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Preface

Git Repository Management in 30 Days welcomes you!

This book will give you a complete and practical approach to managing Git
repositories. This book will help you grasp Git and take control of you are code,
whether you're a newbie or an experienced developer.

Git is a critical tool for code management in modern software development. It
lets engineers effectively track changes, collaborate with others, and manage code
versions. Git, on the other hand, can be difficult and overwhelming for people
who are new to it. This is where this book comes into play. This guide has been
created to help you learn Git systematically and logically, with lessons that will
take you from novice to expert in 30 days.

Each chapter of this book delves into a different facet of Git, beginning with
the fundamentals of version control and progressing to more advanced topics
like branching, merging, and rebasing. Collaboration, troubleshooting, and best
practices for optimizing your productivity will also be covered. By the end of this
book, you'll be able to confidently manage code repositories, interact with others,
and streamline your development process.

With clear explanations, real-world examples, and step-by-step directions, this
book is intended to be practical and approachable. We've also included challenges
to help you put what you've learned into practise and improve your skills. This
book is for you if you are a student, a nonexpert, or a professional developer.

Thank you for your interest in "Git Repository Management in 30 Days". We
hope you find it useful and educational, and we look forward to assisting you in
mastering Git and advancing your development abilities!

Chapter 1: Introduction to Git and GitHub - This is the introductory chapter.
Source control is one of the key concepts and tools that is widely used in the
software development process and without which DevOps makes little sense as
it helps to bring collaboration and transparency between the development and
operation teams. One of the most popular and well-liked source control systems
is GIT, which is elaborated and extended by GitHub. This chapter covers the
configuration and setup of GIT on various operating systems, as well as the
creation of a GitHub account.
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Chapter 2: Getting Started and Understanding Git and GitHub - Git and GitHub
go hand in hand, but users should be aware of the differences that define each
other's roles in the software development process. Any system or tool used to store
and manage changes to projects over time is referred to as version control. The key
advantages of source control include standardizing coding practices, parallelizing
development activities, and eliminating dependencies. This chapter covers all the
details around version control and goes on to examine Git in depth and detail,
allowing you to clear a few basics about Git and make the learning process go
more smoothly. Discussing Git gradually leads to the distinctions between Git and
GitHub.

Chapter 3: Git Branching, Merging, and Rebasing - This chapter focuses on
the essential capabilities of Git and GitHub, as well as how they complement
each other in the software development and DevOps processes. It addresses the
essential ideas of GIT as well as the basic day-to-day processes and commands
that you may encounter while using the Git source control.

Chapter 4: Deleting, Renaming, and Ignoring Files in Git - This chapter builds
on what readers learned in the previous chapter and allows you to make the final
decision before pushing and committing changes to source control. This process
of committing changes to the GitHub repo may include renaming, deleting, and
ignoring files in the project.

Chapter 5: Collaborating Towards Your/Other Larger Projects over GitHub - This
chapter discusses all of the process-related and critical aspects that should be kept
in mind and followed before attempting to contribute to an open-source project
that is being followed and used by a larger community from all over the world,
as opposed to maintaining and contributing to a repo maintained by a single user.

Chapter 6: Contributing Towards Open-Source Project Repo - As one of the
most important applications of using Git and GitHub together is how users can
contribute to open-source projects that are part of GitHub, and having worked in
open-source projects for quite some time, I've gained insights into how one should
approach their contributions towards an open-source way of working and process,
and one very important aspect of this is raising PR and issues over GitHub open
source projects in a way that can get the most traction and help.

Chapter 7: Tags and Releases Using Git - This chapter goes over all of the Git and
GitHub processes and important points to remember. Git only stores four kinds of
objects in its object store: blobs, trees, commits, and tags. Managing releases using
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Git and GitHub is a basic and straightforward procedure, and we will learn all
about the principles and underlying commands involved.

Chapter 8: Undo or Refresh all the Work Done - This chapter focuses on Git's
undo/refresh functionality, discussing all of the principles that Git exposes to
assist users to achieve similar functionalities, as well as how employing GitHub
processes and workflows can aid and make the corresponding job seamless and
efficient.

Chapter 9: Most Commonly Used Git Commands - This chapter is essentially a
summary of all of the chapters that we have gone through together. It will assist
all users, whether beginner, intermediate, or advanced, in referring to this chapter
whenever they may find it useful.
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CHAPTER 1

Introduction to
Git and
GitHub

ource control is one of the key concepts and tools used extensively in software

development. With it, DevOps makes more sense as it helps bring collaboration
and transparency between the development and the operation teams. The tracking
and management of code changes are known as source control, and it ensures that
developers are constantly working on the correct version of the source. One of the
most used and loved by community source control is Git, which is elaborated and
extended by GitHub. This chapter is about the configuration and setup of Git over
different flavors of Operating System (OS) and setting up an account over GitHub.

Structure

In this chapter, we will cover the following topics:
e Version Control
e Introducing Git and GitHub
e Getting started with Git
o Linus/Unix
o MacOS

o Windows

e Creating and configuring the GitHub account



2 Git Repository Management in 30 Days

Objectives

After reading this chapter, you will get an understanding of What is source version
control, and the Git version control. You will also get equipped with introducing Git
and GitHub. You will also understand the running instance of Git and the difference
between Git and GitHub. By the end of this chapter, you will have learned how to
create an account on GitHub.

Once completed, you will learn about different types of version control systems, and
how they evolved and resulted in the creation of Git. And as we progress through
the chapter, we will go through all the information and requirements needed to
follow along and complete all the examples and concepts discussed in the upcoming
chapters, making the reading and development process easily consumable.

What is version control

Version control, also known as source control, refers to tracking and managing
changes to code. This ensures that developers are always working on the right
version of the source code.
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Figure 1.1: Why version control (credit: smutch)

Why should you care? Version control is a system that records changes to a file or set
of files over time so that you can recall specific versions later.
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need Version
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Figure 1.2: Version control importance

Version control allows the developers the flexibility of making mistakes without
worrying that they will have to start over the project/ work. Basically, version control
keeps track of all the changes at any time. If there is a need to undo any particular
change, it can be done on the fly. Version control systems went through a series of
evolutions with time and as project complexity grew.

Local Version Control Systems

The local version control system approach is very basic and simple, but it is also
incredibly error prone. That is because it is extremely easy for the user to forget
which directory they are in, and thus, they can mistakenly either write to the wrong
file or copy over the entire files they do not mean to.

To avoid the above discussed issue, developers worked on the concept of local
Version Control Systems (VCSs), which is a local database located on your local
computer, in which every file change is stored as a patch. Every patch set contains
only the changes made to the file since its last version.

LOCAL SERVER

Version Database

File —» Version 3

Y

Version 2

v

Version 1

Figure 1.3: Local version control
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Centralized Version Control Systems

Centralized Version Management Systems (CVCSs) resolve the likely issues and
challenges local version control systems face. The requirement to collaborate with
developers on alternative systems became a recurring issue that developers and
creators noticed over time. Systems (such as CVCS, Subversion, and Perforce) have
a single server that contains all the versioned files. Various users use it to check out
the files from a central location, so CVCS is still popular and is alternatively used
instead of the local version control system.

CENTRAL SERVER

Version Database

Computer A ———]
Version 3

Y

Version 2

Computer B = *
Version 1

Figure 1.4: Centralized version control

Distributed Version Control Systems

Distributed Version Control Systems (DVCSs), such as Git, Mercurial, Bazaar, or
Darcs, each clone of the repository is the full backup of the repository data. This,
in turn, means that when the user takes the latest snapshot of the files, DVCS takes
the full mirror back of the repository. This includes the complete history of the
repository. It helps when the server hosting the repository crashes, and any of the
users’ repositories can be copied back up to the server to help restore the repository
content onto the server.
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Figure 1.5: Distributed version control

Git History

Like numerous extraordinary things in everyday life, Git started with a touch of
innovative obliteration and blazing debate.

The Linux OS kernel is a free and open-source OS with extreme opportunities. For
a large portion of the lifetime of Linux piece support (1991-2002), changes to the
operating system were passed around as patches and archived files. In 2002, the
Linux OS project started utilizing a restrictive DVCS called BitKeeper.

In 2005, the agreement between the DVCS system BitKeeper and the community
that had worked on its Kernel got revoked, and thus BitKeeper being used as a free
tool got renounced too. This resulted in the Linux community (particularly Linus
Torvalds, the creator of Linux) working and developing their own tool based on the
learnings when using BitKeeper. Linux community also prioritized the goals which
they wanted in the new system. They are as follows:

Design that is simpler and easier to use:

Well-rounded support for non-linear development (that is, working on thousands of
parallel branches)

Distributed Completely:

Should be able to handle large projects like the Linux kernel efficiently and with zero
tolerance (speed and data size)
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Git became self-hosted on April 7 with this commit:

commit e83c5163316f89bfbde7d9ab23ca2e25604af29
Author: Linus Torvalds <torvalds@ppc970.osdl.org>
Date: Thu Apr 7 15:13:13 2005 -0700

Initial revision of "git", the information manager from hell

Figure 1.6: Git first commit

Shortly thereafter, the first Linux commit was made:

commit 1dal77e4c3f41524e886b7f1b8alclfc7321cac?
Author: Linus Torvalds <torvalds@ppc970.osdl.org>
Date: Sat Apr 16 15:20:36 2005 -0700

Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a
separate "historical” git archive of that later if we want to, and in the meantime it's about 3.2GB when
imported into git - space that would just make the early git days unnecessarily complicated, when we don't
have a lot of good infrastructure for it.

Let it rip!

Figure 1.7: Linux first commit

From the time Git came into existence around 2005, it has evolved and matured into
a tool thatis easy to use and yet inherited and extends all the capabilities of DVCS. It
also ticked all the initial use cases and principles it was built upon, which is why it is
lightning-fast and very efficient for large projects. It also has an incredible branching
system for non-linear development.

What is Git

This section is a key to understanding the underlying concept and principles upon
which Git is built. If you follow this section keenly, you can learn how Git works
fundamentally and use the concepts and knowledge to use Git effectively when you
start using the same for your projects. As discussed previously in the chapter Gitis a
distributed version control system. Other version control systems are also available
in the market, but Git functions differently and stores the information differently.
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....DONE ALREADY

Figure 1.8: Git User experience

A major difference between Git and any other version control system (VCS) is how
they store information. Other VCS store data as a rundown of record-based changes.
These different frameworks like (Central Version control system, Subversion,
Perforce, Bazaar, and so on) think about the data they store like a bunch of records
and the progressions made to each of the records over the long haul (this is more
commonly represented as delta-based variant control).

On the other hand, Git considers its record information more like a series of smaller
snapshots of the filesystem. With Git, each time users commit or save the state of
the user's project, Git essentially snaps a photo of what every one of your records
resembles at that point and stores a reference to that depiction. To be effective, if
records have not changed, Git does not store them again. Simply a connection to the
past indistinguishable records has already been effectively stored. Git considers its
data to be more like a stream of snapshots.

Simply put, every time a change is made to the filesystem, Git just merges those
changes with the already present ones instead of replacing or overriding the existing
content.

SCALABILITY

OPEN
SOURCE

Figure 1.9: Git Features
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Git has a high level of performance and integrity:

Most Git operations are done locally and only need local files and objects. On
the contrary, other VCSs have network latency overhead which gives Git a major
performance boost as the entire history of the project files is stored over your local
disk and is thus available instantaneously.

This also gives you the freedom to work remotely or without network connectivity
as you can save your changes to your local copy. Once back online, you can push the
required changes to the repo, whereas other VCSs do not have this flexibility.

When it comes to Integrity and Git knowing things, there is no way any file can
be updated or modified without Git knowing it, and this is taken care of by Git's
checksum in place. Everything in Git is check summed before it is stored and is then
referred to by that checksum.

SHA-1 hash is used for the checksum by Git, and you will see these hash values all
the time as, Git stores everything in its database not by file name but by the hash
value of its contents.

Git three States

Git principally works based on three stages, as depicted in Figure 1.10, and the files
stored under Git can either be in a modified, staged, or committed state:

Modified

git (add

Staged

gitjcommit

Comitted

Figure 1.10: GIT 3 states
Modified: It means that the user has changed/edited the file but has not made the
changes to their GitHub repository database yet.

Staged: It means that the user has marked a modified file in its current version,
which is supposed or will go into the user’s next commit snapshot.
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Committed: The users’ GitHub repository data changes are safely stored in the
users’ local database.

This leads us to the three main sections of a Git project: the working tree, the staging
area, and the Git directory.

Working Staging .git directory
Directory Area (Repository)

Checkout the project

Figure 1.11: Working tree, staging area, and Git directory (source: Git)

The Git working tree is a single checked-out version of the project, where the files
are pulled out from a compressed database from the Git directory. And this is then
placed over the user's disk for them to use, update and modify.

The staging area is a file, generally contained in the user’s Git directory, which
generally stores the information about what would go into the next commit.
Technically and more precisely, it is called Git parlance, which is the “index,” but the
phrase “staging area” also works.

The Git repository directory is the place where Git stores the metadata and item
information base for the user's project. This is the most important aspect of Git,
duplicated when users clone a Git repository from a different computer.

The usual Git workflow is a process that goes as follows:

Users modify the files in their working tree. Users then selectively stage those
changes they want to be part of their next commit, adding only those changes to
their respective staging area. Users do a commit, which will take the files as they are
in the staging area and then stores that particular snapshot permanently in their Git
repository directory.

Getting started with Git

In this section of the chapter, we will go through some of the basics of Git, its
installation and setup procedure on your work machine.



