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ROZDZIAŁ 6.  

Przykłady zastosowań 
grafowych sieci neuronowych 

Niniejszy rozdział zostanie poświęcony omówieniu praktycznych zastosowań gra-fowych sieci neuronowych w kontekście rozwiązywania wybranych problemów biznesowych. W każdej kategorii zadań, takich jak klasyfikacja wierzchołków, pre-dykcja połączeń czy klasyfikacja całych grafów, przedstawiony zostanie konkretny problem wraz z odpowiadającym mu zbiorem danych. Dodatkowo zaprezentowane zostanie przykładowe rozwiązanie wraz z jego implementacją. Taki układ treści ma na celu ułatwienie utrwalenia wiedzy teoretycznej oraz zrozumienia architek-tury GNN, omówionych w poprzednich rozdziałach. 
꽅꽆 Ważne: różnice w wynikach 

Biblioteki wykorzystane w przykładzie i dołączonych materiałach korzystają z obliczeń 
opartych na kartach graficznych (CUDA).  

Pomimo zastosowania mechanizmów zapewniania deterministyczności procesu szko-
lenia (m.in. ustawianie ziarna losowego za pomocą biblioteki PyG, deterministyczne 
uczenie w PyTorch Lightning itp.) nie ma gwarancji, że uzyskane wyniki będą za każ-
dym razem identyczne. Różnice mogą wynikać m.in. z wersji używanego sterownika 
CUDA oraz innych systemowych sterowników karty graficznej, kompilacji bibliotek dla 
konkretnego systemu operacyjnego (Linux, Windows, macOS). 

6.1. Klasyfikacja wierzchołków 

6.1.1. Postać formalna Klasyfikacja wierzchołków w grafach to jedno z głównych zagadnień w analizie da-nych strukturalnych, które znajduje zastosowanie w wielu dziedzinach, takich jak sieci społecznościowe, biologia obliczeniowa czy analiza finansowa. Formalnie zadanie to polega na przypisaniu każdemu wierzchołkowi 𝑣௜ ∈ 𝑉 z grafu 𝐺 = ሺ𝑉,𝐸ሻ etykiety 𝑦௜ ∈ 𝒴 spośród zbioru możliwych klas 𝐶. Aby wykonać zadanie klasyfikacji wierzchołków, niezbędne są, oprócz grafu, na-stępujące elementy: 
 zbiór wierzchołków 𝑉 = {𝑣ଵ,𝑣ଶ, … , 𝑣ே}, gdzie 𝑁 =  |𝑉|; 
 zbiór krawędzi 𝐸 ⊆ 𝑉 × 𝑉, które reprezentują relacje między wierzchołkami; 
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 macierz cech 𝑿 ∈ ℝ ே×ௗ, gdzie każdy wiersz 𝑥௜ ∈ ℝௗ  zawiera wektor cech opi-sujących wierzchołek 𝑣௜; 
 zbiór etykiet 𝑌 = {𝑦ଵ,𝑦ଶ, … ,𝑦ே}, gdzie 𝑦௜ ∈ 𝑌 = {1,2, … ,𝐶}. Celem klasyfikacji jest nauczenie modelu: GNN: ሺ𝐺,𝑿ሻ → 𝑌, ሺ45ሻ który przewiduje etykiety dla wszystkich lub wybranych wierzchołków. W przy-padku częściowo nadzorowanego uczenia (ang. semi-supervised learning) etykiety są znane jedynie dla podzbioru wierzchołków V୐  ⊂  V, a zadaniem modelu jest przewidzenie etykiet dla pozostałych 𝑉௎ = 𝑉 ∖ 𝑉௅. Problem ten można formalnie zapisać jako minimalizację funkcji kosztu: ℒ = 1|𝑉௅| ෍ 𝑙𝑜𝑠𝑠ሺGNNሺ𝑣௜;𝐺,𝑿ሻ,𝑦௜ሻ௩೔∈௏ಽ , ሺ46ሻ gdzie: 
 ℒሺ⋅,⋅ሻ to globalna funkcja kosztu (np. entropia krzyżowa); 
 𝑙𝑜𝑠𝑠(. ) to funkcja kosztu dla pojedynczego przykładu uczącego; 
 GNN(𝑣௜;  𝐺,𝑿) to model splotu grafowego dokonujący predykcji klasy dla wierz-chołka 𝑣௜ , 
 𝑦௜ to rzeczywista etykieta przypisana do tego wierzchołka. W przeciwieństwie do klasycznych modeli uczenia maszynowego, grafowe sieci neu-ronowe stanowią efektywne podejście do tego problemu, gdyż wykorzystują za-równo lokalne informacje o sąsiedztwie każdego wierzchołka (struktura grafu), jak i jego cechy. 

6.1.2. Znaczenie problemu i zastosowania Klasyfikacja wierzchołków ma szerokie zastosowania praktyczne. Jednym z najważniejszych jest wykrywanie botów w sieciach społecznościowych. W tym przypadku modele analizują grafy znajomości oraz wzorce interakcji, aby identyfikować konta automatyczne lub prowadzące złośliwą działalność. Techniki te są skuteczne nawet przy ograniczonych danych wejściowych i pozwalają na roz-poznawanie botów o różnych strategiach kamuflażu (Kalameyets, 2021). W sektorze finansowym klasyfikacja wierzchołków wspiera wykrywanie oszustw poprzez analizę relacji między transakcjami, punktami sprzedaży i użytkownikami kart kredytowych. Sieci GNN umożliwiają identyfikację złożonych wzorców oszustw znacznie skuteczniej niż tradycyjne metody (Johannessen, Jullum, 2023; Pereira, Murai, 2021). W biologii obliczeniowej klasyfikacja genów na podstawie sieci molekularnych po-zwala przewidywać funkcje nieznanych genów oraz ich związki z chorobami. Metody te wykorzystują podejście „wina przez skojarzenie” (ang. guilt-by-association), za-kładające, że geny silnie połączone w sieci mają podobne funkcje (R. Liu, Mancuso, Yannakopoulos et al., 2020; Mancuso, Johnson, Liu et al., 2024). 
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W bieżącym podrozdziale zajmiemy się klasyfikacją tematyczną stron internetowych na Facebooku na podstawie ich sąsiedztwa (wzajemnych linków) oraz zawartości. Analiza ta wspiera personalizację treści i optymalizację kampanii reklamowych. Przykładowo klasyfikacja interakcji na stronach marek pozwala zrozumieć wzorce zaangażowania użytkowników oraz segmentować strony według ich popularności i aktywności fanów (Chiu, 2021). 
6.1.3. Klasyfikacja tematyczna stron na Facebooku 

꽫꽬꽭꽮꽯 Eksperyment 11. Klasyfikacja tematyczna stron na Facebooku 

�� Implementacja eksperymentu znajduje się w notatniku rozdzial_6_zastosowania_ 
sieci_gnn/01_facebook_klasyfikacja_wierzcholkow.ipynb. 

Ze względu na stopień skomplikowania i objętość omawianego przykładu w części 
książkowej zostaną omówione założenia, parametry i wyniki. Detale implementacyjne 
znajdują się w dołączonych materiałach (notatniku). 

W tym podrozdziale przedstawiamy szczegółową analizę studium przypadku opar-tego na zbiorze danych Facebook Large Page-Page Network, który jest częścią re-pozytorium Stanford SNAP1. Zbiór ten ilustruje zastosowanie grafowych sieci neuronowych do wieloklasowej klasyfikacji wierzchołków i koncentruje się na rze-czywistych danych z sieci społecznościowej (Rozemberczki, Allen, Sarkar, 2021).  Opisywany zbiór danych to graf reprezentujący zweryfikowane strony na Facebooku, gdzie: 
 Wierzchołki odpowiadają oficjalnym stronom. 
 Krawędzie reprezentują wzajemne „polubienia” między nimi. Każdy wierzchołek należy do jednej z czterech kategorii zdefiniowanych przez Fa-cebook: 
1. Firmy (~30% wartości). 
2. Organizacje rządowe (~28% wartości). 
3. Politycy (~25% wartości). 
4. Programy telewizyjne (~14% wartości). Problemem badawczym jest wieloklasowa klasyfikacja wierzchołków — prze-widzenie kategorii każdej strony na podstawie jej cech oraz struktury grafu. Analizowany graf składa się z 22 470 wierzchołków, 171 002 krawędzi, jest strukturą spójną (tzn. z każdego wierzchołka można dotrzeć do każdego innego), a średni stopień wierzchołka wynosi 15,22, co wskazuje na intensywną siatkę połączeń. Dla porównania maksymalny stopień wierzchołka to 709. Na zbiór treningowy/wali-dacyjny i testowy wybrano losowo odpowiednio 15 760, 3370 i 3370 wierzchołków. 

 1  https://snap.stanford.edu/data/facebook-large-page-page-network.html  [dostęp: 20 listopada 2025]. 
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Na zbiór cech wierzchołków składa się macierz 31 zanonimizowanych wartości nu-merycznych, reprezentujących rozmaite cechy poszczególnych witryn. Ze względu na wielkość grafu i wektora cech oraz społecznościowy charakter pro-blemu do treningu wybrano metodę próbkowania wycinków uczących w oparciu o społeczności (omawianą w podrozdziale 5.2.2). Pierwszą fazą eksperymentu był wybór hiperparametrów i optymalizacja modeli. Optymalizator dokonywał wyboru spośród: 
 architektur splotu SAGE, GAT, GCN oraz ClusterGCN (będącego odmianą GCN przeznaczoną dla problemów społecznościowych); 
 agregacji pojedynczych (suma/średnia/maksimum) oraz ich kombinacji dwu- i trzyelementowych; 
 mechanizmu połączeń skokowych z różnymi sposobami łączenia poprzednich warstw (konkatenacja/maksimum/LSTM); 
 ewentualnie dodatkowych hiperparametrów przeznaczonych dla poszczegól-nych modeli splotu (takich jak normalizacja SAGE lub liczba „głów” uwagi). Optymalizacja hiperparametrów była prowadzona za pomocą biblioteki Optuna z wykorzystaniem zbiorów treningowego i walidacyjnego. W jej wyniku wybrane zostały najlepsze hiperparametry (tabela 6.1). 

TABELA 6.1. Hiperparametry dla modelu klasyfikacji stron na Facebooku 

Hiperparametr Wartość 

Architektura splotu SAGE 

Liczba neuronów w pojedynczej warstwie 32 

Liczba warstw 3 

Agregacja Maksimum 

Połączenia skokowe Konkatenacja 

Normalizacja Tak 

Projekcja Tak 

Normalizacja próbki treningowej Tak Po zakończeniu tego procesu przystąpiono do szkolenia modelu z pomocą biblio-teki PyTorch Lightning. Trening prowadzony był przez 50 epok z uruchomionym mechanizmem wczesnego przerywania po 3 epokach w przypadku pogorszenia wyników oraz bieżącym zapisywaniem najlepszego modelu. Tabela 6.2 podsumowuje uzyskane wyniki. Widać ewidentną poprawę zarówno dla metryki F1, jak i AUC dla zbioru walidacyjnego — przed treningiem i po nim. Ostateczny wynik dla zbioru testowego nie odbiega znacząco od wyników walida-cyjnych.  
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TABELA 6.2. Wyniki klasyfikacji zbioru danych stron na Facebooku 

Metryka Zbiór 
Faza 

Przed treningiem Po treningu 

F1 Walidacyjny 0,164 0,686 

Testowy – 0,671 

AUC Walidacyjny 0,493 0,839 

Testowy – 0,841 Oprócz klasyfikacji za pomocą modelu można go także wykorzystać do wizualizacji zbioru danych. Budując wektory reprezentacji wierzchołków, a następnie podda-jąc je redukcji wymiarowości, można stworzyć reprezentację wektorów osadzenia na płaszczyźnie. Jest to niezwykle przydatne w sytuacji, gdy chcemy sprawdzić ja-kość wykonania zadania i separację poszczególnych klas. Rysunek 6.1 przedstawia uzyskany rezultat. Widać wyraźnie, że klasy takie jak government, company oraz 
politician zostały prawidłowo odseparowane i tworzą odróżniające się klastry na przeciwległych krańcach chmury punktów. Klasa tvshow jest wymieszana z pozo-stałymi. Model ewidentnie miał trudności z odróżnieniem jej od pozostałych. 

 
RYSUNEK 6.1. Wizualizacja wyniku klasyfikacji stron na Facebooku Przeprowadzony eksperyment pokazuje, że model sieci grafowej relatywnie dobrze poradził sobie z klasyfikacją stron na Facebooku. Polem do poprawy jest zdecydo-wanie jakość predykcji dla klasy tvshow, która zaniża wynik ogólny i (co jest wi-doczne w wizualizacji na płaszczyźnie) nie odróżnia się wyraźnie od pozostałych. Możliwe jest przeprowadzenie dalszego strojenia parametrów i wykorzystanie bardziej złożonej architektury. 
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6.2. Klasyfikacja krawędzi 

6.2.1. Postać formalna Klasyfikacja krawędzi w grafach to zadanie, w którym celem jest przypisanie każ-demu połączeniu (krawędzi) 𝑒௨௩ między wierzchołkami 𝑣 oraz 𝑢 etykiety 𝑦௨௩ na-leżącej do zbioru 𝑌. W zależności od specyfiki problemu etykieta może być binarna (0 — krawędź nie występuje, 1 — krawędź występuje) lub mieć wiele wartości odzwierciedlających określone zjawiska. Dla uproszczenia oraz w związku z pre-zentowanym dalej przykładem omówiona zostanie formalizacja tego działania dla klasyfikacji binarnej. W rozwiązywaniu tego zadania stosuje się podejście dwuetapowe: 
1. Krok 1. Budowanie reprezentacji wierzchołków z wykorzystaniem grafowych sieci neuronowych: 𝒉௩ = GNN(𝐺,𝑿), 𝑣 ∈ 𝑉, (47) ℋ = {𝒉௩ ∣ ∀𝑣 ∈ 𝑉}, (48) gdzie 𝐺 to graf z wierzchołkami i krawędziami, 𝑿 to macierz cech wierzchołków, a GNN to model splotu grafowego. 
2. Krok 2. Predykcja etykiety dla par wierzchołków {(𝑢, 𝑣) ∣ 𝑢, 𝑣 ∈ 𝑉} za pomocą wyspecjalizowanego modelu LinkPred. Jako wejście wykorzystuje on wektory reprezentacji skonstruowane przez sieć GNN: 𝑦ො௨௩ = LinkPred(𝒉௩,𝒉௨),𝑦ො௨௩ ∈ ሾ0, 1ሿ. (49) Wynik predykcji, będący prawdopodobieństwem istnienia/nieistnienia krawędzi, jest następnie podstawą do obliczenia funkcji kosztu, najczęściej entropii krzyżo-wej lub binarnej: ℒ஻஼ா = 1|𝐸| ෍ ሾ𝑦௨௩ log𝑦ො௨௩ + (1 − 𝑦௨௩) log(1 − 𝑦ො௨௩)ሿ(௨,௩)∈ா . (50) Opisane zadanie można przedstawić graficznie jak na ilustracji poniżej (rysunek 6.2). Początkowo model GNN tworzy reprezentację wektorową każdego wierzchołka. Następnie pary takich reprezentacji (dla wierzchołków połączonych krawędziami) są wykorzystywane do klasyfikacji połączeń (prawdziwe/istniejące — jasne; nie-prawdziwe/nieistniejące — ciemne). W tak przedstawionej formalizacji problemu kryje się jednak pewna pułapka. Stan-dardowo bowiem graf 𝐺 zawiera tylko krawędzie realnie istniejące — „prawdziwe”. Aby przeprowadzić proces nauki, konieczne jest sztuczne dodanie krawędzi „nega-tywnych” — oznaczonych etykietą „0” (Hamilton, 2020; Hamilton, Ying, Leskovec, 2017). Taki proces nosi nazwę „próbkowania negatywnego” (ang. negative sampling) i jest szeroko stosowany w zadaniach takich jak systemy rekomendacyjne (Liu, Zhong, Che et al., 2022), a nawet analiza języka naturalnego (Yang, Ding, Huang et al., 2024). Generowane negatywne próbki mogą być całkowicie losowe lub uwzględniać bar-dziej zaawansowane kryteria (np. odległość topologiczną między wierzchołkami). 
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RYSUNEK 6.2. Wizualizacja dwustopniowego procesu klasyfikacji wierzchołków Biblioteka PyG oferuje kilka narzędzi wspomagających proces próbkowania nega-tywnego: 
 RandomLinkSplit — umożliwia jednorazowe i statyczne dodanie krawędzi ne-gatywnych do zbiorów treningowego, walidacyjnego i testowego. Narzędzie to pozwala na kontrolowanie proporcji negatywnych próbek względem pozytyw-nych poprzez parametr neg_sampling_ratio. 
 LinkNeighborLoader — stosowany podczas konstruowania próbek uczących (ang. batch). Dynamicznie generuje negatywne próbki dla każdej iteracji tre-ningowej, co pozwala na bardziej efektywne wykorzystanie danych i zwiększe-nie różnorodności próbek. Mając na uwadze powyższe, po zastosowaniu próbkowania negatywnego zbiór krawędzi grafu 𝐸 zawiera zarówno krawędzie „prawdziwe” (realnie istniejące, któ-rych etykieta klasy to 1), jak i krawędzie „fałszywe” (nieistniejące, których etykieta klasy to 0): 𝐸 = 𝐸ା ∪ 𝐸ି, co umożliwia przeprowadzenie procesu uczenia i klasy-fikacji binarnej. 

6.2.2. Znaczenie problemu i zastosowania Klasyfikacja krawędzi odgrywa kluczową rolę w wielu dziedzinach nauki i biznesu, umożliwiając analizę relacji między obiektami w sieciach grafowych. Jednym z istotnych zastosowań jest wykrywanie interakcji między lekami (ang. Drug-Drug Interaction, DDI), co ma szczególne znaczenie w farmakologii i opiece zdrowotnej. Identyfikacja potencjalnie niebezpiecznych interakcji pozwala na zwiększenie bezpieczeństwa terapii oraz opracowanie skuteczniejszych rekomendacji medycznych (Han, Xie, Li et al., 2022). Problem ten zostanie szerzej omówiony w kolejnym podrozdziale. W analizie sieci społecznościowych klasyfikacja krawędzi służy do wykrywania po-wiązań między użytkownikami, co znajduje zastosowanie w systemach rekomen-dacji znajomości, identyfikacji osób o kluczowym wpływie w danej społeczności oraz detekcji fałszywych kont i botów (Silva, Correia, Maziero, 2023). W sektorze finan-sowym natomiast umożliwia wykrywanie anomalii poprzez analizę nietypowych 
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transakcji i powiązań między podmiotami, co wspomaga przeciwdziałanie oszustwom oraz nieprawidłowościom w systemach bankowych i płatniczych (Johannessen, Jullum, 2023; Pereira, Murai, 2021). Biologia obliczeniowa wykorzystuje klasyfikację krawędzi do badania zależności między białkami i genami. Grafowe sieci neuronowe pozwalają na identyfikację no-wych połączeń w sieciach biologicznych, co może prowadzić do głębszego zrozu-mienia mechanizmów chorób oraz wskazania potencjalnych celów terapeutycznych (Muzio, O’Bray, Borgwardt, 2021; Wu, Gao, Zeng et al., 2022). 
6.2.3. Badanie oddziaływania pomiędzy lekami 

— klasyfikacja krawędzi 

꽫꽬꽭꽮꽯 Eksperyment 12. Klasyfikacja interakcji pomiędzy lekami 

�� Implementacja eksperymentu znajduje się w notatniku rozdzial_6_zastosowania_ 
sieci_gnn/02_interakcje_lekow_klasyfikacja_wierzcholkow.ipynb. 

Ze względu na stopień skomplikowania i objętość omawianego przykładu w części 
książkowej zostaną omówione założenia, parametry i wyniki. Detale implementacyjne 
znajdują się w dołączonych materiałach (notatniku). 

W tym podrozdziale analizujemy praktyczne zastosowanie klasyfikacji krawędzi w grafach na przykładzie sieci interakcji leków (DDI). Studium przypadku opiera się na zbiorze danych ogbl-ddi, który pochodzi z platformy Open Graph Benchmark (OGB)2 i został zaprojektowany do oceny metod uczenia maszynowego na grafach dla celów branży farmaceutycznej (Guney, 2017). Zbiór ten przedstawia jednorodny, nieskierowany i nieważony graf, w którym: 
1. Wierzchołki reprezentują leki zatwierdzone przez FDA lub będące w fazie eksperymentalnej. 
2. Krawędzie odzwierciedlają interakcje między lekami, czyli sytuacje, w których wspólne stosowanie dwóch leków prowadzi do efektu istotnie różniącego się od oczekiwanego działania każdego z nich osobno. Problemem badawczym jest przewidywanie interakcji między lekami na podsta-wie już znanych powiązań. W tym celu wykorzystuje się zarówno miary F1, AUC i czułość jako metryki ewaluacji, jak i K najlepszych trafień (ang. Hits@K), która ocenia zdolność modelu do budowania poprawnego rankingu: prawdziwe interak-cje (krawędzie) powinny uzyskiwać wyższe prawdopodobieństwa niż losowo wy-brane próbki negatywne. Dla tego zbioru danych przyjęto specyficzny podział na zestawy treningowy, walidacyjny i testowy, bazujący na oddziaływaniach leków na białka. Dzięki temu testowane są możliwości modeli w generowaniu praktycznie użytecznych prognoz dla leków o odmiennych mechanizmach biologicznego od-działywania w porównaniu do substancji obecnych w zbiorze treningowym. 

 2  https://ogb.stanford.edu/docs/linkprop/#ogbl-ddi [dostęp: 20 listopada 2025]. 
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Zbiór ogbl-ddi cechuje się dużą objętością: zawiera 4267 wierzchołków oraz 
1 334 889 krawędzi, co czyni go wymagającym pod względem obliczeniowym. Na potrzeby tej książki oraz towarzyszącego przewodnika zdecydowano się na zmniej-szenie jego wielkości. W tym celu podjęto następujące kroki: 
1. Przeanalizowano spójne składowe grafu, czyli połączone elementy sieci. 
2. Spośród wszystkich spójnych składowych wybrano tę, która zawiera około 20% wszystkich wierzchołków grafu. 
3. Ograniczono graf do tej wybranej składowej, zachowując jedynie około 20% wierz-chołków oraz krawędzie łączące je ze sobą. 
4. Podzielono dane na zestawy: zbiory treningowy (80%), walidacyjny (10%) oraz testowy (10%). Dodatkowo dodano krawędzie negatywne (brak interakcji) w proporcji 1:1 względem krawędzi pozytywnych (rzeczywistych interakcji). Po przeprowadzeniu powyższych kroków uzyskano następujące próbki: 
1. Liczba wierzchołków: 845 we wszystkich zbiorach (treningowym, walidacyj-nym i testowym). 
2. Zbiór treningowy: 136 384 krawędzi (pozytywnych i negatywnych). 
3. Zbiór walidacyjny: 17 046 krawędzi (pozytywnych i negatywnych). 
4. Zbiór testowy: 17 046 krawędzi (pozytywnych i negatywnych). Pomimo redukcji rozmiaru danych proces treningu pozostaje czasochłonny ze względu na dużą liczbę krawędzi i złożoność modelu. Szkolenie modelu odbywało się z wykorzystaniem mechanizmów próbkowania w oparciu o sąsiedztwo (opisanych w podrozdziale 5.2.1), dobranych w taki sposób, aby zapewnić kompromis między efektywnością uczenia a jego czasem. Szczególnie warto zwrócić uwagę na fragment kodu zaprezentowany poniżej, ukazujący konfi-gurację klasy LinkNeighborLoader: 

1. train_loader = pyg.loader.LinkNeighborLoader( 
2.     train_data, 
3.     batch_size=1024, 
4.     num_neighbors=[-1, 15, 10, 5], 
5.     shuffle=True,  
6.     edge_label_index=train_data.edge_label_index, 
7.     edge_label=train_data.edge_label, 
8.     num_workers=3) Przedstawiona metoda próbkowania zbioru treningowego rekurencyjnie pobiera sąsiadów w czterech krokach (wiersz 4.): 
 wszystkich bezpośrednich sąsiadów danego wierzchołka (wartość –1); 
 15 sąsiadów dla każdego sąsiada bezpośredniego; 
 kolejnych 10 w odległości dwóch skoków; 
 kolejnych 5 w odległości trzech skoków. Takie próbkowanie może szybko doprowadzić do gwałtownego wzrostu liczby wierz-chołków. Z tego względu ograniczono całkowitą wielkość próbki do 1024 elemen-tów (wiersz 3.). W przypadku zbiorów walidacyjnego i testowego, ze względu na mniejsze rozmiary, możliwe jest ich całościowe załadowanie do pamięci od razu. 
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Podobnie jak wcześniej, pierwszą fazę eksperymentu stanowił wybór hiperparame-trów i optymalizacja modeli. Tym razem (głównie ze względów wydajnościowych) wykorzystana została tylko architektura SAGE, po której następował model doko-nujący klasyfikacji wierzchołka. Hiperparametry brane podczas optymalizacji to: 
 liczba warstw i neuronów dla modelu SAGE; 
 sposoby agregacji sąsiednich wierzchołków (suma/średnia/maksimum oraz ich kombinacje 2- i 3-elementowe); 
 mechanizm połączeń skokowych z różnymi sposobami łączenia poprzednich warstw (konkatenacja/maksimum/LSTM); 
 architektura sieci klasyfikującej połączenia (liczba warstw i neuronów). Optymalizacja hiperparametrów była prowadzona za pomocą biblioteki Optuna z wykorzystaniem zbiorów treningowego i walidacyjnego. Tabela 6.3 przedstawia końcowe hiperparametry. 

TABELA 6.3. Przykładowe zoptymalizowane hiperparametry dla predykcji połączeń 

Hiperparametr Wartość 

Liczba neuronów w warstwie splotu 128 

Liczba warstw 3 

Agregacja Suma, maksimum, średnia 

Połączenia skokowe Konkatenacja 

Normalizacja Tak 

Projekcja Tak 

Normalizacja próbki treningowej Tak 

Liczba warstw klasyfikatora połączeń 3 

Liczba neuronów w warstwie klasyfikatora 256 Po zakończeniu tego procesu przystąpiono do szkolenia modelu. Trening prowa-dzony był przez 25 epok z uruchomionym mechanizmem wczesnego przerywania (po 3 epokach) w przypadku pogorszenia wyników oraz bieżącym zapisywaniem najlepszego modelu. Tabela 6.4 podsumowuje uzyskane wyniki. Widać ewidentną poprawę zarówno dla metryki F1, jak i AUC dla zbioru walidacyjnego — przed treningiem i po nim. Ostateczny wynik dla zbioru testowego nie odbiega znacząco od wyników walidacyjnych. Model wykazał znaczącą poprawę wyników w procesie uczenia, co jest widoczne we wszystkich analizowanych metrykach. W zadaniu predykcji istnienia lub braku krawędzi, opierającym się na rozróżnianiu próbek negatywnych od rzeczywistych, kluczowe znaczenie mają współczynniki trafień. Określają one, jak często spośród 
K predykcji o najwyższym prawdopodobieństwie rzeczywiste krawędzie uzyskują wyższe wskazania niż obiekty nieistniejące. W przeprowadzonym eksperymencie zauważalna jest istotna różnica między wskaźnikami trafień dla top 10 i top 20 predykcji dla zbioru testowego. Średnio 55% spośród 10 najwyżej ocenionych pre-dykcji poprawnie wskazuje istniejące połączenia. W przypadku rozszerzenia ana-lizy do 20 najlepszych predykcji odsetek ten wzrasta do około 78%.  
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TABELA 6.4. Wyniki klasyfikacji połączeń w modelu interakcji leków 

Metryka Zbiór 
Faza 

Przed treningiem Po treningu 

F1 Walidacyjny 0,0 0,861 

Testowy – 0,665 

AUC Walidacyjny 0,395 0,93 

Testowy – 0,92 

Śr. trafień w top 10 Walidacyjny 0,0 0,57 

Testowy – 0,55 

Śr. trafień w top 20 Walidacyjny 0,0 0,79 

Testowy – 0,78 Dłuższy trening oraz bardziej agresywne strojenie hiperparametrów mogłyby istot-nie poprawić wyniki w zakresie top 10. Opisane podejście znajduje szerokie zastosowanie w systemach rekomendacyjnych, gdzie kluczowe jest określenie, jaka część proponowanych użytkownikowi sugestii rzeczywiście spełnia jego oczekiwania. 
6.3. Klasyfikacja grafów 

6.3.1. Postać formalna Klasyfikacja całych grafów jest kluczowym zagadnieniem w analizie danych struk-turalnych, znajdującym szerokie zastosowanie w wielu gałęziach nauki i biznesu. W przeciwieństwie do klasyfikacji wierzchołków czy krawędzi, gdzie predykcje do-tyczą lokalnych komponentów grafu, klasyfikacja grafów koncentruje się na jego globalnych właściwościach. Celem tego zadania jest przypisanie pojedynczej etykiety 𝑦 ∈ 𝒴 do całego grafu 𝐺 = (𝑉,𝐸), gdzie 𝒴 oznacza zbiór możliwych klas. Proces ten można podzielić na dwa główne etapy: 
1. Konstrukcja reprezentacji grafu, w której globalne właściwości strukturalne i atrybuty wierzchołków są transformowane do zwartych reprezentacji nume-rycznych. 
2. Klasyfikacja oparta na tych reprezentacjach, gdzie model uczący dokonuje predykcji etykiety na podstawie osadzenia całego grafu. Pierwszym krokiem jest wyznaczenie reprezentacji wierzchołków przy użyciu do-wolnej grafowej sieci neuronowej (ang. Graph Neural Network, GNN). Proces ten jest analogiczny do tego stosowanego w klasyfikacji krawędzi i wierzchołków: 𝒉௩ = GNN(𝐺,𝑿),𝑣 ∈ 𝑉, ℋ = ሼ 𝒉௩ ∣∣ ∀𝑣 ∈ 𝑉 ሽ. 
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Następnie uzyskane osadzenia wierzchołków są agregowane do jednej reprezen-tacji opisującej cały graf: 𝒉ீ = GlobalPool({𝒉௩ ∣ ∀𝑣 ∈ 𝑉}). (51) Funkcja GlobalPool(⋅) pełni rolę agregatora i może przyjmować różne formy, takie jak średnia, maksimum, suma czy mechanizmy bardziej zaawansowane, np. uwzględ-niające stopnie wierzchołków. Zdefiniowana reprezentacja 𝒉ீ  stanowi wejście do modelu klasyfikacyjnego, który przypisuje grafowi etykietę: yොீ  =  GraphClf(𝐡ୋ), (52) gdzie GraphClf(⋅) to dowolny klasyfikator, np. wielowarstwowa sieć neuronowa MLP. Proces optymalizacji przebiega poprzez minimalizację funkcji kosztu, np. en-tropii krzyżowej: 
ℒ = 1𝑁෍𝑙𝑜𝑠𝑠൫GraphClf൫𝒉𝑮೔൯,𝑦௜൯ே

௜ୀଵ , (53) 
gdzie: 
 𝑙𝑜𝑠𝑠(⋅,⋅) to funkcja kosztu dla pojedynczego przykładu uczącego, 
 𝒉ீ೔  to wektor reprezentacji grafu 𝐺௜ , 
 𝑦௜ to rzeczywista etykieta przypisana do grafu 𝐺௜ , 
 N to liczba grafów w zbiorze uczącym. Rysunek 6.3 ilustruje opisany proces. 

 
RYSUNEK 6.3. Ilustracja procesu budowania reprezentacji całego grafu W zadaniach klasyfikacji grafów często pracujemy z wieloma grafami, tj. zbiorem {𝐺ଵ,𝐺ଶ, … ,𝐺ே}, gdzie każdy graf 𝐺௜ = (𝑉௜ ,  𝐸௜) ma własny zestaw wierzchołków 𝑉௜ i krawędzi 𝐸௜ . Aby umożliwić efektywne uczenie modeli, grafy te muszą zostać 
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scalone w jedną wspólną strukturę. PyG oferuje wyspecjalizowane mechanizmy umożliwiające ich efektywne połączenie, obejmujące: 
1. Konkatenację macierzy cech wierzchołków: 𝑋 = concat(𝑿ଵ,𝑿ଶ, … ,𝑿ே), (54) gdzie 𝑿𝒊 ∈ ℝ|𝑽𝒊|×𝒅 to macierz cech wierzchołków dla grafu 𝐺௜ . 
2. Łączenie macierzy sąsiedztwa w globalną strukturę: 

𝐴 = ൥𝑨𝟏 … 0⋮ ⋱ ⋮0 0 𝑨ே൩ , (55) gdzie każda macierz 𝑨௜ jest macierzą sąsiedztwa w grafie 𝐺௜ . 
3. Dodanie identyfikatora przynależności każdego wierzchołka do konkretnego grafu: 𝒃𝒂𝒕𝒄𝒉 = ൥1,1, … ,1ᇣᇧᇤᇧᇥ|௏భ| , 2,2, … ,2ᇣᇧᇤᇧᇥ|௏మ| , … ,𝑁,𝑁, … ,𝑁ᇣᇧᇧᇤᇧᇧᇥ|௏ಿ| ൩ , (56) gdzie wartość w wektorze 𝒃𝒂𝒕𝒄𝒉 wskazuje numer grafu źródłowego dla danego wierzchołka. Posługując się grafem z przywołanego wcześniej przykładu (patrz rysunek 6.3), możemy przyjąć, że macierze cech wierzchołków dla grafu 1 (wierzchołki 1 – 5) oraz grafu 2 (wierzchołki 6 – 9) wyglądają następująco: 

𝑿ଵ = ⎣⎢⎢⎢
⎡1 12 23 34 45 5⎦⎥⎥

⎥⎤, 
𝑿ଶ = ൦6 67 78 89 9൪. Dla uproszczenia przyjęto, że cechy wierzchołków to dwuelementowe wektory o wartościach odpowiadających indeksowi wierzchołka. Lista sąsiedztwa dla obu grafów przedstawia się następująco: 𝑨ଵ = ቂ1 2 2 3 32 3 4 4 5ቃ, 𝑨ଶ = ቂ6 8 97 7 7ቃ. Mimo że oba grafy są nieskierowane, dla uproszczenia przedstawiono jednokierun-kowe listy sąsiedztwa. Podczas budowania próbki treningowej PyG skonstruowałby struktury zbliżone do przedstawionych poniżej, łącząc ze sobą grafy: 
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𝑿 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
1 12 23 34 45 56 67 78 89 9⎦⎥⎥

⎥⎥⎥
⎥⎥⎤ 

𝑨 = ቂ1 2 2 3 3 6 8 92 3 4 4 5 7 7 7ቃ  𝐛𝐚𝐭𝐜𝐡 = ሾ1 1 1 1 1 2 2 2ሿ  Indeksy w macierzy 𝐛𝐚𝐭𝐜𝐡 odpowiadają przypisaniu przykładów do oryginalnego grafu. W ten sposób nie trzeba w żaden sposób modyfikować standardowego kodu służącego do uczenia modeli sieci grafowych. Fragment kodu poniżej ilustruje przykład skonstruowania opisywanej próbki (pa-miętajmy o indeksowaniu numerów wierzchołków od zera). 
1. g1 = pyg.data.Data() 
2. g1.x = th.tensor([[i, i] for i in range(1, 6)], dtype=th.float) 
3. g1.edge_index = th.tensor([ 
4.     [0, 1, 1, 2, 2, 3], 
5.     [1, 2, 3, 3, 4, 4] 
6. ]) 
7.   
8. g2 = pyg.data.Data() 
9. g2.x = th.tensor([[i, i] for i in range(6, 10)], dtype=th.float) 
10. g2.edge_index = th.tensor([ 
11.     [0, 2, 3], 
12.     [1, 1, 1]    
13. ]) 
14.   
15. small_data_loader = pyg.loader.DataLoader([g1, g2], batch_size=10) 
16. batch = next(iter(small_data_loader)) 
17. batch 
18. >> DataBatch(x=[9, 2], edge_index=[2, 9], batch=[9], ptr=[3]) 
19. batch.x 
20. >> tensor([[1., 1.], 
21. >>         [2., 2.], 
22. >>         [3., 3.], 
23. >>         [4., 4.], 
24. >>         [5., 5.], 
25. >>         [6., 6.], 
26. >>         [7., 7.], 
27. >>         [8., 8.], 
28. >>          [9., 9.]]) 
29. batch.edge_index 
30. >> tensor([[0, 1, 1, 2, 2, 3, 5, 7, 8], 
31. >>         [1, 2, 3, 3, 4, 4, 6, 6, 6]]) 
32. batch.batch 
33. >> tensor([0, 0, 0, 0, 0, 1, 1, 1, 1]) 
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Skorowidz 

 
A agregacje wielokrotne, 178 algorytm mechanizmu Jumping Knowledge, 183 MPNN, 53 splotu GAT, 92 splotu GIN, 109 splotu GraphSAGE, 81, 84 testu WL, 41 uczenia sieci GNN, 163 analiza danych strukturalnych, 189, 199 sieci społecznościowych, 5 spektralna, 30 analizy molekularne, 5 architektury przestrzenne i czasowe, STGNNs, 51 
B badania toksyczności cząsteczek, 203 bazy danych grafowe, 20 biblioteka Deep Graph Library, 21 graph-tool, 19 iGraph, 19 NetworkX, 19, 24 Open Graph Benchmark, 151 PyTorch Geometric, 20, 56 SNAP, 19 Stanford DeepSNAP, 141 bliskość, 35 

 
 
 

C cechy, features, 32, 36 centralność sąsiedztwa, closeness centrality, 35 stopnia, degree centrality, 33 ChebNet, Chebyshev Spectral CNN, 75 
D dane testowe, 131, 163 treningowe, 131, 163 walidacyjne, 131, 163 Deep Graph Library, DGL, 21, 22 droga w grafie, 26 drzewo rekurencyjnego sąsiedztwa, 174 duże zbiory danych, 151 działania na poziomie całego grafu, 47 na poziomie krawędzi, 48, 140 na poziomie wierzchołków, 48 
E ekwiwariancja, 50 epoka, epoch, 152, 163 
F funkcja AGGREGATE, 53 betweenness_centrality, 34 

closeness_centrality, 35 degree_centrality, 33 degree_histogram, 37 MESSAGE, 52 UPDATE, 53 
G GAT, Graph Attention Network, 90 GCN, Graph Convolution Network, 5, 74–76 generowanie grafów, 48 GIN, Graph Isomorphism Network, 106, 172 głowa predykcyjna, prediction head, 60 GNN, Graph Neural Networks, 5, 47, 70 graf „Karate Club”, 132, 133, 138, 148–150 Cora, 63–65 MovieLens, 211 MUTAG, 151 graflety, graphlets, 36 grafowe autoenkodery, GAEs, 51 bazy danych, 20 sieci neuronowe, GNN, 5, 47, 70, Patrz także warstwy splotu grafowego model MPNN, 51 zadania, 47 zasady działania, 49 zastosowania, 189 grafy długość drogi, 26 generowanie, 48 
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heterogeniczne, 43, 44 reprezentacja, 45 warstwy splotu, 114 klasyfikacja, 199 krawędzi, 194 wierzchołków, 189 listy sąsiedztwa, 30 macierze sąsiedztwa, 28 nadmierne wygładzanie, 165 nieskierowane, 25, 27 niespójne, 26 podgrafy, 26 podział indukcyjny, 151 problem izomorfizmu, 39 regresja krawędzi, 208 reprezentacja numeryczna, 36, 38 skierowane, digrafy, 25, 27 spójne, 26 ścieżka, 26 średnia długość najkrótszej ścieżki, 38 średnica, 37 wiedzy, KG, 6 graph-tool, 19 
H heterogeniczne atrybuty, 45 sieci informacyjne, HIN, 43 hiperparametry, 192, 198, 205, 213 
I iGraph, 19 iloczyn Hadamarda, 12 skalarny, 12 implementacja konwersji warstwy splotu, 121 modelu MPNN, 56 naiwna JK, 183 NGNN, 177, 179 splotu GAT, 99 splotu GCN, 76 splotu GIN, 110 splotu GNN, 72 

splotu SAGE, 85 testu WL, 41 wbudowana JK, 185 indeksy, 12 indukcja, 134 indukcyjny podział grafu, 151 krawędzi, 141 wierzchołków, 135 inwariancja, 50 izomorfizm grafów, 39 
K klasyfikacja, 47, 48, 61, 63 całych grafów, 199 badanie toksyczności cząsteczek, 203 zastosowania, 203 interakcji pomiędzy lekami, 196 krawędzi, 194 binarna, 208 wieloklasowa, 208 zastosowania, 195, 196, 207 tematyczna stron, 191 wierzchołków, 168, 189 wieloklasowa, 191 zastosowania, 190 Knowledge Graphs, KG, 6 konkatenacja, 13 konwolucyjne/splotowe sieci grafowe, ConvGNNs, 51 krawędzie, 140, 191, 196 negatywne, negative samples, 140 podział indukcyjny, 141 podział transdukcyjny, 145–148 przekazujące wiadomości, message passing links, 140, 145 uczące, supervision links, 140, 145 
L listy sąsiedztwa, 30 

 
 

M macierz, 11 macierze sąsiedztwa, 28 mechanizm połączeń skokowych, JK, 180 metaścieżki, meta-path, 44 miary centralności wierzchołków, 33, 36 MLP, multilayer perceptron, 49 model przekazywania wiadomości, MPNN, 51, 178, 203 implementacja, 56 jako część sieci, 60 zasady działania, 54 zastosowania, 61 MPNN, Message Passing Neural Network, 51, 178, 203 
N NetworkX, 19, 24 NGNN, network in graph neural network, 175, 177, 179, 187 
O odkrywanie leków, 5, 203 optymalizacja struktur, 6 
P perceptron wielowarstwowy, MLP, 49 podgrafy, 26 pośrednictwo, betweenness centrality, 33 predykcja, 168, 175, 209 problem nadmiernego wygładzania, oversmoothing, 62, 164 projektowanie nowych materiałów, 203 próbki uczące, mini-batch, 152, 163 próbkowanie negatywne, 195 w oparciu o sąsiedztwo, 152 w oparciu o społeczności, 160 
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przewidywanie funkcji białek, 203 właściwości molekuł, 203 PyTorch Geometric, PyG, 20, 22, 56 
R regresja, 47, 48, 61 krawędzi, 208 rekomendacje filmów MovieLens, 210 rekurencyjne grafy sąsiedztwa, 173 sieci grafowe, RecGNNs, 51 repozytorium Stanford SNAP, 191 rozkład częstości stopni wierzchołków, 37 
S SAGE, 80 sąsiedztwo, 26, 152 rekurencyjne, 174 sieci MPNN, 60 spektralne, Spectral Graph Convolution, 51 w sieci grafowej, NGNN, 175 skalar, 11 SNAP, Stanford Network Analysis Platform, 19 splot GAT, 90 działanie, 90 implementacja, 99 GCN, 74 działanie, 75 implementacja, 76 GIN, 106 działanie, 106 implementacja, 110 GNN, 70 działanie, 70 implementacja, 72 

SAGE, 80 działanie, 81 implementacja, 85 z mechanizmem NGNN, 187 z mechanizmem połączeń skokowych, 187 z wieloma agregacjami, 187 splotowa sieć grafowa, GCN, 5, 74–76 sploty grafu, graph convolutions, 53 społeczności, 160 spójność grafu, 26 Stanford DeepSNAP, 141 SNAP, 191 stopień średni wierzchołka, 36 wierzchołka, 29, 32 systemy rekomendacyjne, 6, 207, 209 
T test Weisfeilera-Lehmana, 39, 171 implementacja, 41 transdukcja, 134 transdukcyjny podział krawędzi, 145–148 wierzchołków, 137 
U uczenie na dużych zbiorach, 151 próbkowanie w oparciu o sąsiedztwo, 152 o społeczności, 160 
W walidacja krzyżowa,  cross-validation, 131 warstwy splotu dla grafów heterogenicznych, 114 

splotu grafowego, graph convolution networks, 53, 60, 67, 125 agregacje wielokrotne, 178 GAT, 90 GCN, 74 GIN, 106 GNN, 70 mechanizm połączeń skokowych, 180 ograniczenie testem WL, 171 podejście NGNN, 175 problem nadmiernego wygładzania, 164 SAGE, 80 wektor, 11 wierzchołki, 25, 191, 196 miary centralności, 33, 36 podział indukcyjny, 135 podział transdukcyjny, 137 rozkład częstości stopni, 36 stopnie, 29, 32 stopnie średnie, 36 wykrywanie botów, 5 interakcji między lekami, 195 
Z zbiór danych Iris, 132 danych MovieLens, 208, 210 danych MUTAG, 203 elementów, 12 testowy, 163 treningowy, 163 walidacyjny, 163 
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