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ROZDZIAL 6.
Przyktady zastosowan

grafowych sieci neuronowych

Niniejszy rozdziat zostanie poswiecony omoéwieniu praktycznych zastosowan gra-
fowych sieci neuronowych w kontekscie rozwigzywania wybranych probleméw
biznesowych. W kazdej kategorii zadan, takich jak klasyfikacja wierzchotkéw, pre-
dykcja potaczen czy klasyfikacja catych graféw, przedstawiony zostanie konkretny
problem wraz z odpowiadajacym mu zbiorem danych. Dodatkowo zaprezentowane
zostanie przyktadowe rozwigzanie wraz z jego implementacjg. Taki uktad tresci
ma na celu utatwienie utrwalenia wiedzy teoretycznej oraz zrozumienia architek-
tury GNN, oméwionych w poprzednich rozdziatach.

Wazne: réznice w wynikach
Biblioteki wykorzystane w przyktadzie i dotgczonych materiatach korzystajg z obliczen
opartych na kartach graficznych (CUDA).

Pomimo zastosowania mechanizmdw zapewniania deterministycznosci procesu szko-
lenia (m.in. ustawianie ziarna losowego za pomoca biblioteki PyG, deterministyczne
uczenie w PyTorch Lightning itp.) nie ma gwarancji, ze uzyskane wyniki beda za kaz-
dym razem identyczne. Réznice moga wynika¢ m.in. z wersji uzywanego sterownika
CUDA oraz innych systemowych sterownikow karty graficznej, kompilacji bibliotek dla

konkretnego systemu operacyjnego (Linux, Windows, macQS).

6.1. Klasyfikacja wierzchotkéw

6.1.1. Postac¢ formalna

Klasyfikacja wierzchotkéw w grafach to jedno z gtéwnych zagadnien w analizie da-
nych strukturalnych, ktére znajduje zastosowanie w wielu dziedzinach, takich jak
sieci spoteczno$ciowe, biologia obliczeniowa czy analiza finansowa.

Formalnie zadanie to polega na przypisaniu kazdemu wierzchotkowi v; € V z grafu
G = (V,E) etykiety y; € Y sposérdd zbioru mozliwych klas C.

Aby wykona¢ zadanie klasyfikacji wierzchotkéw, niezbedne s3, oprocz grafu, na-
stepujace elementy:

» zbidr wierzchotkdw V = {v,,v,, ..., vy}, gdzie N = |V|;

» zbidér krawedzi E € V X V, ktére reprezentuja relacje miedzy wierzchotkami;

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/siegra
https://helion.pl/rt/siegra

190 GRAFOWE SIECI NEURONOWE. TEORIA | PRAKTYKA

+ macierz cech X € R V>4, gdzie kazdy wiersz x; € R? zawiera wektor cech opi-
sujacych wierzchotek v;;

o zbidretykietY = {y;,y, ..., ¥yn}, gdziey; €Y ={1,2, ..., C}.
Celem Kklasyfikacji jest nauczenie modelu:
GNN: (G, X) - Y, (45)

ktéry przewiduje etykiety dla wszystkich lub wybranych wierzchotkéw. W przy-
padku czesSciowo nadzorowanego uczenia (ang. semi-supervised learning) etykiety
sg znane jedynie dla podzbioru wierzchotkéw V;, c V, a zadaniem modelu jest
przewidzenie etykiet dla pozostatych V; = V' \ V,. Problem ten mozna formalnie
zapisac jako minimalizacje funkcji kosztu:

1
L= m Z loss(GNN(v; G, X),y:), (46)
L

ViEV]
gdzie:
e L(:,) to globalna funkcja kosztu (np. entropia krzyzowa);
* loss(.) to funkcja kosztu dla pojedynczego przyktadu uczacego;

¢ GNN(v;; G,X) to model splotu grafowego dokonujacy predykgji klasy dla wierz-
chotka v;,

* y; to rzeczywista etykieta przypisana do tego wierzchotka.

W przeciwienstwie do klasycznych modeli uczenia maszynowego, grafowe sieci neu-
ronowe stanowiag efektywne podejscie do tego problemu, gdyz wykorzystujg za-
réwno lokalne informacje o sgsiedztwie kazdego wierzchotka (struktura grafu), jak
ijego cechy.

6.1.2. Znaczenie problemu i zastosowania
Klasyfikacja wierzchotkéw ma szerokie zastosowania praktyczne.

Jednym z najwazniejszych jest wykrywanie botéw w sieciach spotecznosciowych.
W tym przypadku modele analizujg grafy znajomosci oraz wzorce interakcji, aby
identyfikowa¢ konta automatyczne lub prowadzace ztos$liwg dziatalno$¢. Techniki
te sg skuteczne nawet przy ograniczonych danych wejsciowych i pozwalajg na roz-
poznawanie botdw o réznych strategiach kamuflazu (Kalameyets, 2021).

W sektorze finansowym klasyfikacja wierzchotkéw wspiera wykrywanie oszustw
poprzez analize relacji miedzy transakcjami, punktami sprzedazy i uzytkownikami
kart kredytowych. Sieci GNN umozliwiaja identyfikacje ztozonych wzorcéw oszustw
znacznie skuteczniej niz tradycyjne metody (Johannessen, Jullum, 2023; Pereira,
Murai, 2021).

W biologii obliczeniowej klasyfikacja gen6w na podstawie sieci molekularnych po-
zwala przewidywac funkcje nieznanych genéw oraz ich zwigzki z chorobami. Metody
te wykorzystuja podejscie ,wina przez skojarzenie” (ang. guilt-by-association), za-
ktadajace, ze geny silnie polaczone w sieci majg podobne funkcje (R. Liu, Mancuso,
Yannakopoulos et al., 2020; Mancuso, Johnson, Liu et al., 2024).
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W biezacym podrozdziale zajmiemy sie klasyfikacja tematyczng stron internetowych
na Facebooku na podstawie ich sasiedztwa (wzajemnych linkéw) oraz zawartosci.
Analiza ta wspiera personalizacje tresci i optymalizacje kampanii reklamowych.
Przyktadowo klasyfikacja interakcji na stronach marek pozwala zrozumie¢ wzorce
zaangazowania uzytkownikéw oraz segmentowac strony wedtug ich popularnosci
i aktywnosci fanéw (Chiu, 2021).

6.1.3. Klasyfikacja tematyczna stron na Facebooku

< Eksperyment 11. Klasyfikacja tematyczna stron na Facebooku

Implementacja eksperymentu znajduje sie w notatniku rozdzial 6 zastosowania_
sieci_gnn/01_facebook_klasyfikacja_wierzcholkow.ipynb.
Ze wzgledu na stopien skomplikowania i objetos¢ omawianego przyktadu w czesci
ksigzkowej zostang omoéwione zatozenia, parametry i wyniki. Detale implementacyjne
znajduja sie w dotgczonych materiatach (notatniku).

W tym podrozdziale przedstawiamy szczeg6towa analize studium przypadku opar-
tego na zbiorze danych Facebook Large Page-Page Network, ktory jest czeScig re-
pozytorium Stanford SNAPL. Zbiér ten ilustruje zastosowanie grafowych sieci
neuronowych do wieloklasowej klasyfikacji wierzchotkéw i koncentruje sie na rze-
czywistych danych z sieci spotecznos$ciowej (Rozemberczki, Allen, Sarkar, 2021).

Opisywany zbiér danych to graf reprezentujacy zweryfikowane strony na Facebooku,
gdzie:

» Wierzcholki odpowiadajg oficjalnym stronom.

» Krawedzie reprezentujg wzajemne ,polubienia” miedzy nimi.
Kazdy wierzchotek nalezy do jednej z czterech kategorii zdefiniowanych przez Fa-
cebook:

1. Firmy (~30% wartoSci).

2. Organizacje rzadowe (~28% wartosci).

3. Politycy (~25% wartosci).

4. Programy telewizyjne (~14% wartosci).

Problemem badawczym jest wieloklasowa klasyfikacja wierzchotkéw — prze-
widzenie kategorii kazdej strony na podstawie jej cech oraz struktury grafu.

Analizowany graf sktada sie z 22 470 wierzchotkéw, 171 002 krawedzi, jest strukturg
spéjna (tzn. z kazdego wierzchotka mozna dotrze¢ do kazdego innego), a $redni
stopien wierzchotka wynosi 15,22, co wskazuje na intensywna siatke potgczen. Dla
poréwnania maksymalny stopien wierzchotka to 709. Na zbioér treningowy/wali-
dacyjny i testowy wybrano losowo odpowiednio 15 760, 3370 i 3370 wierzchotkow.

L https://snap.stanford.edu/data/facebook-large-page-page-network.html
[dostep: 20 listopada 2025].
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Na zbiér cech wierzchotkéw sktada sie macierz 31 zanonimizowanych warto$ci nu-
merycznych, reprezentujgcych rozmaite cechy poszczegdlnych witryn.

Ze wzgledu na wielko$¢ grafu i wektora cech oraz spoteczno$ciowy charakter pro-
blemu do treningu wybrano metode prébkowania wycinkéw uczacych w oparciu
o spotecznosci (omawiang w podrozdziale 5.2.2).

Pierwszga fazg eksperymentu byt wybdr hiperparametréw i optymalizacja modeli.
Optymalizator dokonywat wyboru sposréd:

* architektur splotu SAGE, GAT, GCN oraz ClusterGCN (bedacego odmiang GCN
przeznaczong dla probleméw spotecznos$ciowych);

 agregacji pojedynczych (suma/$rednia/maksimum) oraz ich kombinacji dwu-
i trzyelementowych;

* mechanizmu potgczen skokowych z réznymi sposobami taczenia poprzednich
warstw (konkatenacja/maksimum/LSTM);

» ewentualnie dodatkowych hiperparametréw przeznaczonych dla poszczegdél-
nych modeli splotu (takich jak normalizacja SAGE lub liczba , gtéw” uwagi).

Optymalizacja hiperparametréow byta prowadzona za pomocg biblioteki Optuna
z wykorzystaniem zbioréw treningowego i walidacyjnego. W jej wyniku wybrane
zostaty najlepsze hiperparametry (tabela 6.1).

TABELA 6.1. Hiperparametry dla modelu klasyfikacji stron na Facebooku

Hiperparametr Wartosc¢
Architektura splotu SAGE

Liczba neuronéw w pojedynczej warstwie 32

Liczba warstw 3

Agregacja Maksimum
Potgczenia skokowe Konkatenacja
Normalizacja Tak

Projekcja Tak
Normalizacja probki treningowej Tak

Po zakonczeniu tego procesu przystapiono do szkolenia modelu z pomoca biblio-
teki PyTorch Lightning. Trening prowadzony byt przez 50 epok z uruchomionym
mechanizmem wczesnego przerywania po 3 epokach w przypadku pogorszenia
wynikdw oraz biezgcym zapisywaniem najlepszego modelu.

Tabela 6.2 podsumowuje uzyskane wyniki. Wida¢ ewidentng poprawe zaréwno
dla metryki F1, jak i AUC dla zbioru walidacyjnego — przed treningiem i po nim.
Ostateczny wynik dla zbioru testowego nie odbiega znaczaco od wynikéw walida-
cyjnych.
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TABELA 6.2. Wyniki klasyfikacji zbioru danych stron na Facebooku

Faza
Metryka Zbior
Przed treningiem Po treningu
F1 Walidacyjny 0,164 0,686
Testowy — 0,671
AUC Walidacyjny 0,493 0,839
Testowy - 0,841

Oprocz klasyfikacji za pomoca modelu mozna go takze wykorzysta¢ do wizualizacji
zbioru danych. Budujac wektory reprezentacji wierzchotkéw, a nastepnie podda-
jac je redukcji wymiarowosci, mozna stworzy¢ reprezentacje wektoré6w osadzenia
na plaszczyznie. Jest to niezwykle przydatne w sytuacji, gdy chcemy sprawdzi¢ ja-
kos$¢ wykonania zadania i separacje poszczegdlnych klas. Rysunek 6.1 przedstawia
uzyskany rezultat. Wida¢ wyraznie, ze klasy takie jak government, company oraz
politician zostaty prawidtowo odseparowane i tworzg odrézniajace sie klastry na
przeciwlegtych krancach chmury punktéw. Klasa tvshow jest wymieszana z pozo-
stalymi. Model ewidentnie miatl trudnos$ci z odréznieniem jej od pozostatych.

Klasa
«  company
*  government
politician
tvshow

3,00

2,00

1,00

Wymiar 2

0,00

-1,00

-2,00

-3,00 -2,00 -1,00 0,00 100 2,00 3,00 4,00
Wymiar 1

RYSUNEK 6.1. Wizualizacja wyniku klasyfikacji stron na Facebooku

Przeprowadzony eksperyment pokazuje, ze model sieci grafowej relatywnie dobrze
poradzit sobie z klasyfikacja stron na Facebooku. Polem do poprawy jest zdecydo-
wanie jako$¢ predykcji dla klasy tvshow, ktéra zaniza wynik ogélny i (co jest wi-
doczne w wizualizacji na ptaszczyznie) nie odréznia sie wyraznie od pozostatych.
Mozliwe jest przeprowadzenie dalszego strojenia parametréw i wykorzystanie
bardziej ztozonej architektury.
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6.2. Klasyfikacja krawedzi

6.2.1. Postac¢ formalna

Klasyfikacja krawedzi w grafach to zadanie, w ktérym celem jest przypisanie kaz-
demu polaczeniu (krawedzi) e,,, miedzy wierzchotkami v oraz u etykiety y,,, na-
lezacej do zbioru Y. W zaleznosci od specyfiki problemu etykieta moze by¢ binarna
(0 — krawedz nie wystepuje, 1 — krawedz wystepuje) lub mie¢ wiele wartosci
odzwierciedlajacych okreslone zjawiska. Dla uproszczenia oraz w zwiazku z pre-
zentowanym dalej przyktadem oméwiona zostanie formalizacja tego dziatania dla
Klasyfikacji binarne;j.

W rozwigzywaniu tego zadania stosuje sie podejscie dwuetapowe:

1. Krok 1. Budowanie reprezentacji wierzchotkéw z wykorzystaniem grafowych
sieci neuronowych:

h, = GNN(G,X),v €V, (47)

H ={h, | Vv eV}, (48)

gdzie G to graf z wierzchotkami i krawedziami, X to macierz cech
wierzchotkéw, a GNN to model splotu grafowego.

2. Krok 2. Predykcja etykiety dla par wierzchotkéw {(u, v) | u, v € V} za pomocg
wyspecjalizowanego modelu LinkPred. Jako wejscie wykorzystuje on wektory
reprezentacji skonstruowane przez sie¢ GNN:

$ww = LinkPred(h,, h,), 3., € [0, 1]. (49)

Wynik predykcji, bedacy prawdopodobienstwem istnienia/nieistnienia krawedzi,
jest nastepnie podstawa do obliczenia funkcji kosztu, najczesciej entropii krzyzo-
wej lub binarnej:

1
LBCE = m Z [yuv lOg yuv + (1 - yuv) lOg(l - yuv)] . (50)

(uwv)EE

Opisane zadanie mozna przedstawi¢ graficznie jak na ilustracji ponizej (rysunek 6.2).
Poczatkowo model GNN tworzy reprezentacje wektorowa kazdego wierzchotka.
Nastepnie pary takich reprezentacji (dla wierzchotkéw potaczonych krawedziami)
sg wykorzystywane do klasyfikacji potaczen (prawdziwe/istniejace — jasne; nie-
prawdziwe/nieistniejagce — ciemne).

W tak przedstawionej formalizacji problemu kryje sie jednak pewna putapka. Stan-
dardowo bowiem graf G zawiera tylko krawedzie realnie istniejagce — ,prawdziwe”.
Aby przeprowadzi¢ proces nauki, konieczne jest sztuczne dodanie krawedzi ,nega-
tywnych” — oznaczonych etykieta ,0” (Hamilton, 2020; Hamilton, Ying, Leskovec,
2017). Taki proces nosi nazwe ,,probkowania negatywnego” (ang. negative sampling)
ijest szeroko stosowany w zadaniach takich jak systemy rekomendacyjne (Liu, Zhong,
Che etal,, 2022), a nawet analiza jezyka naturalnego (Yang, Ding, Huang et al., 2024).
Generowane negatywne probki moga by¢ catkowicie losowe lub uwzgledniac¢ bar-
dziej zaawansowane kryteria (np. odlegtos¢ topologiczng miedzy wierzchotkami).
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h, = GNN(G, X) h, = GNN(G, X) h,= GNN(G, X)

h, = GNN(G, X) h, = GNN(G, X)

¥,, = LinkPred(h h.)
¥,, = LinkPred(h h )

RYSUNEK 6.2. Wizualizacja dwustopniowego procesu klasyfikacji wierzchotkéw

Biblioteka PyG oferuje kilka narzedzi wspomagajacych proces prébkowania nega-
tywnego:
¢ RandomLinkSp1it — umozliwia jednorazowe i statyczne dodanie krawedzi ne-
gatywnych do zbioréw treningowego, walidacyjnego i testowego. Narzedzie to
pozwala na kontrolowanie proporcji negatywnych prébek wzgledem pozytyw-
nych poprzez parametr neg_sampling_ratio.

* LinkNeighborLoader — stosowany podczas konstruowania prébek uczacych
(ang. batch). Dynamicznie generuje negatywne probki dla kazdej iteracji tre-
ningowej, co pozwala na bardziej efektywne wykorzystanie danych i zwieksze-
nie r6znorodnosci probek.

Majac na uwadze powyzsze, po zastosowaniu probkowania negatywnego zbiér
krawedzi grafu E zawiera zardwno krawedzie ,prawdziwe” (realnie istniejace, kto6-
rych etykieta klasy to 1), jak i krawedzie ,fatszywe” (nieistniejace, ktorych etykieta
klasy to 0): E = E* U E~, co umozliwia przeprowadzenie procesu uczenia i klasy-
fikacji binarne;j.

6.2.2. Znaczenie problemu i zastosowania

Klasyfikacja krawedzi odgrywa kluczowa role w wielu dziedzinach nauki i biznesu,
umozliwiajac analize relacji miedzy obiektami w sieciach grafowych. Jednym z istotnych
zastosowan jest wykrywanie interakcji miedzy lekami (ang. Drug-Drug Interaction,
DDI), co ma szczeg6lne znaczenie w farmakologii i opiece zdrowotnej. Identyfikacja
potencjalnie niebezpiecznych interakcji pozwala na zwiekszenie bezpieczenistwa
terapii oraz opracowanie skuteczniejszych rekomendacji medycznych (Han, Xie, Li
etal, 2022). Problem ten zostanie szerzej omdwiony w kolejnym podrozdziale.

W analizie sieci spotecznosciowych klasyfikacja krawedzi stuzy do wykrywania po-
wigzan miedzy uzytkownikami, co znajduje zastosowanie w systemach rekomen-
dacji znajomosci, identyfikacji oséb o kluczowym wptywie w danej spotecznosci oraz
detekcji fatszywych kont i botéw (Silva, Correia, Maziero, 2023). W sektorze finan-
sowym natomiast umozliwia wykrywanie anomalii poprzez analize nietypowych
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transakcji i powigzan miedzy podmiotami, co wspomaga przeciwdziatanie oszustwom
oraz nieprawidtowo$ciom w systemach bankowych i ptatniczych (Johannessen, Jullum,
2023; Pereira, Murai, 2021).

Biologia obliczeniowa wykorzystuje klasyfikacje krawedzi do badania zaleznosci
miedzy biatkami i genami. Grafowe sieci neuronowe pozwalajg na identyfikacje no-
wych potgczen w sieciach biologicznych, co moze prowadzi¢ do gltebszego zrozu-
mienia mechanizméw choréb oraz wskazania potencjalnych celéw terapeutycznych
(Muzio, O’'Bray, Borgwardt, 2021; Wu, Gao, Zeng et al., 2022).

6.2.3. Badanie oddziatywania pomiedzy lekami
— klasyfikacja krawedzi

< Eksperyment 12. Klasyfikacja interakcji pomiedzy lekami

Implementacja eksperymentu znajduje sie w notatniku rozdzial 6 zastosowania_
sieci_gnn/02_interakcje_lekow_klasyfikacja_wierzcholkow.ipynb.
Ze wzgledu na stopien skomplikowania i objetos¢ omawianego przyktadu w czesci
ksigzkowej zostang omdwione zatozenia, parametry i wyniki. Detale implementacyjne
znajduja sie w dotgczonych materiatach (notatniku).

W tym podrozdziale analizujemy praktyczne zastosowanie klasyfikacji krawedzi
w grafach na przyktadzie sieci interakcji lekéw (DDI). Studium przypadku opiera
sie na zbiorze danych ogb1-ddi, ktéry pochodzi z platformy Open Graph Benchmark
(OGB)?1i zostat zaprojektowany do oceny metod uczenia maszynowego na grafach
dla cel6w branzy farmaceutycznej (Guney, 2017). Zbior ten przedstawia jednorodny,
nieskierowany i niewazony graf, w ktérym:

1. Wierzcholki reprezentuja leki zatwierdzone przez FDA lub bedace w fazie
eksperymentalne;j.

2. Krawedzie odzwierciedlajg interakcje miedzy lekami, czyli sytuacje, w ktérych
wspdlne stosowanie dwdch lekéw prowadzi do efektu istotnie réznigcego sie
od oczekiwanego dziatania kazdego z nich osobno.

Problemem badawczym jest przewidywanie interakcji miedzy lekami na podsta-
wie juz znanych powigzan. W tym celu wykorzystuje sie zaréwno miary F1, AUC
i czutos¢ jako metryki ewaluacji, jak i K najlepszych trafien (ang. Hits@K), ktéra
ocenia zdolno$¢ modelu do budowania poprawnego rankingu: prawdziwe interak-
cje (krawedzie) powinny uzyskiwaé wyzsze prawdopodobienstwa niz losowo wy-
brane prébki negatywne. Dla tego zbioru danych przyjeto specyficzny podziat na
zestawy treningowy, walidacyjny i testowy, bazujacy na oddziatywaniach lekéw na
biatka. Dzieki temu testowane sa mozliwosci modeli w generowaniu praktycznie
uzytecznych prognoz dla lekéw o odmiennych mechanizmach biologicznego od-
dziatywania w poréwnaniu do substancji obecnych w zbiorze treningowym.

2 https://ogb.stanford.edu/docs/linkprop/#ogbl-ddi [dostep: 20 listopada 2025].
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Zbiér ogb1-ddi cechuje sie duzg objetoscia: zawiera 4267 wierzcholkdéw oraz
1 334 889 krawedzi, co czyni go wymagajacym pod wzgledem obliczeniowym. Na
potrzeby tej ksiazki oraz towarzyszacego przewodnika zdecydowano sie na zmniej-
szenie jego wielkosci. W tym celu podjeto nastepujgce kroki:

1. Przeanalizowano spoéjne sktadowe grafu, czyli potaczone elementy sieci.

2. Sposrdd wszystkich spéjnych sktadowych wybrano te, ktéra zawiera okoto 20%
wszystkich wierzchotkéw grafu.

3. Ograniczono graf do tej wybranej sktadowej, zachowujac jedynie okoto 20% wierz-
chotkéw oraz krawedzie taczace je ze soba.

4. Podzielono dane na zestawy: zbiory treningowy (80%), walidacyjny (10%) oraz
testowy (10%). Dodatkowo dodano krawedzie negatywne (brak interakcji)
w proporgcji 1:1 wzgledem krawedzi pozytywnych (rzeczywistych interakc;ji).

Po przeprowadzeniu powyzszych krokéw uzyskano nastepujace probki:
1. Liczba wierzchotkéw: 845 we wszystkich zbiorach (treningowym, walidacyj-
nym i testowym).
2. Zbior treningowy: 136 384 krawedzi (pozytywnych i negatywnych).
3. Zbiér walidacyjny: 17 046 krawedzi (pozytywnych i negatywnych).
4. Zbior testowy: 17 046 krawedzi (pozytywnych i negatywnych).

Pomimo redukgcji rozmiaru danych proces treningu pozostaje czasochtonny ze wzgledu
na duzg liczbe krawedzi i ztozono$¢ modelu.

Szkolenie modelu odbywato sie z wykorzystaniem mechanizméw prébkowania
w oparciu o sgsiedztwo (opisanych w podrozdziale 5.2.1), dobranych w taki sposéb,
aby zapewni¢ kompromis miedzy efektywnos$cia uczenia a jego czasem. Szczeg6lnie
warto zwroci¢ uwage na fragment kodu zaprezentowany ponizej, ukazujacy konfi-
guracje klasy LinkNeighborLoader:

1. train_loader = pyg.loader.LinkNeighborLoader(

2 train_data,

3 batch_size=1024,

4, num_neighbors=[-1, 15, 10, 5],

5. shuffle=True,

6 edge_Tabel_index=train_data.edge_label_index,
7 edge_Tabel=train_data.edge_label,

8 num_workers=3)

Przedstawiona metoda prébkowania zbioru treningowego rekurencyjnie pobiera
sasiadow w czterech krokach (wiersz 4.):

» wszystkich bezposrednich sgsiadéow danego wierzchotka (warto$¢ -1);

» 15 sgsiadéw dla kazdego sasiada bezposredniego;

* kolejnych 10 w odlegtosci dwdch skokow;

» kolejnych 5 w odlegtosci trzech skokéw.
Takie probkowanie moze szybko doprowadzi¢ do gwattownego wzrostu liczby wierz-

chotkéw. Z tego wzgledu ograniczono catkowitg wielko$¢ probki do 1024 elemen-
tow (wiersz 3.).

W przypadku zbioréw walidacyjnego i testowego, ze wzgledu na mniejsze rozmiary,
mozliwe jest ich cato$ciowe zatadowanie do pamieci od razu.
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Podobnie jak wcze$niej, pierwsza faze eksperymentu stanowit wybér hiperparame-
trow i optymalizacja modeli. Tym razem (gtéwnie ze wzgledéw wydajno$ciowych)
wykorzystana zostata tylko architektura SAGE, po ktdrej nastepowat model doko-
nujacy klasyfikacji wierzchotka. Hiperparametry brane podczas optymalizacji to:

¢ liczba warstw i neuronéw dla modelu SAGE;

* sposoby agregacji sgsiednich wierzchotkéw (suma/srednia/maksimum oraz
ich kombinacje 2- i 3-elementowe);

* mechanizm potgczen skokowych z ré6znymi sposobami tgczenia poprzednich
warstw (konkatenacja/maksimum/LSTM);

« architektura sieci klasyfikujacej potaczenia (liczba warstw i neuronéw).

Optymalizacja hiperparametréow byta prowadzona za pomocg biblioteki Optuna
z wykorzystaniem zbioréw treningowego i walidacyjnego.

Tabela 6.3 przedstawia koncowe hiperparametry.

TABELA 6.3. Przyktadowe zoptymalizowane hiperparametry dla predykcji potgczen

Hiperparametr Wartosé

Liczba neurondéw w warstwie splotu 128

Liczba warstw 3

Agregacja Suma, maksimum, $rednia
Potgczenia skokowe Konkatenacja
Normalizacja Tak

Projekcja Tak

Normalizacja prébki treningowej Tak

Liczba warstw klasyfikatora potgczen 3

Liczba neurondéw w warstwie klasyfikatora 256

Po zakonczeniu tego procesu przystapiono do szkolenia modelu. Trening prowa-
dzony byt przez 25 epok z uruchomionym mechanizmem wczesnego przerywania
(po 3 epokach) w przypadku pogorszenia wynikéw oraz biezacym zapisywaniem
najlepszego modelu.

Tabela 6.4 podsumowuje uzyskane wyniki. Wida¢ ewidentng poprawe zaréwno dla
metryki F1, jaki AUC dla zbioru walidacyjnego — przed treningiem i po nim. Ostateczny
wynik dla zbioru testowego nie odbiega znaczaco od wynikdéw walidacyjnych.

Model wykazat znaczacg poprawe wynikdw w procesie uczenia, co jest widoczne
we wszystkich analizowanych metrykach. W zadaniu predykcji istnienia lub braku
krawedzi, opierajacym sie na rozr6znianiu prébek negatywnych od rzeczywistych,
kluczowe znaczenie majg wspotczynniki trafie. Okreslajg one, jak czesto sposrod
K predykcji o najwyzszym prawdopodobienstwie rzeczywiste krawedzie uzyskuja
wyzsze wskazania niz obiekty nieistniejace. W przeprowadzonym eksperymencie
zauwazalna jest istotna réznica miedzy wskaznikami trafien dla top 10 i top 20
predykcji dla zbioru testowego. Srednio 55% sposréd 10 najwyzej ocenionych pre-
dykcji poprawnie wskazuje istniejgce potaczenia. W przypadku rozszerzenia ana-
lizy do 20 najlepszych predykcji odsetek ten wzrasta do okoto 78%.
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TABELA 6.4. Wyniki klasyfikacji potagczern w modelu interakcji lekéw

Faza
Metryka Zbior
Przed treningiem Po treningu

F1 Walidacyjny 0,0 0,861

Testowy - 0,665
AUC Walidacyjny 0,395 0,93

Testowy - 0,92
Sr. trafied w top 10 Walidacyjny 0,0 0,57

Testowy - 0,55
Sr. trafied w top 20 Walidacyjny 0,0 0,79

Testowy - 0,78

Dtuzszy trening oraz bardziej agresywne strojenie hiperparametréw mogtyby istot-
nie poprawi¢ wyniki w zakresie top 10.

Opisane podejscie znajduje szerokie zastosowanie w systemach rekomendacyjnych,
gdzie kluczowe jest okreslenie, jaka cze$¢ proponowanych uzytkownikowi sugestii
rzeczywiscie spetnia jego oczekiwania.

6.3. Klasyfikacja grafow

6.3.1. Postac¢ formalna

Klasyfikacja catych graféw jest kluczowym zagadnieniem w analizie danych struk-
turalnych, znajdujacym szerokie zastosowanie w wielu gateziach nauki i biznesu.
W przeciwienstwie do klasyfikacji wierzchotkéw czy krawedzi, gdzie predykcje do-
tycza lokalnych komponentéw grafu, klasyfikacja graféow koncentruje sie na jego
globalnych wtasciwosciach.

Celem tego zadania jest przypisanie pojedynczej etykiety y € Y do catego grafu
G = (V,E), gdzie Y oznacza zbiér mozliwych klas. Proces ten mozna podzieli¢ na
dwa gtéwne etapy:

1. Konstrukcja reprezentacji grafu, w ktérej globalne wtasciwosci strukturalne
i atrybuty wierzchotkéw sg transformowane do zwartych reprezentacji nume-
rycznych.

2. Klasyfikacja oparta na tych reprezentacjach, gdzie model uczacy dokonuje
predykcji etykiety na podstawie osadzenia catego grafu.

Pierwszym krokiem jest wyznaczenie reprezentacji wierzchotkéw przy uzyciu do-
wolnej grafowej sieci neuronowej (ang. Graph Neural Network, GNN). Proces ten
jest analogiczny do tego stosowanego w klasyfikacji krawedzi i wierzchotkow:

h, = GNN(G,X),v € V,
H={h, | VveEV}]
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Nastepnie uzyskane osadzenia wierzchotkéw sg agregowane do jednej reprezen-
tacji opisujacej caty graf:

h; = GlobalPool({h, | Vv € V}). (51)

Funkcja GlobalPool(-) petni role agregatora i moze przyjmowac rozne formy, takie
jak srednia, maksimum, suma czy mechanizmy bardziej zaawansowane, np. uwzgled-
niajgce stopnie wierzchotkow.

Zdefiniowana reprezentacja h; stanowi wejscie do modelu klasyfikacyjnego, ktéry
przypisuje grafowi etykiete:

9 = GraphClf(hg), (52)
gdzie GraphCIf(-) to dowolny klasyfikator, np. wielowarstwowa sie¢ neuronowa

MLP. Proces optymalizacji przebiega poprzez minimalizacje funkcji kosztu, np. en-
tropii krzyzowej:

N
1
L= N Z loss(Graphle(hGi). }’i) ) (53)

i=1
gdzie:
¢ loss(+,) to funkcja kosztu dla pojedynczego przyktadu uczacego,
* hg, to wektor reprezentacji grafu G;,
* y; to rzeczywista etykieta przypisana do grafu G;,

* Nto liczba graféw w zbiorze uczacym.

Rysunek 6.3 ilustruje opisany proces.

- GNN(G e - s h,=GNN(G, X)
h, = GNN(G, X) h, = GNN(G, X) h.=GNN(G, X) h, = GNN(G,, X) 2
h_=GNN(G,, X)
|
—@ |
h, = GNN(G,. X) h, = GNN(G, X) @ h, = GNN(G,, X)

y h

h, = GlobalPool || h, h,, = GlobalPool ::"'

) h, ’ s

h h,

¥, = GraphClf(h_) V... = GraphClf(h_)

RYSUNEK 6.3. Ilustracja procesu budowania reprezentacji catego grafu

W zadaniach klasyfikacji graféw czesto pracujemy z wieloma grafami, tj. zbiorem
{G1,G,, ..., Gy}, gdzie kazdy graf G; = (V;, E;) ma wlasny zestaw wierzchotkow V;
i krawedzi E;. Aby umozliwi¢ efektywne uczenie modeli, grafy te musza zostac
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scalone w jedng wspdlng strukture. PyG oferuje wyspecjalizowane mechanizmy
umozliwiajace ich efektywne potaczenie, obejmujace:
1. Konkatenacje macierzy cech wierzchotkow:
X = concat(X{, X5, ..., Xy), (54)
gdzie X; € RIVil*4 to macierz cech wierzchotkéw dla grafu G;.
2. Laczenie macierzy sgsiedztwa w globalna strukture:
A4, .. 0

A= , (55)

0 0 Ay
gdzie kazda macierz A; jest macierza sasiedztwa w grafie G;.

3. Dodanie identyfikatora przynaleznosci kazdego wierzchotka do konkretnego
grafu:

) (56)

batch = [1,1, w1,2,2,..,2,...,N,N,...,N
V1l (V2] [Vl
gdzie warto$¢ w wektorze batch wskazuje numer grafu Zrédlowego dla
danego wierzchotka.

Postugujac sie grafem z przywotanego wczesniej przyktadu (patrz rysunek 6.3),
mozemy przyjaé, ze macierze cech wierzchotkéw dla grafu 1 (wierzchotki 1 - 5)
oraz grafu 2 (wierzchotki 6 - 9) wygladaja nastepujaco:

_1 1_

X1=

X2=

OO U W
O ONO U WN

Dla uproszczenia przyjeto, ze cechy wierzchotkéw to dwuelementowe wektory
o wartos$ciach odpowiadajacych indeksowi wierzchotka.

Lista sasiedztwa dla obu graféw przedstawia sie nastepujaco:

a=ly 5448
a=[; 53

Mimo Ze oba grafy s3g nieskierowane, dla uproszczenia przedstawiono jednokierun-
kowe listy sgsiedztwa.

Podczas budowania prébki treningowej PyG skonstruowatby struktury zblizone
do przedstawionych ponizej, 1aczac ze soba grafy:
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1 1
2 2
3 3
4 4
X=|5 5
6 6
7 7
8 8
9 9l
12 2 3 3 6 8 9
A_[23445777]

batch=[1 1 1 1 1 2 2 2]

Indeksy w macierzy batch odpowiadajg przypisaniu przyktadéw do oryginalnego
grafu. W ten spos6b nie trzeba w zaden spos6b modyfikowa¢ standardowego kodu
stuzacego do uczenia modeli sieci grafowych.

Fragment kodu ponizej ilustruje przyktad skonstruowania opisywanej probki (pa-
mietajmy o indeksowaniu numeréw wierzchotkéw od zera).

gl = pyg.data.Data()
gl.x = th.tensor([[i, i] for i in range(l, 6)], dtype=th.float)
gl.edge_index = th.tensor([
[o, 1, 1, 2, 2, 31,
[1, 2, 3, 3, 4, 4]
1)

ONOOOT P WN -

g2 = pyg.data.Data()
9. g2.x = th.tensor([[i, i] for i in range(6, 10)], dtype=th.float)
10. g2.edge _index = th.tensor([

11. [o, 2, 31,
12. [1, 1, 1]
13. 1)

14.

15. small_data_loader = pyg.loader.DatalLoader([gl, g2], batch_size=10)
16. batch = next(iter(small_data_loader))

17. batch

18. >> DataBatch(x=[9, 2], edge_index=[2, 9], batch=[9], ptr=[3])
19. batch.x

20. >> tensor([[1., 1.],

21. >> [2., 2.],

22. >> [3., 3.1,

23. >> [4., 4.1,

24, >> [5., 5.],

25. >> [6., 6.],

26. >> [7., 7.1,

27. >> [8., 8.1,

28. >> [9., 9.11)

29. batch.edge_index

30. >> tensor([[0, 1, 1, 2, 2, 3, 5, 7, 8],
31. >> [1, 2, 3, 3, 4, 4, 6, 6, 6]])

32. batch.batch
33. >> tensor([0, 0, 0, 0, 0, 1, 1, 1, 1])
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Skorowidz

A

agregacje wielokrotne, 178
algorytm
mechanizmu Jumping
Knowledge, 183
MPNN, 53
splotu GAT, 92
splotu GIN, 109
splotu GraphSAGE, 81, 84
testu WL, 41
uczenia sieci GNN, 163
analiza
danych strukturalnych,
189,199
sieci spotecznos$ciowych, 5
spektralna, 30
analizy molekularne, 5
architektury przestrzenne
i czasowe, STGNNs, 51

B

badania toksycznosci
czasteczek, 203
bazy danych grafowe, 20
biblioteka
Deep Graph Library, 21
graph-tool, 19
iGraph, 19
NetworkX, 19, 24
Open Graph Benchmark,
151
PyTorch Geometric, 20, 56
SNAP, 19
Stanford DeepSNAP, 141
bliskos¢, 35

Kup ksigzke

C

cechy, features, 32, 36
centralnos¢
sasiedztwa, closeness
centrality, 35
stopnia, degree
centrality, 33
ChebNet, Chebyshev
Spectral CNN, 75

D

dane
testowe, 131, 163
treningowe, 131, 163
walidacyjne, 131, 163
Deep Graph Library, DGL,
21,22
droga w grafie, 26
drzewo rekurencyjnego
sasiedztwa, 174
duze zbiory danych, 151
dziatania
na poziomie catego
grafu, 47
na poziomie krawedzi,
48,140
na poziomie
wierzchotkow, 48

E
ekwiwariancja, 50
epoka, epoch, 152,163

F

funkcja
AGGREGATE, 53
betweenness_centrality,
34

closeness_centrality, 35
degree_centrality, 33
degree_histogram, 37
MESSAGE, 52

UPDATE, 53

G

GAT, Graph Attention
Network, 90
GCN, Graph Convolution
Network, 5, 74-76
generowanie grafow, 48
GIN, Graph Isomorphism
Network, 106, 172
gtowa predykcyjna,
prediction head, 60
GNN, Graph Neural
Networks, 5,47, 70
graf
,Karate Club”, 132, 133,
138, 148-150
Cora, 63-65
MovieLens, 211
MUTAG, 151
graflety, graphlets, 36
grafowe
autoenkodery, GAEs, 51
bazy danych, 20
sieci neuronowe, GNN, 5,
47,70, Patrz takze
warstwy splotu
grafowego
model MPNN, 51
zadania, 47
zasady dziatania, 49
zastosowania, 189
grafy
dtugosc¢ drogi, 26
generowanie, 48

Pole¢ ksigzke


https://helion.pl/rf/siegra
https://helion.pl/rt/siegra

SKOROWIDZ

heterogeniczne, 43, 44
reprezentacja, 45
warstwy splotu, 114

klasyfikacja, 199
krawedzi, 194
wierzchotkéw, 189

listy sasiedztwa, 30

macierze sasiedztwa, 28

nadmierne wygtadzanie,

165
nieskierowane, 25, 27
niespdjne, 26
podgrafy, 26
podziat indukcyjny, 151
problem izomorfizmu, 39
regresja krawedzi, 208
reprezentacja
numeryczna, 36, 38
skierowane, digrafy, 25,
27
spdjne, 26
Sciezka, 26
$rednia dtugos¢
najkrétszej Sciezki, 38
$rednica, 37
wiedzy, KG, 6
graph-tool, 19

H

heterogeniczne
atrybuty, 45
sieci informacyjne, HIN,
43
hiperparametry, 192, 198,
205,213

iGraph, 19

iloczyn
Hadamarda, 12
skalarny, 12

implementacja
konwersji warstwy

splotu, 121

modelu MPNN, 56
naiwna JK, 183
NGNN, 177,179
splotu GAT, 99
splotu GCN, 76
splotu GIN, 110
splotu GNN, 72
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splotu SAGE, 85
testu WL, 41
wbudowana JK, 185
indeksy, 12
indukcja, 134
indukcyjny podziat
grafu, 151
krawedzi, 141
wierzchotkéw, 135
inwariancja, 50
izomorfizm graféw, 39

K

klasyfikacja, 47, 48, 61, 63
catych graféw, 199
badanie toksycznosci
czasteczek, 203
zastosowania, 203
interakcji pomiedzy
lekami, 196
krawedzi, 194
binarna, 208
wieloklasowa, 208
zastosowania, 195,
196, 207
tematyczna stron, 191
wierzchotkéw, 168, 189
wieloklasowa, 191
zastosowania, 190
Knowledge Graphs, KG, 6
konkatenacja, 13
konwolucyjne/splotowe
sieci grafowe, ConvGNNs,
51
krawedzie, 140, 191, 196
negatywne, negative
samples, 140
podziat indukcyjny, 141
podziat transdukcyjny,
145-148
przekazujace
wiadomo$ci, message
passing links, 140, 145
uczgce, supervision links,
140, 145

L
listy sasiedztwa, 30

223

M

macierz, 11

macierze sgsiedztwa, 28

mechanizm potaczen
skokowych, JK, 180

metasciezki, meta-path, 44

miary centralnosci
wierzchotkéw, 33, 36

MLP, multilayer perceptron,
49

model przekazywania
wiadomosci, MPNN, 51,
178, 203
implementacja, 56
jako czes¢ sieci, 60
zasady dziatania, 54
zastosowania, 61

MPNN, Message Passing
Neural Network, 51,178,
203

N

NetworkX, 19, 24

NGNN, network in graph
neural network, 175,
177,179,187

o

odkrywanie lekéw, 5, 203
optymalizacja struktur, 6

P

perceptron
wielowarstwowy, MLP, 49
podgrafy, 26
posrednictwo, betweenness
centrality, 33
predykcja, 168, 175, 209
problem nadmiernego
wygtadzania,
oversmoothing, 62, 164
projektowanie nowych
materiatéw, 203
probki uczace, mini-batch,
152,163
probkowanie
negatywne, 195
w oparciu o sgsiedztwo,
152
w oparciu o spotecznosci,
160
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przewidywanie
funkcji biatek, 203
wtasciwosci molekut,
203
PyTorch Geometric, PyG,
20,22,56

R

regresja, 47, 48, 61
krawedzi, 208

rekomendacje filméw
MovieLens, 210

rekurencyjne
grafy sasiedztwa, 173
sieci grafowe, RecGNNs,

51

repozytorium Stanford
SNAP, 191

rozklad czestosci stopni
wierzchotkéw, 37

S

SAGE, 80
sasiedztwo, 26, 152
rekurencyjne, 174
sieci
MPNN, 60
spektralne, Spectral
Graph Convolution, 51
w sieci grafowej, NGNN,
175
skalar, 11
SNAP, Stanford Network
Analysis Platform, 19
splot
GAT, 90
dziatanie, 90
implementacja, 99
GCN, 74
dziatanie, 75
implementacja, 76
GIN, 106
dziatanie, 106
implementacja, 110
GNN, 70
dziatanie, 70
implementacja, 72
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SAGE, 80
dziatanie, 81
implementacja, 85
z mechanizmem
NGNN, 187
z mechanizmem
potaczen
skokowych, 187
z wieloma
agregacjami, 187
splotowa sie¢ grafowa, GCN,
5,74-76
sploty grafu, graph
convolutions, 53
spotecznosci, 160
spéjnos¢ grafu, 26
Stanford
DeepSNAP, 141
SNAP, 191
stopien
$redni wierzchotka, 36
wierzchotka, 29, 32
systemy rekomendacyjne, 6,
207,209

T

test Weisfeilera-Lehmana,
39,171
implementacja, 41
transdukcja, 134
transdukcyjny podziat
krawedzi, 145-148
wierzchotkéw, 137

U

uczenie na duzych zbiorach,
151
prébkowanie w oparciu
o0 sgsiedztwo, 152
o spotecznosci, 160

w

walidacja krzyzowa,
cross-validation, 131
warstwy
splotu dla graféw
heterogenicznych, 114

splotu grafowego, graph
convolution networks,
53,60,67,125
agregacje
wielokrotne, 178
GAT, 90
GCN, 74
GIN, 106
GNN, 70
mechanizm potaczen
skokowych, 180
ograniczenie testem
WL, 171
podejscie NGNN, 175
problem nadmiernego
wygtadzania, 164
SAGE, 80
wektor, 11
wierzchotki, 25,191, 196
miary centralnosci, 33, 36
podziat indukcyjny, 135
podziat transdukcyjny,
137
rozktad czestosci stopni,
36
stopnie, 29, 32
stopnie Srednie, 36
wykrywanie
botéw, 5
interakcji miedzy lekami,
195

zbiér
danych Iris, 132
danych MovieLens, 208,

210

danych MUTAG, 203
elementow, 12
testowy, 163
treningowy, 163
walidacyjny, 163
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Cicha rewolucja,
ktora nadeszta

Grafowe sieci neuronowe (GNN, ang. graph neural
networks) to klasa modeli uczenia gtebokiego prze-
znaczona do analizy danych o strukturze grafowe;j.
W poczatkowym okresie ich rozwdj byt ograniczo-
ny przez brak efektywnych metod projektowania
i optymalizacji; w ostatnich latach bariery te w du-
zej mierze zostaty pokonane, co przetozyto sie na
dynamiczny postep teorii i praktyki. Modele GNN
znajdujg zastosowanie miedzy innymi w analizie
sieci spotecznosciowych, optymalizacji procesow
logistycznych, marketingu i pracy z bazami wiedzy.

Ta ksiazka zawiera kompleksowe opracowanie
tematyki sieci grafowych w konteks$cie uczenia ma-
szynowego. Tym samym wypetnia istotng luke na
polskim rynku wydawniczym, oferujac potaczenie
solidnych podstaw teoretycznych z praktycznym
zastosowaniem GNN. To przewodnik, ktéry syste-
matycznie przeprowadza przez kolejne zagadnienia
zwiazane z sieciami grafowymi:

= od narzedzi klasycznej analizy grafow
w érodowisku Pythona i wybranych zagadnien
teorii graféw

przez wprowadzenie do grafowych sieci
neuronowych, a takze przeglad wybranych
warstw splotu grafowego i dobrych praktyk

ich projektowania -

po zagadnienia zwiqza'ne 78 sZKolénhiem s

GNN i praktyczne przykta y ich zastoscﬁua
L) /

ISBN 9?8 83-289- 3390 3

i9H788328‘933903

— analityk danych, zajmu-
je sie systemami uczenia
maszynowego i sztucznej
inteligencji od 2012 roku.
Projektowat i wdrazat roz-
wigzania ML/AI dla mie-
dzynarodowych i polskich
przedsiebiorstw w sektorach
finansowym, telekomunika-
cyjnym i logistycznym, pra-
cujac jako analityk danych
(data scientist), kierownik
zespotu badawczego i lider
techniczny. taczy dziatal-
nos¢ komercyjna z praca
akademicka; od 2017 roku
zwiazany z Uniwersytetem
Ekonomicznym we Wrocta-
wiu, gdzie specjalizuje sie
w optymalizacji proceséw
decyzyjnych z wykorzy-
staniem modeli uczenia
maszynowego, w szczegol-
nosci gtebokich sieci neu-
ronowych. Chetnie dzieli sie
wiedza i doswiadczeniem
ze stuchaczami w ramach
studiéw podyplomowych,
kursow, a takze Biznesowego
Indywidualnego Programu
Studiéw (BIPS). Autor licz-
nych recenzowanych publi-
kacji naukowych, prelegent
miedzynarodowych konfe-
rencji poswieconych najnow-
szym trendom w dziedzinie
uczenia maszynowego.
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