccns 321
SECUTC TAMIIG ..ottt 322
Peer authentication with a sample application...............ccceevvvvvvvvinninnn. 323
Authorization With ISHOcccevrivceereiieciriniicreceeeccreteeceeneeeeeseeeesenens 327
Service AULHOTIZAMIONcucvvveviviiiiciiiciciciciciiic 328
End user authorizationcceovvvmuiueieieieiesisieieieieisiesesesisscsiscsii 332
Security architecture Of IStO........ccccvuviiiiiiiiiciiiiciccccc e 336
CONCIUSION ..ottt 337
Points tO FEMEMDETc.cuiuimiiiiiiiiiiiii s 338
(QUESEIONS c.evveeiieeiie et et eeteee e e etaeeetaeeeaeeeaseeesaeeessseesseaessaeesseesssaessnsesssaennssennnes 338
ANSWETS .ot 338

Index 341-347

CHAPTER 1

Docker and
Kubernetes 101

Introduction

Software architecture evolves with time to cater to the needs of the latest industry
workloads. For example, a few years ago, when the data size was insignificant, we
used to write data processing workloads using multithreading, but the processing
spanned across multiple machines. After that came the wave of Big data, where
distributed computing frameworkslike Hadoop and Spark were used to process huge
volumes of data. We are now witnessing a similar wave. Today’s architects believe
in breaking a use case into more minor services and orchestrating user journeys
by orchestrating the calls to the microservices. Thanks to Google for donating
Kubernetes to the open-source world, such an architecture is now reality. With many
organizations adopting Kubernetes for their infrastructure management, it has
become the platform for orchestrating and managing container-based distributed
applications, both in the cloud and on-premises. No matter what role you play in
the organization, be it a developer, architect, or decision maker, it is imperative to
understand the challenges and features of Kubernetes to design effective workflows
for the organization.

Just like Kubernetes, Docker is one of the most widely used container runtime
environments. Docker has seenits growth over thelastfew years, and while everybody
agreed to the need for a container, there have always been debates about how to
manage the life cycle of a container. The way Kubernetes and docker complement

2 Hands-On Kubernetes, Service Mesh and Zero-Trust

each other’s needs makes them prominent partners for solving container-based
workloads. Docker, the default container runtime engine, makes it easy to package
an executable and push it to a remote registry from where others can later pull it.

In this chapter, you will dive deep into the concepts of Docker and Kubernetes. In the
later chapters, one component discussed at a high level will be picked and discussed
in further detail.

Structure
In this chapter, we will discuss the following topics:
e Introduction to Docker

Introduction to Kubernetes

o Kubernetes architecture

o Principles of immutability, declarative and self-healing

Installing Kubernetes
o Installing Kubernetes locally

o Installing Kubernetes in Docker

Kubernetes client

Strategies to validate cluster quality
o Cost efficient

o Security

Objectives

After studying this chapter, you should understand the basic working of Docker
and Kubernetes. This chapter will also discuss some generic best practices when
deploying docker and Kubernetes, and it will help you understand what factors
you should keep in mind while enhancing reliability, resiliency, and efficiency better
suited to the type of use cases you intend to solve. You will understand the principles
of immutability, declarative, and self-healing, based on which the framework of
Kubernetes stands. This chapter will also help you learn how to evaluate the quality
of your cluster as per the needs of use cases.

Introduction to Docker

Docker is the most widely used container runtime environment; it enables creating
containers and running them on some infrastructure. Some infrastructure could be

Docker and Kubernetes 101 3

physical on-premise nodes or virtual machines on any cloud platform. Developing,
shipping and running applications are key terms when discussing docker. You can
develop applications with each application having its binaries and libraries, and
package them by creating an image. These images could be instantiated by running
them as containers. Each container with separate applications can run on the same
physical or virtual machine without impacting the other.

Consider Figure 1.1, which demonstrates the preceding discussion in detail.

COMTAINER 1 CONTAINER 2 CONTAINER 3
APPLICATION 1 ‘ APPLICATION 2 J APPLICATION 3
T R I CECE R R
APP 1 APP 2 APP 3
DEPENDEMCIES DEPENDENCIES DEPENDENCIES

2 DOCKER CONTAINER RUN TIME ENGINE
o HOST OPERATING SYSTEM{LINLXWINDOWS\MacOS)
4 PHYSICAL NODE OR VIRTAUL MACHINE (GCPVAZUREWWSIONFREM)

Figure 1.1: Docker 101

Refer to the numerical labelling in Figure 1.1 with the following corresponding
numerical explanations:

1.

Multiple applications with completely different technology stacks could be
developed, and their complete dependencies could be packaged as container
images. These container images, when instantiated, become containers.

These container images need a container runtime environment. The container
runtime environment provides all the features to launch, execute, and delete
an image. Multiple runtime environments are available in the industry, such
as runC, containerd, Docker, and Windows Containers.

These container runtime environments run on top of any operating system.
For example, a docker runtime could be installed on Linux, Windows, or
macOS, unless the container runtime is installed successfully and no other
host operating system restrictions apply.

The mentioned setup can run on a physical or virtual machine, and on-
premise machines on public cloud providers like GCP, AWS, or Azure. In fact,

4 Hands-On Kubernetes, Service Mesh and Zero-Trust

the setup can run on a device in which an operating system and Container
Runtime Environment (CRE) could be installed.

With this basic introduction to how containers, container run time, and physical
infrastructure align, let's now look at Docker precisely and understand the game's
rules with Docker as a container runtime environment. Figure 1.2 demonstrates the
docker process of building and using images:

1 DOCKER CLIENT 2 DOCKER HOST 1 REGISTRY
1 az2
a.
DOCKER DAEMON o
docker build F—-—*“"Hj *
b.1 f_\
P | | conTaiNeRS DC:_ICUKBER
docker pull ch -
& cl |‘_ IMAGES
f et / CONTAINER
A =] & REGISTRY
docker run ‘ Gl
—— 312 |
(=)

N

Figure 1.2: Docker Process

Refer to the numerical labelling in Figure 1.2 with the following corresponding
numerical explanations:

1. Docker client is a CLI utility to execute docker commands. In this section,
there are three main commands that everybody should know about.

2. The docker daemon interprets the CLI commands, and the action is
performed.

3. Aregistry is a repo where you build and upload the image. A few standard
registries are docker hub, quay.io, and registries with cloud providers, such
as Google Container registry in the Google cloud platform.

Let us talk about the three docker commands shown in Figure 1.2:

e Docker builds <docker-file-path>: You specify the contents of your
repo in a plaintext file (which are written as per the construct suggested by
Docker). This command creates a local image using the plaintext file(created
above). Look at the arrows labeled with a.

o a.l:Docker build command is interpreted by the docker daemon.

o a.2:Theimage created by the docker build command can be pushed
to container registries.

Docker and Kubernetes 101 5

e Docker pulls <container registry link for image>: This command
pulls the image from the registry to a local machine. Look at the thick solid
lines and follow the flow labelled as b.

o b.1: The docker daemon interprets the docker pull command, and a
pull call is made to a remote repository.

o b.2:Docker image is pulled to a local system.

e Docker run <image name>: Create a container using one of the docker
images available locally in the systems.

o ¢.1:Docker run command interpreted by docker daemon.

o ¢.2: Containers are created using images. Image labeled as one is
used in creating container c1, and image two is used in creating
containers ¢2 and c3.

Now is the time to investigate the complete preceding defined process. For this
exercise, refer to the docker-demo-python-app folder in the code base attached to
this chapter. It is a simple hello world Python application. If you look at the folder's
contents, there are python-related files and a file named Dockerfile.

You will use docker hub, an openly available container registry, for this exercise.
Follow the given steps:

1. Login to the docker hub

Type the following command and enter your username and password for the
docker hub. To create this username and password, get yourself registered at
https://hub.docker.com/signup.

$ docker login
Refer to Figure 1.3:

Login with yvour Docker ID to push and pull images from Docker Hub. If you don't have a [
Username: swapnildubeyl984

Password:

WARNING! Your password will be stored unencrypted in /home/sdubey7/.docker/config. json.

Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded

Figure 1.3: Docker hub Login

2. Build an application image

In this step, you will build the docker image in local. We will discuss how a
docker file looks in the next step.

$ docker build -t demo-python-app:1.0.1 .

Hands-On Kubernetes, Service Mesh and Zero-Trust

Once the preceding command completes, run the following command if
your docker image is present locally:

$ docker images|grep 'demo-python'

Build multistage images
It is time to investigate the docker file you used to create an image.

FROM python

Creating Application Source Code Directory

RUN mkdir -p /usr/src/app

Setting Home Directory for containers

WORKDIR /usr/src/app

Installing Python dependencies
COPY requirements.txt /usr/src/app/

RUN pip install --no-cache-dir -r requirements.txt

Copying src code to Container

COPY . /usr/src/app

Application Environment variables
#ENV APP_ENV development
ENV PORT 8080

Exposing Ports
EXPOSE $PORT

Setting Persistent data
VOLUME ["/app-data"]

Running Python Application
CMD gunicorn -b :$PORT -c gunicorn.conf.py main:app

In the preceding file, you can see the first line, FROM python, meaning that
this image, when built, will first pull the Python image and then prepare a
new image by adding the following details in the Dockerfile.

Docker and Kubernetes 101 7

This is known as multistage pipelines, and there are obvious advantages.
You can build an image once and then reuse and share the same image as
sub images in across multiple images. For example, in your Enterprise,
there could be one hardened image by security team for Python, and all
teams could use the hardened Python image and use it to create application
code specific image.. This makes the Dockerfile creation simple and more
straightforward.

Also, note the constructs like RUN, COPY, EXPOSE, and so on. These are docker-
specific constructs and have a special meaning in the docker container
runtime environment.

4. Store images in registries

The image demo-python-app:1.0.1, which you built in step 2, is still
available locally, meaning that no other machine can create a container using
that image. For this, you have to share the image with the container registry.
You will be using the docker hub for this. Once you have an account created
and have logged in to docker hub, you can trigger the following two-step
process to push the image:

i. Step 1: Tag the image

$ docker tag demo-python-app:1.0.1 <dockerhub-username>/
demo-python-app-dockerhub:1.0.

ii. Step 2: Push the image to docker hub

$ docker push <dockerhub-username>/demo-python-app-
dockerhub:1.0.

On docker hub web page, you can see if the image is pushed or not. Refer to

Figure 1.4:
® / demo-python-app-dockerhub Docker commands Public View
Description To push a new tag to this repository,
Demo application # docker push /demo-python-app-
dockerhub:tagname
(O Last pushed: 5 minutes ago
Tags and scans) VULNERABILITY SCANNING - DISABLED Automated Builds

Enable

This repository contains 1 tagi(s). Manually pushing images to Hub? Connect your account to GitHub or
Bitbucket to automatically build and tag new images whenever your code
Tag 0s Type Pulled Pushed is updated, so you can focus your time on creating.

1.01 A Image - 5 minutes ago Available with Pro, Team and Business subscriptions.

seeall Go to Advanced Image Management Upgrade Learn more

Figure 1.4: Docker Hub Repo

8 Hands-On Kubernetes, Service Mesh and Zero-Trust

5. Container runtime

The docker image pushed to the docker hub can now be pulled into any
machine having docker installed. The pull of the image will make a copy
from the remote repo to the local machine, and then the docker image can
be executed.

$ docker pull <dockerhub-username>/demo-python-app-
dockerhub:1.0.1

$ docker images| grep "demo-python"

The preceding docker image command will now show two results: the
local one, that is, demo-python-app:1.0.1, and demo-python-app-
dockerhub:1.0.1. Refer to Figure 1.5:

aafel72b02ee 24 minutes ago 951MB

aafel72b02ee 24 minutes ago 951MB

Figure 1.5: Local Docker Images

As the last step, you can create a docker container using the following
command:

$ docker run -d -p 8080:8080 <dockerhub-username>/demo-python-app-
dockerhub:1.0.1

Open the web browser and feed the URL localhost :8080; a web page will open,
and this will show that the container is created and exposed at port 8080 of the
machine.

Introduction to Kubernetes

Kubernetes is an open-source container orchestrator for efficiently deploying and
hosting containerized applications. Google initially developed it as an internal
project to host scalable distributed applications reliably. In modern software systems,
services are delivered over the network via APIs. The hosting and running of the
APIs generally happen over multiple machines present geographically at the same
or different locations. Also, since the data is growing every day, the scalability aspect
of such services has started taking center stage, with no point in service-delivering
responses breaching Service Level Agreements (SLA). Your application should use
the optimal infrastructure to keep costs in check. Both the aspects of applications,
that is, being scalable (up and down) and distributed, make sense only when the
system is reliable. An algorithm running on such modern systems should produce
the same results in multiple runs without any dependence on where and how the
application is hosted.

Docker and Kubernetes 101 9

Since Kubernetes was made open-source in 2014, it has become one of the most
popular open-source projects in the world. Kubernetes APIs have become the de facto
standard for building cloud-native applications. Kubernetes is a managed offering
from almost all cloud providers: Google cloud platform, Amazon Web Services,
and Microsoft Azure. Kubernetes, also known as K8S, automates containerized
applications' deployment, scaling, and management. It provides planet-scale
infra; if you keep supplying physical infrastructure, Kubernetes can scale up your
application to significant levels. The larger the deployment, the greater the chance of
parts of the infrastructure failing; Kubernetes has auto-healing properties, enabling
automated recovery from failures.

Kubernetes also has some extremely mature features apart from the ones already
mentioned. A few of the handy ones are as follows:

e Capability to scale: The application deployed in Kubernetes can scale
horizontally (scaling up and down) and vertically (scaling in and out).

e Security: Kubernetes provides a platform for secured communications
between multiple services. The extent depends on the type of application,
for example, applying authentication and authorization on the services
accepting internet data (external, front facing) to user authentication and
consent to all services (internal and external)

e Extensibility: This refers to adding more features to the Kubernetes cluster
without impacting the already present applications. For example, you can
integrate plugins that will produce metrics about your application that are
needed to perform SRE activities.

e Support for batch executions: We have only discussed services so far;
however, Kubernetes provides support for executing batch jobs and also
provides the ability to trigger cron jobs.

¢ Rollbacks and roll-outs: Kubernetes support features to roll back and roll
out your application in stages, meaning that you can choose to deploy a new
version of the service by just allowing it to serve 10% of users and then allow
it for all.

e Storage and config management: Kubernetes provides the capability to use
various storage solutions — SSD or HDD, Google Cloud Storage, AWS S3, or
Azure Storage. In addition, Kubernetes has support for effectively managing
general and secret configurations.

In the currentbook, you will see the preceding features being described and explained
in depth, with special attention to security aspects and production readiness of the
Kubernetes platform and applications.

10 Hands-On Kubernetes, Service Mesh and Zero-Trust

Kubernetes architecture

Kubernetes is a complete and competent framework for modern workloads, but
it is also very complex. When they read the documentation, many people get
overwhelmed and get lost in the amount of information it provides. In this section,
you will see the architecture of Kubernetes, and we will talk about the basics of the
architecture, its components, and the roles each component plays in how Kubernetes
does what it does.

Kubernetes follows a master-worker architecture. Consider Figure 1.6; you will
see components - worker nodes and master nodes. As the name suggests, worker
nodes are where actual work happens, and the master node is where we control and
synchronize the working between worker nodes:

KUBERNETES CLUSTER.
1
o
. CLI, APl & DashBoard
. » MASTER NODE

2 /I\.

WORKER NODE 1

WORKER NODE 2 WORKER MODE 3

Figure 1.6: Kubernetes 101

Refer to the numerical labeling in Figure 1.6 with the following corresponding
numerical explanations:

1. Label 1 represents a complete Kubernetes cluster. A Kubernetes cluster is a
collection of physical machines/nodes or virtual machines, with an official
limit of a max of 5000 nodes. The control plane (Master) and workload
execution plane (Worker) are deployed on these nodes. The expectation from
the nodes comes from expectations from the Kubernetes components. For
example, your master machine could only be a Linux box, while the worker
nodes can be windows boxes too.

a. Kubernetes is responsible for identifying and keeping track of which
nodes are available in the cluster. Still, Kubernetes does not manage
the node, which includes things like managing the file system,

Docker and Kubernetes 101 11

updating the operating system security patches, and so on, inside
the node. The management of the node becomes the responsibility of
a separate components/team.

2. Any system/entity or person (developer or admin) can interact with the
Kubernetes cluster via CLI, APIs, and Dashboard. All these interactions
happen only via Master nodes.

3. The master node manages and controls the Kubernetes cluster and is the
entry point for all admin tasks. Since the master node is responsible for
maintaining the entire infrastructure of the Kubernetes cluster, when master
nodes are offline or degraded, the cluster ceases to be a cluster. The nodes are
just a bunch of ad hoc nodes for the period, and the cluster does not respond
to the creation of new resources(pods), node failures, and so on. No new
workloads can be launched on the cluster.

4. Worker nodes are the workhorses of the cluster, which perform the actual
processing of data. They only take instructions from the Master and revert to
the Master. If they do not receive any signal from the Master, they will keep
waiting for the following instructions. For example, in the scenario of Master
being down, the worker node will finish the work running on them and
will keep waiting. If a worker node is down, it results in the low processing
capability of the cluster.

5. Kubernetes Pods host workloads. A workload and all its supporting needs,
like exposing ports, infrastructure and other networking requirements, and
so on, are specified in a YAML file. This file is used to spin up a container or
multiple containers in a Pod. Since you define one YAML per pod and each
pod can have multiple containers, all containers share the resources inside
a pod. For example, if your workload creates two containers inside the pod
and your YAML file assigns them, both pods will share this one core of the
CPU.

6. Containers represent the containerized version of your application code.
Containers inside one pod are co-located and co-scheduled to run on the
same Kubernetes work node. Kubernetes support multiple container runtime
environments like containerd, CRI-O, docker, and several others. You will
see docker being used throughout the book.

With the preceding behavioral concepts in mind, let us look at the components and
internal working of the Master and worker nodes.

Kubernetes Master

Kubernetes Master, or the control plane of the Kubernetes cluster comes to life when
a Kubernetes cluster is created and dies when a cluster is deleted. Generally, the

