Git Repository
Management in
30 Days

Learn to manage code repositories like a pro

Sumit Jaiswal

www.bpbonline.com

ii
Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork

119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-071

www.bpbonline.com

i1l

Dedicated to

My beloved wife
Kanika
&

My daughter
Anika

iv

About the Author

Sumit Jaiswal has been engaged in software development for over 11 years, serving
as a technical leader and software engineer on several projects utilizing Open-
Source Technologies. He is currently a Principal Engineer at Ansible by RedHat.
Meanwhile, he has obtained multiple Kubernetes and Security certifications.
Furthermore, the author speaks at international conferences and writes technical
blogs on Open-Source-related topics.

About the Reviewer

Paul Oluyege is an Innovative, Result and Data-driven Software Engineer and
Manager. His professional experience of about 10 years cut across software
development, process management, people management, project management
and product management. He currently leads and manages a cross-functional
development team of 20 members building and maintaining both new and existing
products in multiple domains (Fintech, E-commerce B2B, B2C, SAAS, Logistics).
Alongside, he is a tech author, tech coach and mentor.

vi

Acknowledgement

Iwanttoexpressmy deepest gratitude tomy family and friends for their unwavering
support and encouragement throughout this book's writing, especially my wife
Kanika and my daughter Anika.

I am also grateful to BPB Publications for their guidance and expertise in bringing
this book to fruition. It was a long journey of revising this book, with valuable
participation and collaboration of reviewers, technical experts, and editors.

I would also like to acknowledge the valuable contributions of my colleagues and
co-worker during many years working in the tech industry, who have taught me
so much and provided valuable feedback on my work.

Finally, I would like to thank all the readers who have taken an interest in my
book and for their support in making it a reality. Your encouragement has been
invaluable.

vii

Preface

Git Repository Management in 30 Days welcomes you!

This book will give you a complete and practical approach to managing Git
repositories. This book will help you grasp Git and take control of you are code,
whether you're a newbie or an experienced developer.

Git is a critical tool for code management in modern software development. It
lets engineers effectively track changes, collaborate with others, and manage code
versions. Git, on the other hand, can be difficult and overwhelming for people
who are new to it. This is where this book comes into play. This guide has been
created to help you learn Git systematically and logically, with lessons that will
take you from novice to expert in 30 days.

Each chapter of this book delves into a different facet of Git, beginning with
the fundamentals of version control and progressing to more advanced topics
like branching, merging, and rebasing. Collaboration, troubleshooting, and best
practices for optimizing your productivity will also be covered. By the end of this
book, you'll be able to confidently manage code repositories, interact with others,
and streamline your development process.

With clear explanations, real-world examples, and step-by-step directions, this
book is intended to be practical and approachable. We've also included challenges
to help you put what you've learned into practise and improve your skills. This
book is for you if you are a student, a nonexpert, or a professional developer.

Thank you for your interest in "Git Repository Management in 30 Days". We
hope you find it useful and educational, and we look forward to assisting you in
mastering Git and advancing your development abilities!

Chapter 1: Introduction to Git and GitHub - This is the introductory chapter.
Source control is one of the key concepts and tools that is widely used in the
software development process and without which DevOps makes little sense as
it helps to bring collaboration and transparency between the development and
operation teams. One of the most popular and well-liked source control systems
is GIT, which is elaborated and extended by GitHub. This chapter covers the
configuration and setup of GIT on various operating systems, as well as the
creation of a GitHub account.

viii

Chapter 2: Getting Started and Understanding Git and GitHub - Git and GitHub
go hand in hand, but users should be aware of the differences that define each
other's roles in the software development process. Any system or tool used to store
and manage changes to projects over time is referred to as version control. The key
advantages of source control include standardizing coding practices, parallelizing
development activities, and eliminating dependencies. This chapter covers all the
details around version control and goes on to examine Git in depth and detail,
allowing you to clear a few basics about Git and make the learning process go
more smoothly. Discussing Git gradually leads to the distinctions between Git and
GitHub.

Chapter 3: Git Branching, Merging, and Rebasing - This chapter focuses on
the essential capabilities of Git and GitHub, as well as how they complement
each other in the software development and DevOps processes. It addresses the
essential ideas of GIT as well as the basic day-to-day processes and commands
that you may encounter while using the Git source control.

Chapter 4: Deleting, Renaming, and Ignoring Files in Git - This chapter builds
on what readers learned in the previous chapter and allows you to make the final
decision before pushing and committing changes to source control. This process
of committing changes to the GitHub repo may include renaming, deleting, and
ignoring files in the project.

Chapter 5: Collaborating Towards Your/Other Larger Projects over GitHub - This
chapter discusses all of the process-related and critical aspects that should be kept
in mind and followed before attempting to contribute to an open-source project
that is being followed and used by a larger community from all over the world,
as opposed to maintaining and contributing to a repo maintained by a single user.

Chapter 6: Contributing Towards Open-Source Project Repo - As one of the
most important applications of using Git and GitHub together is how users can
contribute to open-source projects that are part of GitHub, and having worked in
open-source projects for quite some time, I've gained insights into how one should
approach their contributions towards an open-source way of working and process,
and one very important aspect of this is raising PR and issues over GitHub open
source projects in a way that can get the most traction and help.

Chapter 7: Tags and Releases Using Git - This chapter goes over all of the Git and
GitHub processes and important points to remember. Git only stores four kinds of
objects in its object store: blobs, trees, commits, and tags. Managing releases using

ix

Git and GitHub is a basic and straightforward procedure, and we will learn all
about the principles and underlying commands involved.

Chapter 8: Undo or Refresh all the Work Done - This chapter focuses on Git's
undo/refresh functionality, discussing all of the principles that Git exposes to
assist users to achieve similar functionalities, as well as how employing GitHub
processes and workflows can aid and make the corresponding job seamless and
efficient.

Chapter 9: Most Commonly Used Git Commands - This chapter is essentially a
summary of all of the chapters that we have gone through together. It will assist
all users, whether beginner, intermediate, or advanced, in referring to this chapter
whenever they may find it useful.

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/aqascyr

The code bundle for the book 1is also hosted on GitHub at
https://github.com/bpbpublications/Git-Repository-Management-in-30-Days.
In case there's an update to the code, it will be updated on the existing GitHub
repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications” Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical

articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

xi

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions. We at
BPB can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

xii

Table of Contents

1. Introduction to Git and GitHUbceeereenectireneerrecnnnen 1
SHUCHUT ...ttt 1
ODJECHIVES ..ttt 2
What is Version CONtrol ..o ssssenes 2

Local Version Control SYSEeMSccccvvviiiiininiciiiiiiiiiiiicicccicciccnnn 3
Centralized Version COntrol SYStems..........ccocvvvvivivvvciniciiiiiiiiiiiiiiccicina 4
Distributed Version Control SYSEmSs...........coveuevevvvniiviiisieiiiiniesiiiisiesinns 4
Git HiStOIY coeeeiiiicicecct e 5
WAL TS Gl 6
Gt th1€€ SHALESvvevvieieiiiciictci e 8
Getting started With Git........ccoceieiiiiiiiiiiiiiiicccce e 9
LIRUXURIX .o 10
MaC OS ..o 15
WITAOTS ..ot 16
Introducing GitHUb.........ccccoviviviiiiiiiiccrnes 24
Creating and configuring the GitHub account............cccececuvicivicinicincninnnnes 25
CONCIUSION ottt 30
Multiple choice QUESHONS.c.cuviiuiiiiiieiiiiiiccicicc s 30
ANSWETS .ot 32
KeY termMIS .ottt 32
Points to remember ... 33

2. Getting Started and Understanding Git and GitHub 35
SHUCHUT ..ttt enn 35
ODJECHIVES ...ttt 36
Difference between Git and GitHUDcccoovevviiiiiiiiccce 36
GitHub fundamental.........cccoeiiiiiiiiiiiiiiiiiicnccnnes 39
Creating a repository on GitHub..........ccccviiiiininiiniiiiiccccices 41

Committing changes to your repOSitoryeicircrecnineieiciineineinnes 46

CONCIUSION ottt 48
Multiple choice qUESHIONS.........vviviuieinriciir s 49
ANSTUCTS vttt 49
KeY teIINIS .ot 49
Points tO reMEMDETc.ceviiiiiiiiiriccctc e 50
Further 1eading ... s 50
3. Git Branching, Merging, and Rebasingcceceevurueuercncnes 51
SHUCEUTC ..ttt 51
ODJECHIVES ...ttt 52
Introducing Git OPtONSc.cueveveiiiieieete s 52
Gt OPHONS ottt 52
Git COMMANAS ...t 55
Starting @ WOTKING ATo.cvoviviveieiieieiiiiicieieeceeet e 56

Git init - Initialize Git 1EPOSIEOTY...c..cviviviiiiieiiiiiiicicice e 57

Git clone - Clone a Git repository into a new directorycooovvvrevrnieennnnn 60

Work on the current CRANGe................covevevvveeicveiciiiiiiieicieicieeie s 66

Git add - Adding file contents to the iNdexcccovvvviviiviiniininiiiis 66

Mo - Move or rename a file, a directory, or a symlinkccccocovvvvvivninnnnnns 68

Restore - Restore working t7€e filesccvvvvvriviivcininiicciniiniisiisiciciesecicsin, 69

rm - Remouve files from the working tree and from the indexc.cccccccvvivininn. 72
sparse-checkout - Initialize and modify the sparse-checkotit...................ccooueunee 74

To examine the history and state of the 1epoSItory........ccccevvvvvvirvervieierirnnnen. 74
DISECE ... 74

AU e s 76

GTEP ettt 79

L0 coeeeeeieeee s 80

SHOT ..o 81

SHAEULS cvvveviitiiee s 82

To grow, mark and tweak your 1epo RISLOTYccvvvvvvvvvveviiciiieiciieieiinne, 86
DIATICH ... 86

xiv

TGttt 92

REDASE ...t 93

TG vttt 97

To collaborate 0Ver TEPOSIEOTYccvvvivieveviiiiiiiiiiiiiieicieiessisiseiees e 102
JOECH . 102

PUIL .ot 105

PUSH ..ot 107
CONCIUSION ..ttt as 111
Multiple choice qUESHIONS.......cvcvrvimieircicii e 111
ANSWETS vttt 112
KeY termS .ottt 112
Points to remMemDber ... 113
FUrther readingceu e 114
4. Deleting, Renaming, and Ignoring Files in Git 115
SHUCEULE ... 115
ODJECHIVES ...ttt 116
Delete the Git filec.cuieiiiiiiiiiiicciicccc e 116
OPHIONS .ottt 116
EXAMPLES ..ottt 117
Git rm CaChed ..o s 118
Undo before Commit COMMANG...........oovvvviiviiiiiiiiciiiicisiccccces i 119

Git rename filescceivieieiriiiiiiiiiccc e 120
MELHOA T ...t 120
MEtHOA 2 ...t 122
Git DrANCRING......cuveiieieiceieece et sses e s ssesenas 123
Local vs remote Git DYANCH............c.ccovvviviviiiiiiiiicccsccc s 123
Working of Git COMINILcoviveiiiiiiiieiciieieieictee s 125
Ignoring the files USING .GIIGNOTEcuvvueuieeiiciiciececeeeeecceeeeee 125
The .QItiGNOTe fileS.......ocoovvuririiriiiiiiieiciciiticiciecc s 126

The .gitignore patterns, that is, file StrUCHUTE..........c.ccccvvvvvvviiiiiiiiiiiicie, 126

QIHQNOTE SAIMPIC ..o 129

X0

GIODAL .GIEIGNOTC.......oevvviiicicieit s 129
Ignoring a previously committed file............oovvvvvviiiiiiiiiniiiiiiiiiicn, 129
Stashing an ignored fileccoeevevvieveiiioinieriiiieieiisete 131

Deb1igging .Qitignore Fileccccoviiniiiiiiiiiiiiiiiiiiiiciccscccic 131

Git commit: save the staged changes...........cccvccuvecinecirecinccrnecnecreeeneenn. 132
How Git commits differs from SVNSccocovvmereviieciiiinesieicninieiciiin, 132
OPHIONS .ottt 133
EXAMPLES ..ottt 134

CONCIUSION ..ttt 136

Multiple choice QUESHONS.........cuovcuiiiiciiiicciiicci s 136
ANSTETS vttt 138

KeY termS ..o 138

Points tO reMEeMDETcoueviieiiiiiiii 138

FUrther readingceu i 139

5. Collaborating Towards Your/Other Larger Projects over GitHub................. 141

SHUCEUT® ..ttt 141

ODJECHIVES ...ttt 142
Clone and fork the GitHub 1epoSttoryccovvvvevevvvieiciiisicieiinicieiiiieiernnns 142
Cloning, forking, and duplicatingccccccevvvviviviniecviiicniniciiiciennnn, 142

CIONTNG TEPOSIEOTY .voveveivieiiciieieieici s 143

FOTKing 1€POSIEOTY covvvviiiiciiciceie s 144

Duplicating repoSitorycocvcveiiiniviniieiiiiiiiciceees s 145

Why forking repository is needed............ccovueuviviccnininiciiiniiceiniccieicicnens 147
Creating a Pull request from forked repositorycccoeeueveviiereiencienennnes 149
Contributing to single repositOrycccceveeievinirisiiccccceccnns 150
Moving your changes to new branchcoccvvvvvivvivnninnniiinnin, 151
Make the source repository the upstream remote settingcccoovue. 152

FOTK tRE TEPO0 ..o s 152
Set your forked repository as the origin remote:cccccovvvvvvvvvviiiiiinnnnnas 152
Send your branch to the forked COpY..........cccovvvvvvvivvnieviieiiiieciciicice, 153

Create a new pull TeGUESE............ccccovvviiiiiiiiiiiiciiiciiccsiesssct i 153

xvi

Collaborating on pull 1eqUESEccvvvvrvvvieieieiiieieicicicieiiiciiicn 153
Collaborators” involvement in the pull request................c.cccovvvvieiviiiiininnnes 154
Pull 1equiest 1e0Ie10 PrOCESSc.cvuvviviiiiiiiiiiiisisisicisicisiiiiits it 154
Commenting over a pull 1equest.................cvvevvveieeeeiiciiiiiiiiiiiiciiinns 155
Contributing to a pull 1equestccooevevevvveiviieiciiiiieieieiiecee 155
Testing pull TeqUESE............c.cvvvivviviciiiciciiiiiiici e 156
Merging pull TqUESEcvvevevniviieiiiiieieiiiieiciiee e 157
Who should merge the pull 1equest...............c.ccovvevvecneinciiiiiiiiciinciinns 157

Git ALLASES ..ottt s 158
CONCIUSION ..ttt 159
Multiple choice qUESHIONS........ccviviuieirciii e 159
ANSTUCTS vttt 160
KeY termS ..o 160
Points tO reMEMDETc.ceviiiiiiiiiiiii s 161
FUrther readingceu e 162
6. Contributing Towards Open-Source Project Repo 163
INtrOAUCHON .ottt 163
SHUCEUT® ..ttt 163
ODJECHIVES ..evvititet e 164
Understanding a pull requestcooovveveiiieiiiniiicceee 164
Nature of a pull TeQUESEcccoviiviiiiiiiiiiicic 164
GIEPUIL.c.oooiiiiiic 165

Git pull from 1emote BIAnch.............c.ccoovviivniiiiiniiiiicicicicsiccs s 169

Gt fOTCe PULL...eeiiiiiieiciiciciic s 169

A complete GitHUb WOTKlOTWoocvvvveieiiieiiiciciiiciiciiiicces 170
GitHub Workflow with pull 1equests.............ooeevevieeieciieiiiiiiciicecens 171

Fork Workflow with pull 1eqUestscccveveeivivvnieiciniiiiiiiiccciccecicie 171

GitHub for Code distributionc.ceevverevevninieviiiieieiiieisicienisieiinns 172
Open a pull request over GitHUb.........coovveeieieiii 172
Opening a pull TeqUESEcocvovvvviiiiiiiciiiiitcic s 175

Describing the pull TeqUestcccvvvvvvieieieiiiiiiiisieisisicisicseiaans 176

AdING TEUIETDETS. ..ot s 177

AdING ASSIGNEES ..ot 177

AAAING IADELS ... 178

Adding projects and MileStONEScccccvvviiiiiiiiiiiiiiiiiiicce e 178
Creating the pull TeqUESEccccviivieviiciciiicicicccc s 178
Writing a good pull TeqUeStc.cccvvviviviieieiiiiiieiiicieieiieees 179
Maintaining the foCUSccoccvvvviniiiiiiiiciecs s 180
SUGGESHING CHANLES ...t 181

FINSH T@UIETD ..o 183
Merging Pull ReGUESEcccocuvveeiiiiiiiciiiiiiciiciciccitsiec s 184
Writing a great bug report ... 185
Characteristics of a quality software bug reportccccccvvvvviiieiiiecnnnnnns 186
Effective bug reporting..........ccovvvvieiviiiiiininiiiiiiiiiscccceee 188
Pushing code and opening a pull request over GitHUbcccceuecuvucunnee. 189
SUMIMATY ..o 190
CONCIUSION oottt s 190
Multiple choice QUESHONS......c.cueicuiriiiciiiiciiicicic e 190
ANSTVCTS wvvvviiiieieteiic et 191
Further readings.........ccocvuviiiiiiiiciiii e 192
7. Tags and Releases Using Git 193
SHUCHUT@ ..ttt 193
ODJECHIVES ...ttt 194
Release tags versus release branches............ccocoeceuviniiiniicccincncininicnnnn 194
GIE TAG ottt s 195
Git Create tAG.......c.cvvvvviviciiiciciciiicicict it 196
ANNOLALEA TAG ...t 196
Light-weighted tagccovovvviveviiiiieiiiiicieiiiee i 197

Gt LISt A cvveveveiiieict et e 198
Tagging old COMMUILS..........cvvvviiiiiiiiiiiiiciiiciiiii 199

Gt PUSH EAG ..ot 200

Git Delete HAG.......coovvuviviriiiiiciciciiiciiict it 202

xviii

Delete remote 1epoStLOry tAGcovvvvevivvueiiiinieiiiiiieeieeieetnee e 203
Delete multiple tagscvevvviueieiiieiieiiiiieieieicisieie s 203

Git CHECKOUE FAGS......cocoovvviiiiiiiiiiiiciicc s 204
Retagging/Replacing old tAgs...........ccovuevevvivvivcisieiiiiicisiiniisiccsie i, 204

Gt DLANCR ..ttt s s saeae s s 205
GIt AT DYANCH ...t 206
Operations 011 DIANCHESc.cccvviiiiiiiiiiiiiiiicccccc s 206
Cherry-Pick commit fOr TEUSE.......covurviviiirinicii s 209
Need for CHRerry=Pickingcccccovviiiiiiiiniciiiiiiiiii i 210

Git Stash for code reusabilityccccovumriririiniinieiic e 212
Gt SEASH DYANCH ...t 213

SAVE Git SHASN ..ot 214

List GIE SHASH.....cooiiiiiiciiicicicicicicic 214

APPIY GIE SEASH ..ot 214

Git SEASH CHANGES ...t 215
Re-applying your stashed cHANGEScccvvvevviiiniiiiiiiisic 216

Gt SEASH DYANCH ...t 217

Git SEASI CLEANING ...t 218
CONCIUSION ...ttt esas 218
Multiple choice qUESHIONS........ccviviuieirriii e 218
ANSWETS vttt 219
KeY termS ..o 220
Points to remMemDbeTr ..o 220
FUrther readingceu e 221
8. Undo or Refresh all the Work Done 223
SHUCEULE ... 223
ODJECHIVES ...ttt 224
Undo and refresh changes in Git........cccccevuvirieiicicciiniciccceccne 224
NAVIGAHNG L0 cvvvvivviviieiiiiiiiiieiett s 226

GIt 10G ONEIINE ...ttt 226

Gt 10§ LOG=SIZE c..vvvicicieiciciciciciiitcs e 227

xix

GIt 10 SEAL ...t 227

Git [0 GIAPH ..o 228
Filtering the commit HISEOTYcccovvviiiiviiiiiiiiciiiiciiiiiiiccs 229

Git 1eflog Versus Git 10gcvvvvveviieiciiiiiiiiiiiiiiiiiiccice e 233

GIE VT 1ottt 233
Git revert t0 previous COMMIL..........coovvuiuiirivivivcisisiiieiiisieiiieiiissiciciceieiie 234
GIETESOL 1ottt e 236
GIt 1€t NAVA ...t 237

Gt 1€SCE MIXC ... 238

Gt 7€S€E SOft ..ottt 239

Git 1eSet t0 COMMILcvovovviiiiiiiiiiccicc e 240
Resetting versus reVerting.........ocvvivvnivieiiiiiiiiiiiiiiisicisicssisieesssisiins 240
Amend Git COMMUL....coiiririiiiiiiici s 240
Changing most recent Git COMMIL MESSAZEcovvvvvverevereiiieriiiiiiiiiieiaenans 241
Changing committed filesccooviviviviviiniiiiiiiiisicicicceec 241
Interactive rebase........cciviveiiieiiiiiiicctcc e 242
Interactive rebasing at WOTKcccovvvevevvieieiiiiiiieieiiieieeieeeeis 242
Squash commits tOQEtNerccovvvvvviveiiiiiiiiiiiiiiciccc 244
Rebase 0n top Of MAINcovvevevviieieiiiiiieieicieeetce e 246
Re-writing Ristory 11SKS........ooevvvvieveveiiiiieiiiiieeisticce e 247
CONCIUSION ..ottt 247
Multiple choice qUESHIONS........ccviuiuieircicir e 247
ANSTVTS wvvvviiiiieieietic e 248
Points to remember ... 249
Further readings........cccocecuiiiiiiniiicc e 249
9. Most Commonly Used Git Commands........cceeerercreruruenerenenes 251
SHUCHUT ...t 251
ODJECHIVES ..etvieeiettett s 252
Gt CONFAGvrreriiiiiieti st 252
GIE ANttt s 253

GHE CLOTI ettt ettt e et eeesaae e eesat e e seaseeesssseeesssseessnnseessnsaessnnees 253

XX

GIE SEALUS ceeeeeeeeeeieeeete ettt ettt st sb et s n e 254
GIE A ittt ettt ettt sttt et et s 254
Gt COMIMIL ceveeeiteieetcteeieeee ettt ettt et s et et sa et sae e 255
GIE PUSHLcceii e 255
GIEDIANCR 1.ttt bbbt sn e 255
Git CHECKOUL vttt et 256
GIE INETER..ettiteieieitet bbb 257
GIt PULL et 257
GIELOZ vt 258
GIE SNOW 1ttt ettt 258
GHE Iff vttt ettt sttt s s 258
GIEEAG cvveveverererieietcte s 258
GIE TNttt ettt sttt et ettt ee et e e besaesmeesaeans 259
GHE SEASNL 1ttt ettt ettt nnen 259
GIETESEL .ttt ettt et et s et et ettt s sttt s et se e 260
GIE TEVETT 1ottt et ettt e sae st st sae b st et sa s e s 260
GIE TEIMOLE ettt ettt sttt s sa e b et sa e en 261
G FEECRN ettt ettt 261
CONCIUSION ettt sttt ettt b sttt sb et sesae s 261
Multiple choice qUESHIONS........ccviviuieirriii e 262

ATISTOCT'S .ttt st 263
KeY termS ..o 263
Further reading ..o s 264

Index 265 -269

CHAPTER 1

Introduction to
Git and
GitHub

ource control is one of the key concepts and tools used extensively in software

development. With it, DevOps makes more sense as it helps bring collaboration
and transparency between the development and the operation teams. The tracking
and management of code changes are known as source control, and it ensures that
developers are constantly working on the correct version of the source. One of the
most used and loved by community source control is Git, which is elaborated and
extended by GitHub. This chapter is about the configuration and setup of Git over
different flavors of Operating System (OS) and setting up an account over GitHub.

Structure

In this chapter, we will cover the following topics:
e Version Control
e Introducing Git and GitHub
e Getting started with Git
o Linus/Unix
o MacOS

o Windows

e Creating and configuring the GitHub account

2 Git Repository Management in 30 Days

Objectives

After reading this chapter, you will get an understanding of What is source version
control, and the Git version control. You will also get equipped with introducing Git
and GitHub. You will also understand the running instance of Git and the difference
between Git and GitHub. By the end of this chapter, you will have learned how to
create an account on GitHub.

Once completed, you will learn about different types of version control systems, and
how they evolved and resulted in the creation of Git. And as we progress through
the chapter, we will go through all the information and requirements needed to
follow along and complete all the examples and concepts discussed in the upcoming
chapters, making the reading and development process easily consumable.

What is version control

Version control, also known as source control, refers to tracking and managing
changes to code. This ensures that developers are always working on the right
version of the source code.

NOT 50 LONG AGO.
IN A GALAXY CLOSE BY.

NOT THIS STUPID
‘Sé)N BATTLE' THING

HEY GEORGE hay-
\
+ 2 1
WHAT'S UP? e oD VERSION CON-WHAT?
OH WELL.
1 ACCIDENTILY
DELETED ANOTHER SSSE;F‘EEESIHOJFJL
PAGE OF My CONTROL RIGLT? USH.
HANUSCRIPT . :

\

f \ f

Figure 1.1: Why version control (credit: smutch)

Why should you care? Version control is a system that records changes to a file or set
of files over time so that you can recall specific versions later.

Introduction to Git and GitHub 3

Do you
need Version
Control?

No—=| Yes, you do

Yes

Install Git <

———

Figure 1.2: Version control importance

Version control allows the developers the flexibility of making mistakes without
worrying that they will have to start over the project/ work. Basically, version control
keeps track of all the changes at any time. If there is a need to undo any particular
change, it can be done on the fly. Version control systems went through a series of
evolutions with time and as project complexity grew.

Local Version Control Systems

The local version control system approach is very basic and simple, but it is also
incredibly error prone. That is because it is extremely easy for the user to forget
which directory they are in, and thus, they can mistakenly either write to the wrong
file or copy over the entire files they do not mean to.

To avoid the above discussed issue, developers worked on the concept of local
Version Control Systems (VCSs), which is a local database located on your local
computer, in which every file change is stored as a patch. Every patch set contains
only the changes made to the file since its last version.

LOCAL SERVER

Version Database

File —» Version 3

Y

Version 2

v

Version 1

Figure 1.3: Local version control

4 Git Repository Management in 30 Days

Centralized Version Control Systems

Centralized Version Management Systems (CVCSs) resolve the likely issues and
challenges local version control systems face. The requirement to collaborate with
developers on alternative systems became a recurring issue that developers and
creators noticed over time. Systems (such as CVCS, Subversion, and Perforce) have
a single server that contains all the versioned files. Various users use it to check out
the files from a central location, so CVCS is still popular and is alternatively used
instead of the local version control system.

CENTRAL SERVER

Version Database

Computer A ———]
Version 3

Y

Version 2

Computer B = *
Version 1

Figure 1.4: Centralized version control

Distributed Version Control Systems

Distributed Version Control Systems (DVCSs), such as Git, Mercurial, Bazaar, or
Darcs, each clone of the repository is the full backup of the repository data. This,
in turn, means that when the user takes the latest snapshot of the files, DVCS takes
the full mirror back of the repository. This includes the complete history of the
repository. It helps when the server hosting the repository crashes, and any of the
users’ repositories can be copied back up to the server to help restore the repository
content onto the server.

Introduction to Git and GitHub 5

Main Repository

PULL PUSH
PUSH PULL PUSH PULL

Repository Repository Repository
| ©

21 18 gl 18 AR

g 3 o 3 2 S

Working Copy Working Copy Working Copy

Figure 1.5: Distributed version control

Git History

Like numerous extraordinary things in everyday life, Git started with a touch of
innovative obliteration and blazing debate.

The Linux OS kernel is a free and open-source OS with extreme opportunities. For
a large portion of the lifetime of Linux piece support (1991-2002), changes to the
operating system were passed around as patches and archived files. In 2002, the
Linux OS project started utilizing a restrictive DVCS called BitKeeper.

In 2005, the agreement between the DVCS system BitKeeper and the community
that had worked on its Kernel got revoked, and thus BitKeeper being used as a free
tool got renounced too. This resulted in the Linux community (particularly Linus
Torvalds, the creator of Linux) working and developing their own tool based on the
learnings when using BitKeeper. Linux community also prioritized the goals which
they wanted in the new system. They are as follows:

Design that is simpler and easier to use:

Well-rounded support for non-linear development (that is, working on thousands of
parallel branches)

Distributed Completely:

Should be able to handle large projects like the Linux kernel efficiently and with zero
tolerance (speed and data size)

6 Git Repository Management in 30 Days

Git became self-hosted on April 7 with this commit:

commit e83c5163316f89bfbde7d9ab23ca2e25604af29
Author: Linus Torvalds <torvalds@ppc970.osdl.org>
Date: Thu Apr 7 15:13:13 2005 -0700

Initial revision of "git", the information manager from hell

Figure 1.6: Git first commit

Shortly thereafter, the first Linux commit was made:

commit 1dal77e4c3f41524e886b7f1b8alclfc7321cac?
Author: Linus Torvalds <torvalds@ppc970.osdl.org>
Date: Sat Apr 16 15:20:36 2005 -0700

Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a
separate "historical” git archive of that later if we want to, and in the meantime it's about 3.2GB when
imported into git - space that would just make the early git days unnecessarily complicated, when we don't
have a lot of good infrastructure for it.

Let it rip!

Figure 1.7: Linux first commit

From the time Git came into existence around 2005, it has evolved and matured into
a tool thatis easy to use and yet inherited and extends all the capabilities of DVCS. It
also ticked all the initial use cases and principles it was built upon, which is why it is
lightning-fast and very efficient for large projects. It also has an incredible branching
system for non-linear development.

What is Git

This section is a key to understanding the underlying concept and principles upon
which Git is built. If you follow this section keenly, you can learn how Git works
fundamentally and use the concepts and knowledge to use Git effectively when you
start using the same for your projects. As discussed previously in the chapter Gitis a
distributed version control system. Other version control systems are also available
in the market, but Git functions differently and stores the information differently.

Introduction to Git and GitHub 7

....DONE ALREADY

Figure 1.8: Git User experience

A major difference between Git and any other version control system (VCS) is how
they store information. Other VCS store data as a rundown of record-based changes.
These different frameworks like (Central Version control system, Subversion,
Perforce, Bazaar, and so on) think about the data they store like a bunch of records
and the progressions made to each of the records over the long haul (this is more
commonly represented as delta-based variant control).

On the other hand, Git considers its record information more like a series of smaller
snapshots of the filesystem. With Git, each time users commit or save the state of
the user's project, Git essentially snaps a photo of what every one of your records
resembles at that point and stores a reference to that depiction. To be effective, if
records have not changed, Git does not store them again. Simply a connection to the
past indistinguishable records has already been effectively stored. Git considers its
data to be more like a stream of snapshots.

Simply put, every time a change is made to the filesystem, Git just merges those
changes with the already present ones instead of replacing or overriding the existing
content.

SCALABILITY

OPEN
SOURCE

Figure 1.9: Git Features

8 Git Repository Management in 30 Days

Git has a high level of performance and integrity:

Most Git operations are done locally and only need local files and objects. On
the contrary, other VCSs have network latency overhead which gives Git a major
performance boost as the entire history of the project files is stored over your local
disk and is thus available instantaneously.

This also gives you the freedom to work remotely or without network connectivity
as you can save your changes to your local copy. Once back online, you can push the
required changes to the repo, whereas other VCSs do not have this flexibility.

When it comes to Integrity and Git knowing things, there is no way any file can
be updated or modified without Git knowing it, and this is taken care of by Git's
checksum in place. Everything in Git is check summed before it is stored and is then
referred to by that checksum.

SHA-1 hash is used for the checksum by Git, and you will see these hash values all
the time as, Git stores everything in its database not by file name but by the hash
value of its contents.

Git three States

Git principally works based on three stages, as depicted in Figure 1.10, and the files
stored under Git can either be in a modified, staged, or committed state:

Modified

git (add

Staged

gitjcommit

Comitted

Figure 1.10: GIT 3 states
Modified: It means that the user has changed/edited the file but has not made the
changes to their GitHub repository database yet.

Staged: It means that the user has marked a modified file in its current version,
which is supposed or will go into the user’s next commit snapshot.

Introduction to Git and GitHub 9

Committed: The users’ GitHub repository data changes are safely stored in the
users’ local database.

This leads us to the three main sections of a Git project: the working tree, the staging
area, and the Git directory.

Working Staging .git directory
Directory Area (Repository)

Checkout the project

Figure 1.11: Working tree, staging area, and Git directory (source: Git)

The Git working tree is a single checked-out version of the project, where the files
are pulled out from a compressed database from the Git directory. And this is then
placed over the user's disk for them to use, update and modify.

The staging area is a file, generally contained in the user’s Git directory, which
generally stores the information about what would go into the next commit.
Technically and more precisely, it is called Git parlance, which is the “index,” but the
phrase “staging area” also works.

The Git repository directory is the place where Git stores the metadata and item
information base for the user's project. This is the most important aspect of Git,
duplicated when users clone a Git repository from a different computer.

The usual Git workflow is a process that goes as follows:

Users modify the files in their working tree. Users then selectively stage those
changes they want to be part of their next commit, adding only those changes to
their respective staging area. Users do a commit, which will take the files as they are
in the staging area and then stores that particular snapshot permanently in their Git
repository directory.

Getting started with Git

In this section of the chapter, we will go through some of the basics of Git, its
installation and setup procedure on your work machine.

